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H–1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587–4451.

Unique Low Rank Completability
of Partially Filled Matrices

Bill Jackson, Tibor Jordán, and Shin-ichi Tanigawa

26 June, 2015



EGRES Technical Report No. 2015-08 1

Unique Low Rank Completability of Partially Filled
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Bill Jackson?, Tibor Jordán??, and Shin-ichi Tanigawa? ? ?

Abstract

We consider the problems of completing a low-rank positive semidefinite
square matrix M or a low-rank rectangular matrix N from a given subset of
their entries. We study the local and global uniqueness of such completions by
analysing the structure of the graphs determined by the positions of the known
entries of M or N .

We show that the unique completability testing of rectangular matrices is
a special case of the unique completability testing of positive semidefinite ma-
trices. We prove that a generic partially filled matrix is globally uniquely com-
pletable if any principal minor of size n − 1 is locally uniquely completable.
These results are based on new geometric observations that extend similar re-
sults of the theory of rigid frameworks. We also give an example showing that
global completability is not a generic property in R2.

We provide sufficient conditions for two-dimensional local and global unique
completability of an n× n matrix by proving tight lower (resp. upper) bounds
on the minimum number of known entries per row (on the total number of
unknown entries, resp.) as a function of n.

1 Introduction

We consider the problem of determining the uniqueness of a low-rank positive semidef-
inite completion of a partially filled matrix. This completion problem and its variants
arise in various practical problems, such as computer vision [24], machine learning
[21], control [18], and several completion algorithms have been developed and imple-
mented in the last decades. It is also related to the fundamental problem of Euclidean
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distance geometry and has been investigated from several different viewpoints, see e.g.
[9, 17].

Singer and Cucuringu [20] initiated an analysis of this problem using techniques
from graph rigidity theory. They defined the underlying graph of a partially filled
positive semidefinite matrix M = (mij) of size n as the graph G with vertex set
V = {1, . . . , n}, in which ij is an edge if and only if the (i, j)-th entry (or (j, i)-th
entry) is known. Note that G is semisimple, meaning that it has no parallel edges but
may have loops.

Recall that a positive semidefinite matrix of size n and rank d can be written as
P>P for some d × n matrix P . Hence, finding a completion of M corresponds to
finding a map p : V → Rd such that

〈pi, pj〉 = mij for all ij ∈ E

where pi = p(i). Therefore, assuming that a completion is known in advance, the
unique completability problem can be restated as follows. We are given a graph
G = (V,E) and a map p : V → Rd. We need to decide whether there exists a
q : V → Rd such that 〈pi, pj〉 = 〈qi, qj〉 for all ij ∈ E and 〈pk, pl〉 6= 〈qk, ql〉 for some
k, l ∈ V .

We will adopt the terminology from rigidity theory and refer to a pair (G, p) as a
(d-dimensional) framework. Two maps p : V → Rd and q : V → Rd are said to be
congruent if

〈pi, pj〉 = 〈qi, qj〉 for all i, j ∈ V (1)

and we say that (G, q) is equivalent to (G, p) if

〈pi, pj〉 = 〈qi, qj〉 for all ij ∈ E. (2)

A d-dimensional framework (G, p) is called globally uniquely completable (or, sim-
ply, globally completable) in Rd if for every d-dimensional framework (G, q) which is
equivalent to (G, p) we have that p and q are congruent. A recent result of E.-Nagy,
Laurent, and Varvitsiotis [5] shows that the decision problem of asking whether a
partially filled matrix can be completed to a positive semidefinite matrix of rank at
most d is NP-hard for any fixed integer d ≥ 2 (even if it has an all-ones diagonal).
The proof of this result, combined with ideas from Saxe [19], can be used to show
that testing the global completability of d-dimensional frameworks is also hard for all
d ≥ 2.

The local version of the uniqueness of the completion can also be defined by using
terminology inspired by rigidity theory. A framework (G, p) is locally uniquely com-
pletable (or, simply, locally completable) in Rd if there exists an open neighborhood
N(p) of p in Rd|V | (regarding a map p as a point in Rd|V |) such that for any q ∈ N(p)
the equivalence of (G, q) to (G, p) implies that p and q are congruent.1

The local, resp. global rigidity of a framework is defined by replacing each inner
product with the squared distances in (1) and (2), respectively. An important fact in

1It can be seen that, as in the case of rigidity, the local completability of (G, p) is equivalent to
the fact that every continuous motion of the vertices of (G, p) in Rd which preserves equivalence
must also preserve congruence.
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rigidity theory is that local and global rigidity are both generic properties, meaning
that, if a framework (G, p) is locally (globally) rigid for a generic p, then (G, q) is
locally (globally) rigid for all generic q. (We say that p is generic if the set of the
coordinates in p(V ) is algebraically independent over Q.) This was first pointed out
by Gluck [7] and Asimov and Roth [1] for local rigidity and was recently shown by
Gortler, Healy, and Thurston [8] for global rigidity. This leads to a polynomial-
time randomized algorithm for checking local or global rigidity of generic frameworks.
Singer and Cucuringu [20] showed that several concepts in rigidity theory can be
naturally extended to the completability setting and gave a randomized algorithm for
checking local completability as well as a heuristic algorithm for global completability
in the generic case. An advantage of this approach is that the algorithms use only the
underlying graphs of the frameworks.

There is a direct connection between rigidity and completability. For a framework
(G, p) with a simple graph G and a map p : V → Sd, the rigidity of (G, p) on the
d-dimensional sphere Sd is equivalent to the completability of (G◦, p) in Rd+1, where
G◦ denotes the graph obtained from G by adding a loop at each vertex. The rigidity of
frameworks on the sphere is a classical concept and is closely related to the rigidity in
Euclidean space via so-called coning technique (see, e.g., [4, 27]). In fact, at a generic
level, the local/global completability of G◦ in Rd+1 is equivalent to the local/global
rigidity of G in Rd (see [13, Corollary 2.6 and Corollary 2.7]).

In [13] we began a more detailed analysis of the relationship between rigidity and
completability. This paper is a sequel to [13]. We will show that two-dimensional
global completability is not a generic property, suggesting a difficulty for checking
global completability in the existing theory. On the positive side, we show that a
generic framework (G, p) is globally completable if (G − v, p) is locally completable
for every v ∈ V . This in turn implies that a generic partially filled matrix is globally
completable if any principal minor of size n− 1 is locally completable.

The paper is organized as follows. In Section 2, we give preliminary results that
will be used throughout the paper. In Section 2.3 we discuss the unique completabil-
ity problem for low rank rectangular matrices (which was also introduced by Singer
and Cucuringu [20]). In Section 3.1 and Section 3.2, we shall introduce the concept
of canonical positions and standard positions, which are adaptations of results from
rigidity theory. In Section 3.3, we show that the unique completability testing of
rectangular matrices is a special case of the unique completability testing of positive
semidefinite matrices. In Section 4, we give some geometric observations on com-
pletability. These observations are used in Section 5 to show that a generic partially
filled matrix is globally completable if any principal minor of size n − 1 is locally
completable. In Section 6, we give three examples that indicate a difficulty in charac-
terizing 2-dimensional generic global completability by using existing techniques from
rigidity theory. In particular we give an example showing that global completabil-
ity is not a generic property in R2. In Section 7 we provide sufficient conditions for
two-dimensional local and global unique completability of an n×n matrix by proving
tight lower (resp. upper) bounds on the minimum number of known entries per row
(on the total number of unknown entries, resp.) as a function of n.
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2 Preliminaries

2.1 Infinitesimal completability and the completability ma-
troid

One may also define the infinitesimal version of local completability based on an
analogy with infinitesimal rigidity. A map ṗ : V → Rd is called an infinitesimal
c-motion of (G, p) if

〈pi, ṗj〉+ 〈pj, ṗi〉 = 0 (ij ∈ E). (3)

The |E| × d|V |-matrix representing this system of linear equations with variables ṗ is
the completability matrix of (G, p), denoted by C(G, p). (Thus the entries of C(G, p)
in the d-tuples of positions i and j of row e = ij are pj and pi, respectively, and all
other entries are zeros.)

For any d× d skew-symmetric matrix S, the map ṗ : V → Rd defined by ṗi = Spi
for i ∈ V is an infinitesimal c-motion. (The infinitesimal c-motions of this kind are
called trivial.) Therefore, if |V | ≥ d, then

rankC(G, p) ≤ dn−
(
d

2

)
. (4)

Clearly the rank of C(G, p) is also bounded above by the number of edges in the com-
plete semisimple graph on n vertices. A framework (G, p) is said to be infinitesimally
completable if rankC(G, p) = dn −

(
d
2

)
when n ≥ d or rankC(G, p) =

(
n+1
2

)
when

n ≤ d. It is c-independent if rankC(G, p) = |E|. Note that the rank of C(G, p) will
be the same for all generic realizations of G. Singer and Cucuringu [20] showed that
infinitesimal completability is a sufficient condition for local completability, and that
the two properties are equivalent when (G, p) is generic. Hence we say that the graph
G is locally completable or c-independent in Rd if some (or equivalently, every) generic
realization of G in Rd is locally completable or c-independent. It follows that in the
generic case, the local uniqueness of a completion of a partial positive semi-definite
matrix depends only on the underlying graph G, which is determined by the positions
of the known entries.

The d-dimensional completability matroid Cd(G) of G is the matroid on E in which
a set of edges is independent if and only if the corresponding set of rows in C(G, p) is
linearly independent, for some generic p : V → Rd. We say that G is c-independent if
E is independent in Cd(G). The following necessary condition for c-independence was
observed in [20]. We use iG(X) to denote the number of edges induced by a set X of
vertices in graph G.

Lemma 1 ([20]). Let G = (V,E) be c-independent in Rd. Then
(i) iG(X) ≤ d|X| −

(
d
2

)
for all X ⊆ V with |X| ≥ d, and

(ii) for each bipartite subgraph H = (V1, V2;F ) on vertex set X = V1∪V2 with |Vi| ≥ d,
i = 1, 2 we have iH(X) ≤ d|X| − d2.

We say that a graph G is globally completable in Rd if every generic realization of
G in Rd is globally completable. In Section 6 we show that global completability is
not a generic property in general, unlike in the case of global rigidity.
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2.2 The rectangular matrix model

Singer and Cucuringu [20] also considered the unique completability of low rank rect-
angular matrices, i.e. rectangular matrices of the form P>Q for some d× n matrix P
and d×m matrix Q. In this case the known entries of the rectangular matrix define a
bipartite graph G = (V,E) with bipartition (U,W ) in which |U | = n, |W | = m, and
an edge ij corresponds to the known scalar product of row i in P> and column j in
Q.

We say that two bipartite frameworks (G, p) and (G, q) are bicongruent if 〈pi, pj〉 =
〈qi, qj〉 holds for every pair i ∈ U and j ∈ W . This is equivalent to saying that
there exists an invertible matrix A such that qi = ATpi and qj = A−1pj for all
i ∈ U and j ∈ W . The framework (G, p) is globally bicompletable if every framework
which is equivalent to (G, p), is bicongruent to (G, p). Similarly, (G, p) is said to be
locally bicompletable if there exists an open neighborhood N(p) of p such that for
any q ∈ N(p) the equivalence of (G, q) to (G, p) implies that the two frameworks are
bicongruent.

For any d×d matrix A, the map ṗ : Rd → Rd by ṗi = Api for i ∈ U and ṗj = −ATpj
for j ∈ W is an infinitesimal c-motion of (G, p), and hence

rank C(G, p) ≤ d|V | − d2 (5)

whenever |U |, |V | ≥ d. It is also bounded above by |U | |W |. We say that (G, p) is
infinitesimally bicompletable if rank C(G, p) = d|V | − d2 when min{|U | |W |} ≥ d and
rank C(G, p) = |U | |V | when min{|U | |W |} < d. Local bicompletability and infinites-
imal bicompletability are equivalent for generic bipartite frameworks. Hence we say
that a bipartite graph G is locally bicompletable in Rd if (G, p) is infinitesimally bi-
completable for some (or equivalently, every) generic d-dimensional framework (G, p).
We say that G is globally bicompletable in Rd if every generic d-dimensional framework
(G, p) is globally bicompletable.

Király et al. [16] also considered the uniqueness of matrix completion in the rectan-
gular matrix model over the complex field. They discussed combinatorial characteriza-
tions of 1-dimensional bicompletability and corank-1-dimensional bicompletability, a
sufficient condition for global bicompletability, and bicompletability of random graphs.
Infinitesimal bicompletablity was also analyzed (as a special case) in Kalai et al. [15]
in a different context.

2.3 Graph operations

We introduce a group of graph operations which were shown to preserve local (global)
completability in [13]. Let G = (V,E) be a semisimple graph. The (d-dimensional) 0-
extension operation adds a new vertex v to G and d new edges vu1, . . . , vud for distinct
vertices u1, . . . , ud ∈ V + v. If we only add less than d new edges, the operation is
called a partial 0-extension. Note that we allow one of the new edges to be a loop by
taking ui = v. If necessary, we will specify whether or not a loop is added by referring
to the operation as a looped extension or a simple extension.
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Lemma 2. [13, Lemma 2.3] Suppose that G is obtained from G′ by a 0-extension
operation. Then G′ is c-independent (resp. locally completable) in Rd if and only if
G is c-independent (resp. locally completable) in Rd.

Lemma 3. [13, Theorem 6.7] Let G be a globally completable graph in Rd, and let G′

be a graph obtained from G by a simple 0-extension. Then G′ is globally completable
in Rd.

Let G = (V,E) be a semisimple graph. The (d-dimensional) double 1-extension
operation removes an existing edge e = ab from G and inserts two new vertices v1 and
v2 with new edges av1, v1v2, v2b and v1u

1
1, v1u

2
1, . . . , v1u

d−1
1 and v2u

1
2, v2u

2
2, . . . , v2u

d−1
2 ,

where {u11, u21, . . . , ud−11 } and {u12, u22, . . . , ud−12 } are d− 1 distinct vertices in (V + v1) \
{a} and (V +v2)\{b}, respectively. We allow the possibility that e is a loop (in which
case a = b).

Lemma 4. [13, Lemma 4.1] Let G = (V,E) be a graph and G′ = (V ′, E ′) be the
graph obtained from G by a double 1-extension. If G is c-independent (resp. locally
completable) in Rd then G′ is also c-independent (resp. locally completable) in Rd.

For a vertex v1 in a semisimple graph G, NG(v1) denotes the set of vertices adjacent
to v1 in G, taking v1 ∈ NG(v1) when v1 is incident to a loop. The d-dimensional
vertex-splitting (or simply vertex-d-splitting) operation v1 (with respect to some fixed
partition {U0, U

∗, U1} of N(v1) with |U∗| = d) removes the edges between v1 and the
vertices in U0, inserts a new vertex v0, and inserts new edges v0u for u ∈ U0 ∪ U∗.
Note that v0 and v1 are adjacent in the resulting graph if and only if there is a loop
incident with v1 in G and v1 ∈ U0 ∪ U∗.

Lemma 5. [13, Lemma 4.3] Let G = (V,E) be a graph and G′ = (V ′, E ′) be the graph
obtained from G by a vertex-d-splitting at vertex v1. If G is c-independent in Rd then
G′ is also c-independent in Rd.

Let G = (V,E) be a semisimple graph. The looped cone extension G ◦ v of G is
obtained by adding a new vertex v and all edges uv for u ∈ V + v.

Lemma 6 ([13]). Let G = (V,E) be a graph and G ◦ v be its looped cone extension.
Then G is locally completable in Rd if and only if G ◦ v is locally completable in Rd+1.

2.4 Complete graphs

Recall that for a loopless graph G we use G◦ to denote the graph obtained from G by
adding a loop incident with each vertex. Lemmas 1 and 2 imply the following.

Lemma 7. The looped complete graph K◦n is c-independent if and only if n ≤ d.

By Lemmas 1 and 2 we also have the following.

Lemma 8. The complete bipartite graph Kn,m is c-independent in Rd if and only if
n ≤ d or m ≤ d. In particular, the edge set of Kd+1,d+1 is a circuit in Cd(Kd+1,d+1).
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Proof. Observe that, for any edge e, Kd+1,d+1 − e can be constructed from a graph
with d vertices and no edges by a sequence of partial 0-extensions. Hence Kd,d+1 − e
is c-independent. On the other hand Kd,d+1 is c-dependent by Lemma 1(ii). Thus
Kd+1,d+1 is a circuit.

This also implies that, if Kn,m is c-independent, then n ≤ d or m ≤ d holds.
Conversely, if n ≤ d, then Kn,m can be constructed from a graph with d vertices and
no edges by a sequence of partial 0-extensions, so is c-independent.

We will need the following characterisation of global (local) completability of com-
plete tripartite graphs.

Lemma 9. The complete tripartite graph Ka,b,c is globally (or locally) completable in
Rd if and only if min{a, b, c} ≥ d.

Proof. Let G = Ka,b,c and let A,B,C be the sets in the tripartition. Suppose |C| < d.
Since G − C is bipartite, it is not locally completable in R1. Lemma 6 now implies
that G is not locally completable in Rt for any t > |C|.

Suppose on the other hand that min{a, b, c} ≥ d. Let (G, p) be a generic realization
and take any equivalent realization (G, q) to (G, p). Since Ka,b is globally bicom-
pletable, there exists a d × d matrix M such that qi = MTpi and qj = M−1pj for
all i ∈ A and j ∈ B. Similarly, since Ka,c is globally bicompletable, qi = NTpi and
qk = N−1pk for all i ∈ A and k ∈ C for some d× d matrix N . Hence (M t−N t)pi = 0
for all i ∈ A. Since p is generic and |A| ≥ d, we have M = N . The same argument
for Kb,c now gives qk = MTpk = M−1pk for all k ∈ C. Hence (MT −M−1)pk = 0 for
all k ∈ C. Since p is generic and |C| ≥ d this implies that MMT = Id. Hence M is
orthogonal and qi = M tpi for all vertices i of G. This gives 〈pi, pj〉 = 〈qi, qj〉 for all
pairs i, j of vertices of G, so (G, q) is congruent to (G, p).

3 Canonical Positions

When analyzing the rigidity of frameworks, pinning down some points to factor out
trivial motions is a useful tool. We will introduce a corresponding technique for
completability in this section and use it frequently in the rest of this paper. In
particular we will use it to show that testing bicompletability of bipartite graphs can
be reduced to completability testing in Subsection 3.3.

For a vector p, let Q(p) denote the field extension of the rationals by the coordinates
of p. Let Q(p) denote the algebraic closure of Q(p).

3.1 Completability

Let G = (V,E) be a semisimple graph. We define the completability function fG :
Rd|V | → R|E| by

fG(p) = (. . . , 〈pi, pj〉, . . . ) (p ∈ Rd|V | and ij ∈ E).

Notice that the completion matrix C(G, p) is the Jacobian of fG at p.
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For a finite set V with |V | ≥ d and a sequence S = (k1, . . . , kd) of d elements in V ,
let

WS =

{
p ∈ Rd|V |

∣∣∣∣∣ 〈p(ki), ej〉 = 0 (∀i = 1, . . . , d− 1, ∀j = i+ 1, . . . , d)
〈p(ki), ei〉 ≥ 0 (∀i = 1, . . . , d− 1)

}
,

where ej be the j-th vector of the standard basis in Rd. For a point p ∈ WS, a
coordinate of p that is set to zero is called a fixed coordinate. We say that p is
in canonical position (with respect to S) if p ∈ WS. Notice that for any p ∈ RdV

there is a p̂ ∈ WS that is congruent to p, and that p̂ is unique when p(S) is linearly
independent. A point p ∈ WS is called semi-generic if the set of non-fixed coordinates
of p is algebraically independent over Q, or equivalently, if the transcendence degree
of Q(p)/Q is d|V | −

(
d
2

)
. Our next result shows that the completability matroid of G

is determined by any semi-generic realisation of G.

Lemma 10. Let (G, p) be a semi-generic framework in canonical position with respect
to S. Then rank C(G, p) = rank Cd(G).

Proof. Take any generic q : V → Rd. Then there is an orthogonal matrix A such
that A · q ∈ WS. Then q̇ ∈ kerC(G, q) if and only if A · q̇ ∈ kerC(G,A · p), which
means rank Cd(G) = rankC(G, q) = rankC(G,A · q) ≤ rankC(G, p), where the last
inequality follows since both p and A · q are in WS and p is semi-generic.

By specializing arguments from [14], we have the following four propositions.

Proposition 11. Suppose that p is (semi)generic and G is c-independent. Then
fG(p) is generic.

Proof. This is a direct application of [14, Lemma 4.1].

Proposition 12. Suppose that p is semi-generic and G is locally completable. Then
Q(p) = Q(fG(p)).

Proof. Let G′ be a spanning c-independent and locally completable subgraph of G.
Since fG is a polynomial map, we have Q(fG′(p)) ⊆ Q(fG(p)) ⊆ Q(p). The point
fG′(p) is generic by Proposition 11, and hence the transcendence degree of Q(fG′(p))/Q
is d|V (G)|−

(
d
2

)
, which is equal to the transcendence degree of Q(p)/Q. We thus have

Q(fG′(p)) = Q(fG(p)) = Q(p).

Proposition 13. Suppose that G is locally completable, and p and q are in canonical
positions with fG(p) = fG(q). Suppose that p is semi-generic. Then q is semi-generic
and Q(p) = Q(q).

Proof. By Propositions 11 and 12 we have Q(p) = Q(fG(p)) = Q(fG(q)) ⊆ Q(q).
Since p is semi-generic, q is semi-generic and Q(p) = Q(q) follows.

Proposition 14. Let V be a finite set, S be a sequence of d distinct elements in V ,
p be a generic point in Rd|V |, and p′ be a point in WS which is congruent to p. Then
p′ is semi-generic.
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Proof. Let G be a c-independent and locally completable graph on V . Then by Propo-
sition 11, fG(p) is generic. Now we have Q(fG(p)) = Q(fG(p′)) ⊆ Q(p′). Since G is
c-independent and locally completable, |E| = d|V |−

(
d
2

)
, and hence the transcendence

degree of Q(p′)/Q is at least d|V | −
(
d
2

)
. In other words, p′ is semi-generic.

3.2 Bicompletability

Suppose G = (U,W ;E) is a bipartite graph and S = (u1, . . . , ud) is a sequence of
distinct elements in U . Define W̃S by

W̃S =
{
p ∈ Rd|U∪W | | p(ui) = ei (∀i = 1, . . . , d)

}
.

We say that (G, p) is in standard position with respect to S if p ∈ W̃S. It is easy
to see that (G, p) is bicongruent to a unique framework (G, p̃) in standard position
with respect to S whenever p(S) is linearly independent (where S is regarded as a
set). In particular two generic realisations of G are bicongruent if and only if they
are both bicongruent to the same realisation in standard position with respect to S.
Since bicongruence is an equivalence relation, we have the following.

Lemma 15. Let (G, p) be a realization of a bipartite graph G = (U, V ;E) in Rd, S
be a sequence of d distinct elements in U such that p(S) is linearly independent, and
p̃ be the configuration bicongruent to p which is in standard position with respect to
S. Then (G, p) is globally bicompletable if and only if (G, p̃) is globally bicompletable.

A point p ∈ W̃S is called semi-generic if the set of coordinates in p(V \ S) is
algebraically independent over Q. It is straightforward to check that the counterparts
of the propositions given in the last subsection obtained by replacing ”completability”
with ”bicompletability” and ”canonical position” with ”standard position” all hold.

3.3 From Bicompletability to Completability

In this subsection we establish a relation between bicompletability and completabil-
ity, and show that bicompletability testing of bipartite graphs can be reduced to
completability testing.

For a finite set X, let K◦(X) be the graph on X whose edge set is {ij | i, j ∈ X}
(including loops). We begin with infinitesimal completability.

Lemma 16. Let (G, p) be a realisation of a bipartite graph G = (U,W ;E) in Rd

and S = {u1, . . . , ud} be a set of d distinct vertices in U such that p(S) is linearly
independent. Let G+ = G ∪K◦(S). Then

rankC(G, p) = rankC(G+, p)−
(
d+ 1

2

)
.

Hence (G, p) is infinitesimally bicompletable if and only if (G+, p) is infinitesimally
completable.
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Proof. Let C ′(G, p) be the matrix obtained from C(G, p) by deleting the columns
indexed by u1, u2, . . . , ud. Let T be the set of all infinitesimal c-motions ṗ of (G, p)
such that, for some fixed d× d matrix A, ṗi = Api and ṗj = −ATpj for all i ∈ U and
j ∈ W . (So T is the space of all ‘trivial’ infinitesimal c-motions of (G, p).) Let F be
the space of all infinitesimal c-motions ṗ of (G, p) which keep u1, u2, . . . , ud fixed i.e.
ṗ(ui) = 0 for all 1 ≤ i ≤ d. Then kerC(G, p) = T ⊕F and dimT = d2. The fact that
F is isomorphic to kerC ′(G, p) now gives rankC ′(G, p) = rankC(G, p).

We have C(G+, p) =

(
C(K◦(S), p) 0

∗ C ′(G, p)

)
. Hence

rankC(G+, p) = rankC ′(G, p) + rankC(K◦(S), p) = rankC(G, p) +

(
d+ 1

2

)
.

As a corollary we obtain the following result for graphs.

Theorem 17. Suppose that G = (U,W ;E) is a bipartite graph with |U |, |W | ≥ d and
S = {u1, . . . , ud} is a set of d distinct vertices in U . Then G is locally bicompletable
in Rd if and only if G+ = G ∪K◦(S) is locally completable in Rd.

We next give the global completability counterpart to this result. We need the
following technical lemma.

Lemma 18. Let (G = (U,W ;E), p) be a locally bicompletable framework with
|U |, |W | ≥ d, and (G, q) be a framework equivalent to (G, p). Suppose p is generic.
Then any d points in q(U) are linearly independent.

Proof. We first prove that q(U) spans Rd. Suppose not. Let q(u1), q(u2), . . . q(ut) be
a basis for the subspace of Rd spanned by q(U) with t < d. By applying a suitable
congruence to (G, q) we may assume that q(u1), q(u2), . . . q(ut) are the first t vectors in
a standard basis for Rd. Let (G, q′) be the projection of (G, q) onto Rt. Since the last
(d− t) coordinates of q(u) are zero for all u ∈ U , we have 〈q′(u), q′(w)〉 = 〈q(u), q(w)〉
for any u ∈ U and w ∈ W . Therefore Q(fG(q)) = Q(fG(q′)). Since the transcendence
degree of Q(fG(q′))/Q can be at most t|U ∪ W | − t2, the transcendence degree of
Q(fG(q))/Q is at most t|U ∪W | − t2.

On the other hand, since G is locally bicompletable and p is generic, (the bicom-
pletability version of) Propositions 12 and 14 imply that the transcendence degree of
Q(fG(p))/Q is equal to d|U ∪W |−d2. Since fG(q) = fG(p), the transcendence degree
of Q(fG(q))/Q is equal to d|U ∪W | − d2, a contradiction.

Therefore q(U) spans Rd. Suppose q(X) spans Rd for some X ⊆ U with |X| =
d. Then there is the unique q̄ such that q̄ is bicongruent to q and is in standard
position with respect to X (assuming any order on the elements of X). Then by (the
bicompletability version of) Propositions 13 and 14, q̄ is semi-generic. This in turn
implies the statement since q̄(U) is an image of q(U) by a nonsingular linear map.

Theorem 19. Suppose that G = (U,W ;E) is a bipartite graph with |U |, |W | ≥ d and
S = {u1, . . . , ud} is a set of d distinct vertices in U . Then G is globally bicompletable
in Rd if and only if G+ = G ∪K◦(S) is globally completable in Rd.
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Section 4. Geometric Observations 11

Proof. Let p : U ∪W → Rd be generic.
Suppose that (G, p) is globally bicompletable. Let Ḡ+ be the graph obtained from

G+ by adding all edges from U to W . Let (G+, q) be a framework equivalent to
(G+, p). Since (G, p) is globally bicompletable, (Ḡ+, p) and (Ḡ+, q) are equivalent.
Since (Ḡ+, p) can be obtained from K◦d by simple 0-extensions and edge-additions,
(Ḡ+, p) is globally completable by Lemma 3. Hence p and q are congruent.

Suppose that (G, p) is not globally bicompletable in Rd. Then there exists an
equivalent framework (G, q) such that 〈p(a), p(b)〉 6= 〈q(a), q(b)〉 for some pair a ∈ U
and b ∈ W . By Lemma 18, q(S) is linearly independent. Let P and Q be the d × d
matrices whose i-th columns are p(ui) and q(ui), respectively. Define

q′(v) =

{
PQ−1q(v) if v ∈ U
(P−1)>Q>q(v) if v ∈ W

We claim that (G+, q′) is equivalent, but not congruent, to (G+, p) . To see this
observe that q′(ui) = p(ui) for 1 ≤ i ≤ d. Hence 〈q′(ui), q′(uj)〉 = 〈p(ui), p(uj)〉
for any 1 ≤ i, j ≤ d. Also for any u ∈ U and w ∈ W we have 〈q′(u), q′(w)〉 =
〈PQ−1q(u), (P−1)>Q>q(w)〉 = 〈q(u), q(w)〉. Hence 〈q′(u), q′(v)〉 = 〈p(u), p(v)〉 for all
uv ∈ E(G+), and 〈q′(a), q′(b)〉 6= 〈p(a), p(b)〉. This implies that (G+, q′) is equivalent,
but not congruent, to (G+, p).

We do not know whether a similar relation between bicompletability and com-
pletability holds at the level of frameworks, i.e., whether it is true that (G, p) is glob-
ally bicompletable if and only if (G+, p) is globally completable even for non-generic
p.

4 Geometric Observations

In this section we shall provide several geometric tools for constructing globally com-
pletable graphs. Our proof strategy using algebraic independence is inspired by
[12, 22], but extends and clarifies the existing theory.

Proposition 20. Let (G, p) and (G, q) be d-dimensional frameworks and let v be a
vertex in G with {1, 2, . . . , d + 1} ⊆ NG(v). Suppose that 〈pv, pi〉 = 〈qv, qi〉 for all
1 ≤ i ≤ d. If

〈pv, pd+1〉 = 〈qv, qd+1〉, (6)

then

det

(
q1 q2 . . . qd+1

〈pv, p1〉 〈pv, p2〉 . . . 〈pv, pd+1〉

)
= 0. (7)

Conversely, if (7) holds and q1, . . . , qd are linearly independent, then (6) holds.

Proof. If (6) holds, we have(
qv
−1

)>(
q1 q2 . . . qd+1

〈pv, p1〉 〈pv, p2〉 . . . 〈pv, pd+1〉

)
= 0.
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Section 4. Geometric Observations 12

This implies (7).
Conversely suppose that (7) holds and q1, . . . , qd are linearly independent. Then

(7) implies

〈pv,
d+1∑
i=1

(−1)i(det Qi)pi〉 = 0 (8)

where Qi is a d × d-matrix whose columns are {q1, q2, . . . , qd+1} \ {qi} in this order.
Since 〈pv, pi〉 = 〈qv, qi〉 for 1 ≤ i ≤ d, we have

〈qv,
d∑
i=1

(−1)i(det Qi)qi〉+ (−1)d+1(det Qd+1)〈pv, pd+1〉 = 0 . (9)

Also we have
d+1∑
i=1

(−1)i(det Qi)qi = 0 (10)

since each coordinate of the left vector is the determinant of a (d + 1) × (d + 1)-
submatrix of the following matrix of rank d:(

q1 . . . qd+1

q1 . . . qd+1

)
.

Combining (9) and (10) we get (−1)d+1(det Qd+1)〈pv, pd+1〉 =
(−1)d+1(det Qd+1)〈qv, qd+1〉. Since det Qd+1 6= 0, this gives 〈pv, pd+1〉 = 〈qv, qd+1〉 as
required.

Proposition 21. Let (G, p) be a generic framework and v be a vertex with {1, . . . , d+
1} ⊆ NG(v) \ {v}. Suppose (G − v, p) is locally completable. Then for any (G, q)
equivalent to (G, p), {q1, . . . , qd+1} is a linear image of {p1, . . . , pd+1} (i.e., there is a
d× d-matrix A such that qi = Api for all i = 1, . . . , d+ 1).

Proof. Let S be a sequence of d distinct vertices in V \ {v}. By Proposition 14 it
suffices to show the statement for a semi-generic (G, p) and for any equivalent (G, q)
both in canonical position with respect to S. By Proposition 20 we have (7). In
particular, we have (8).

Since (G − v, p) is locally completable, Q(q|V−v) = Q(p|V−v) by Proposition 13.
Therefore, since p is generic, (8) gives

d+1∑
i=1

(−1)i(detQi)pi = 0. (11)

This in turn implies

rank

(
p1 . . . pd+1

q1 . . . qd+1

)
= d,

which means that there is a d×d-matrix A such that qi = Api for i = 1, . . . , d+1.
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Section 4. Geometric Observations 13

For i, j ∈ V , we say that i and j are globally c-linked in G (in Rd) if 〈pi, pj〉 = 〈qi, qj〉
for all generic realizations (G, p) in Rd and all equivalent realizations (G, q). We use
this term even when i = j.

Theorem 22. Let G be a graph and uv be a non-loop edge in G with |NG(u)\{u}| > d
and |NG(v) \ {v}| > d. Suppose that G− u and G− v are locally completable in Rd.
Then i and j are globally c-linked in G for any i ∈ NG(u) \ {u} and j ∈ NG(v) \ {v}.

Proof. By Proposition 14, we may focus on a semi-generic (G, p) in canonical position
with respect to S with S ∩ {u, v} = ∅ and any framework (G, q) that is equivalent
to (G, p) and is in canonical position with respect to S. By Proposition 21, there are
linear maps A and B such that

qi = Api for all i ∈ NG(u) \ {u} and qj = Bpj for all j ∈ NG(v) \ {v}. (12)

Since G−u is locally completable and G−u is a subgraph of G, Q(p|V−u) = Q(q|V−u)
by Proposition 13. In particular, the set of entries of pu is algebraically independent
over Q(p|V−u, q|V−u). Symmetrically the set of entries of pv is algebraically indepen-
dent over Q(p|V−v, q|V−v). Therefore, the entries of qi are algebraic over Q(p|V−u−v)
for all i ∈ V − u− v. (Otherwise the transcendence degree of Q(p)/Q becomes more
than d|V | −

(
d
2

)
by Q(q) = Q(p).)

Since |NG(u) \ {u, v}| ≥ d and |NG(v) \ {u, v}| ≥ d, A and B are determined by
the following equations,

qi = Api for all i ∈ NG(u) \ {u, v} and qj = Bpj for all j ∈ NG(v) \ {u, v}. (13)

(Recall that a linear map is determined by d linearly independent vectors.) This in
particular implies that the entries of A and B are algebraic over Q(p|V−u−v).

Since G contains edge uv, we have

0 = 〈pu, pv〉 − 〈qu, qv〉 = p>u (Id − A>B)pv.

Since the entries of pu and pv are algebraically independent over Q(p|V−u−v), we have
A>B = Id.

To complete the proof, consider any i ∈ NG(u) \ {u} and j ∈ NG(v) \ {v}. Then
we have 〈pi, pj〉 − 〈qi, qj〉 = p>i (Id − A>B)pj = 0 as required.

Corollary 23. Let G be a graph and let uv be a non-loop edge in G with |NG(u) \
{u}| > d and |NG(v) \ {v}| > d. Suppose that

• G− u and G− v are locally completable in Rd, and

• the graph obtained from G−u−v by adding all edges of the form {ij | i ∈ NG(u)\
{u}, j ∈ NG(v)\{j}} (including loops at vertices in (NG(u)\{u}∩NG(v)\{v}))
is globally completable in Rd.

Then, G is globally completable in Rd.
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Section 4. Geometric Observations 14

Proof. By Theorem 22, G is globally comletable if and only if the graph G′ obtained
from G by adding all edges between NG(u) and NG(v) is globally completable. By
assumption, G′ − u− v is globally completable, and hence G′ is globally completable
since we can obtain a spanning subgraph of G′ from G′ − u− v by 0-extensions.

It is straightforward to check that an analogous result to Corollary 23 holds for
bicompletability.

We next derive a similar statement to Corollary 23 for a vertex incident with a
loop.

Theorem 24. Let G be a graph with |V | ≥ d + 1, and let v be a vertex in G having
a loop with |N(v) \ {v}| ≥ d. Suppose that G− v is locally completable in Rd. Then i
and j are globally c-linked in G for all i, j ∈ NG(v).

Proof. Take any semi-generic (G, p) in canonical position with respect to S with v /∈ S,
and consider any (G, q) that is equivalent to (G, p) and is in canonical position with
respect to S. Since G and G − v are locally completable, q is semi-generic and
Q(q|V−v) = Q(p|V−v) by Proposition 13.

Take any d vertices from N(v) \ {v} and, without loss of generality, denote them
by {1, . . . , d}. Since {p1, . . . , pd} and {q1, . . . , qd} are linearly independent, there is a
d× d nonsingular linear map A such that

qi = Api for all 1 ≤ i ≤ d. (14)

More specifically A can be expressed as A = QP−1, where P is the d×d matrix whose
i-th column is pi and Q is the d× d matrix whose i-th column is qi. Hence the entries
of A are contained in Q(p|V − v).

Since G has edge vi, we have

〈pv, pi〉 = 〈qv, qi〉 for all 1 ≤ i ≤ d

which can be written as
p>v P = q>v Q.

Hence we have qv = (Q−1)>P>pv = (A−1)>pv. Since G has a loop at v, we also have

0 = 〈pv, pv〉 − 〈qv, qv〉 = p>v (Id − A−1(A−1)>)pv.

Since the entries of pv are algebraically independent over Q(p|V − v) and Id −
A−1(A−1)> is symmetric, we have A−1(A−1)> = Id, implying that A is orthogonal.
Therefore, for any 1 ≤ i, j ≤ d, we have 〈pi, pj〉 − 〈qi, qj〉 = p>i (Id − A>A)pj = 0 as
required.

Corollary 25. Let G be a graph and let v be a vertex in G having a loop with |N(v)\
{v}| ≥ d. Suppose that

• G− v is locally completable in Rd, and

• the graph obtained from G−v by adding all edges of the form {ij | i, j ∈ NG(v)}
(including loops) is globally completable in Rd.
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Then, G is globally completable in Rd.

The following connection between rigidity and completability is a corollary of the
coning arguments given in [4, 27], which will enable us to use the results of this section
to obtain new results on global rigidity.

Proposition 26. ([13]) Let G be a simple graph. Then G◦ is globally/locally com-
pletable in Rd if and only if G is globally/locally rigid in Rd−1.

Corollary 25 and Proposition 26 now give the following, which was implicit in [22]
and was shown to be a powerful tool for analyzing the global rigidity of graphs in [23].

Corollary 27. Let G be a simple graph and let v be a vertex in G with |NG(v)| ≥ d+1.
Suppose that

• G− v is rigid in Rd, and

• the graph obtained from G − v by adding all non-loop edges of the form {ij |
i, j ∈ NG(u)} is globally rigid in Rd.

Then, G is globally rigid in Rd.

There is a corresponding concept to global c-linkedness in rigidity theory, and the
main theorem of [12] is the rigidity counterpart of Theorem 24. We note that this
would also follow from Theorem 24 if we knew that coning preserves the global c-
linkedness. However it is not straightforward to extend Proposition 26 to global
linkedness since the proof of Proposition 26 is based on stress matrices.

We can use similar geometric arguments to derive results on infinitesimal com-
pletability. Theorem 29 below is an infinitesimal counterpart of Theorem 24 and
Corollary 30 is a completability analogue of a well-known result on infinitesimal rigid-
ity. We first need to establish one technical lemma.

Lemma 28. Let (G, p) be a generic framework such that rank Cd(G) = d|V |−
(
d
2

)
−1.

Then there is a nontrivial infinitesimal c-motion ṗ of (G, p) such that Q(ṗ) ⊆ Q(p).

Proof. Let C ′ be the matrix obtained from C(G, p) by deleting the first d− i columns
from the d columns indexed by i, for all 1 ≤ i ≤ d− 1. Then rankC ′ = rankC(G, p).
More specifically, an infinitesimal c-motion ṗ of (G, p) is nontrivial if ṗ is obtained by
extending a nonzero ṗ′ ∈ kerC ′ by adding zero components in positions corresponding
to the columns we deleted from C(G, p). We take ṗ′ ∈ kerC ′ such that one specific
nonzero entry is equal to one. Then Q(ṗ′) ⊆ Q(p) since ṗ′ is the unique solution to a
system of d|V | −

(
d
2

)
− 1 linear equations in d|V | −

(
d
2

)
− 1 unknowns with coefficients

in Q(p). Thus Q(ṗ) ⊆ Q(p) follows.

We say that an edge ij is implied in the completability matroid Cd(G) if the rank
remains unchanged after adding ij.

Theorem 29. Let G = (V,E) be a graph, v ∈ V , and N(v) = {v, 1, . . . , d}. Suppose
that the rank of Cd(G− v) is d(|V | − 1)−

(
d
2

)
− 1. Then ij is implied in Cd(G) for all

1 ≤ i, j ≤ d.
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Section 5. Vertex Redundancy Implies Global Completability 16

Proof. Take any generic framework (G, p). By Lemma 28, (G − v, p|V−v) has a non-
trivial infinitesimal c-motion ṗ such that Q(ṗ) ⊆ Q(p|V−v). Let ` be the loop at v.
Also let P and Ṗ be the matrices whose columns are p1, . . . , pd and ṗ1, . . . , ṗd, re-
spectively. Since G − ` is a 0-extension of G − v, ṗ can be extended to a nontrivial
infinitesimal c-motion of G − `, which we will again denote by ṗ. More specifically,
since 〈pv, ṗj〉+ 〈pj, ṗv〉 = 0 for 1 ≤ i ≤ d, we have ṗv = (P>)−1Ṗ pv.

Since G has loop ` at v, we have 〈pv, ṗv〉 = 0, implying p>v (P>)−1Ṗ pv = 0. The
facts that the entries of (P>)−1Ṗ are algebraic over Q(p|V −v) and pv is algebraically
independent over Q(p|V −v) now imply that (P>)−1Ṗ is skew-symmetric. This in turn
implies that there is a skew-symmetric matrix S such that ṗi = Spi for all 1 ≤ i ≤ d.
Thus 〈pi, ṗj〉+ 〈pj, ṗj〉 = 0 for any 1 ≤ i, j ≤ d, so ij is implied.

Given a graph G = (V,E) and distinct vertices v1, v2, . . . , vd ∈ V with vivj ∈ E
for some 1 ≤ i, j ≤ d, the (d-dimensional) looped 1-extension operation constructs a
new graph H by deleting the edge vivj and then adding a new vertex v0 and edges
v0v0, v0v1, . . . , v0vd.

Corollary 30. Suppose H is locally completable in Rd and G is a looped 1-extension
of H. Then G is locally completable in Rd.

Proof. By Theorem 29, G is locally completable if and only if the graph G′ obtained
from G by adding all edges between the vertices of NG(v0) locally completable. By
assumption, G′ − v0 is locally completable. Hence G′ is locally completable since we
can obtain a spanning subgraph of G′ from G′ − v0 by 0-extensions.

Notice that, for a simple graph G, a looped 1-extension of G◦ can be expressed as
H◦ for some simple graph H. The operation for constructing H from G is known as
((d− 1)-dimensional) 1-extension in rigidity theory, and is widely used for analyzing
global/local rigidity (see, e.g., [11, 26]). By Proposition 26, Corollary 30 extends the
well-known fact that 1-extension preserves local rigidity.

5 Vertex Redundancy Implies Global Com-

pletability

A graph is said to be vertex redundantly completable if G−v is locally completable for
all v ∈ V . In this section we shall prove the following theorem, which implies that a
partially filled positive semidefinite matrix of order n is globally completable if every
n− 1 principal submatrix is locally completable.

Theorem 31. Let G = (V,E) be a vertex redundantly completable graph in Rd with
|V | ≥ d+ 1 for some d ≥ 2. Then G is globally completable in Rd.

For the proof, we need the geometric results from the previous section as well as
the following combinatorial lemmas.

For finite sets X and Y that may be intersecting, let K◦(X, Y ) be the graph on
X ∪ Y whose edge set is {ij | i ∈ X, j ∈ Y } (including loops at vertices in X ∩ Y ).
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Section 5. Vertex Redundancy Implies Global Completability 17

Lemma 32. Let X and Y be sets with |X| = |Y | = d + 1. Then K◦(X, Y ) is not
c-independent in Rd. Moreover, for any edge ij with i ∈ X \ Y and j ∈ Y \ X,
K◦(X, Y )− ij is c-independent in Rd.

Proof. Let k = |X ∩ Y |. Note that K◦(X \ Y, Y \X) is isomorphic to Kd+1−k,d+1−k,
whose edge set is a circuit in Cd−k(K◦(X \ Y, Y \ X)) by Lemma 8. Observe that
K◦(X, Y ) can be obtained from K◦(X \ Y, Y \ X) by a sequence of k looped cone
extensions. Lemma 6 now implies the claim.

Given a graph G = (V,E) with i ∈ V and F ⊆ E, let dF (i) be the number of edges
in F incident with i.

Our next result follows from repeated applications of Lemma 32.

Lemma 33. Let X and Y be sets with |X| ≥ d + 1 and |Y | ≥ d + 1. Then for any
i ∈ X \ Y and j ∈ Y \ X there is a base B of Cd(K◦(X, Y )) such that ij /∈ B and
dB(i) = dB(j) = d.

Proof. We first suppose that |X ∩ Y | ≥ d. Choose Z ⊆ X ∩ Y with |Z| = d. Then Z
induces K◦(Z) in K◦(X, Y ), and K◦(Z) is c-independent and locally completable in
Rd by Lemma 7. Hence the edge set of K◦(Z) can be extended to the desired base of
Cd(K◦(X, Y )) by 0-extension operations.

Next suppose that |X ∩ Y | < d. Take X ′ ⊆ X \ {i} and Y ′ ⊆ Y \ {j} with
|X ′| = |Y ′| = d and X ∩Y = X ′∩Y ′. The edge set of K◦(X ′, Y ′) is c-independent by
Lemma 32. We may extend it to a spanning edge subset F of K◦(X, Y ) by 0-extension
operations in such a way that each new vertex in X is connected to all vertices in Y ′

and each new vertex in Y is connected to all vertices in X ′. We claim that F spans
Cd(K◦(X, Y )). To see this, take any k ∈ X \X ′ and l ∈ Y \ Y ′. Then F contains all
edges of K◦(X ′ + k, Y ′ + l) except kl, and kl is spanned by F by Lemma 32. Hence
F spans Cd(K◦(X, Y )), and F is a base satisfying the degree condition.

Lemma 34. Let X be a finite set with |X| ≥ d. Then for any i ∈ X, Cd(K◦(X)) has
a base B such that dB(i) = d.

Proof. Take any X ′ ⊆ X− i such that |X ′| = d−1. Then K◦(X ′+ i) is c-independent
and locally completable in Rd. By adding vertices of X \ (X ′+ i) by 0-extension, one
can obtain a desired base of Cd(K◦(X)).

Lemma 35. Let G = (V,E) be a vertex redundantly completable graph in Rd with
|V | ≥ d. Then for any v ∈ V , |NG(v)| ≥ d+ 1.

Proof. If |NG(v)| < d + 1, then |NG−w(v)| < d for any w ∈ NG(v). Then G − w
is not locally completable since every vertex has at least d neighbors in a locally
completable graph with at least d vertices. This contradicts the hypothesis that G is
vertex redundantly completable.

We are now ready to prove Theorem 31.
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Proof of Theorem 31. We use induction on |V |. Note that K◦d is c-independent and
locally completable in Rd. Hence K◦d+1 is the only vertex redundantly completable
graph with |V | = d + 1. Since K◦d+1 is clearly globally completable in Rd, we may
assume that |V | > d+1. We split the remainder of the proof into two cases depending
on whether or not G has a loop.

Suppose G has a vertex v incident with a loop. Let G1 be the graph obtained from G
by adding all edges {ij | i, j ∈ N(v)} and let G′1 = G1−v. By the induction hypothesis
and Corollary 25, it suffices to show that G′1 is vertex redundantly completable in Rd.
To this end, take any vertex w in G′1. Since G is vertex redundantly completable,
G1 − w is locally completable. Notice that G1 − w contains a subgraph which is
isomorphic to K◦d and contains v by Lemma 35. Hence by Lemma 34 there is a base
B of Cd(G1 − w) such that dB(v) = d. Note that B induces a locally completable
subgraph in G1 − w since G1 − w is locally completable. Therefore Cd(G1 − w − v)
contains a locally completable spanning subgraph by Lemma 2, which in turn implies
that G1 − w − v = G′1 − w is locally completable. In other words G′1 is vertex
redundantly completable in Rd.

Suppose G has no loop. We say that an edge is bad if exactly one of its endvertices
has degree d + 1. If every edge is bad then exactly one of the endvertices of each
edge has degree d + 1, and hence G is bipartite. This gives a contradiction since no
bipartite graph can be locally completable by Lemma 1.

Thus there is an edge uv that is not bad. Let G2 be the graph obtained from G by
adding any edges between NG(u) and NG(v) including loops at NG(u) ∩ NG(v), and
let G′2 = G2−u−v. By the induction hypothesis and Corollary 23, it suffices to show
that G′2 is again vertex redundantly completable. Since uv is not bad, we have the
following two cases according to Lemma 35.

Case 1: Suppose that |NG(u)| = d + 1 and |NG(v)| = d + 1. We claim that
NG(v)∩NG(u) = ∅. Suppose not, and let w ∈ NG(v)∩NG(u). Then G−w is locally
completable since G is vertex redundantly completable. Moreover G − w − v is also
locally completable since v has degree d in G−w. However |NG−w−v(u)| = d−1, which
means that G−w−v is not locally completable, a contradiction. Thus N(u)∩N(v) = ∅
and G2 contains a subgraph isomorphic to Kd+1,d+1 and covering uv.

Let us take any vertex w in G′2. Since G is vertex redundantly completable, G2−w
is locally completable. If w /∈ N(u) ∪ N(v) then G2 − w − uv is locally completable
since uv is covered by a subgraph isomorphic to Kd+1,d+1 whose edge set is a circuit
in Cd(G2 − w) by Lemma 8. Since u and v have degree d in G2 − w − uv, G′2 − w
is locally completable. On the other hand, if w ∈ N(u) ∪N(v), then G′2 − w can be
obtained from G2 − w by the inverse operations to 0-extension, which implies that
G′2 − w is locally completable.

Case 2: Suppose that |N(u)| ≥ d + 2 and |N(v)| ≥ d + 2. Take any vertex w
in G′2. Observe that G2 − w contains K◦(NG(u) \ {w}, NG(v) \ {w}) as an induced
subgraph. Since |NG(u) \ {w}| ≥ d+ 1 and |NG(v) \ {w}| ≥ d+ 1, Lemma 33 implies
that Cd(G2 − w) has a base B such that uv /∈ B and dB(u) = dB(v) = d. Let
H be the subgraph of G2 − w induced by B. Then H is locally completable since
G2−w is locally completable. Since H−u−v can be obtained from H by the inverse
operations to 0-extension, H−u−v is locally completable and hence G′2−w is locally
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completable.

6 Three Examples

In this section we shall present three examples that indicate a difficulty in charac-
terizing 2-dimensional generic global completability by the existing techniques from
rigidity theory.

Example 1. Suppose G is the graph of the cube labeled as in Figure 1. Since G
is a maximal planar bipartite graph, G is locally bicompletable in R2 by [13, 15].
We will show that (G, p) is not globally bicompletable for all generic p. By Lemma
15 and (the bicompletability version of) Proposition 14, it will suffice to consider
a semi-generic framework (G, p), in standard position with respect to (1, 2). We
will compute all possible realizations (G, q) which are equivalent to (G, p). Since
G is locally bicompletable, we may assume that q is semi-generic and in standard
position with respect to (1, 2) by (the bicompletability version of) Proposition 13.
Since G[1, 2, 3, 8] is globally bicompletable, we have pi = qi for i ∈ {1, 2, 3, 8}.

For each pi, let p⊥i be the vector obtained by rotating pi by π/2. Since G has edges
14, 25, we have

q4 = p4 + t4p
⊥
1 (15)

q5 = p5 + t5p
⊥
2 , (16)

for some t4, t5 ∈ R.
By Proposition 20 and the semi-genericity of q, the constraints by edges 36, 46, 56

are equivalent to

det

(
q3 q4 q5

〈p6, p3〉 〈p6, p4〉 〈p6, p5〉

)
= 0. (17)
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Thus we get

0 = det

(
p3 p4 + t4p

⊥
1 p5 + t5p

⊥
2

〈p6, p3〉 〈p6, p4〉 〈p6, p5〉

)
(18)

= det

(
p3 p4 p5

〈p6, p3〉 〈p6, p4〉 〈p6, p5〉

)
+ det

(
p3 t4p

⊥
1 p5

〈p6, p3〉 0 〈p6, p5〉

)
+ det

(
p3 p4 t5p

⊥
2

〈p6, p3〉 〈p6, p4〉 0

)
+ det

(
p3 t4p

⊥
1 t5p

⊥
2

〈p6, p3〉 0 0

)
(19)

Since det

(
p3 p4 p5

〈p6, p3〉 〈p6, p4〉 〈p6, p5〉

)
= 0, this gives

At4t5 +Bt4 + Ct5 = 0, (20)

where A =

(
p3 p⊥1 p⊥2

〈p6, p3〉 0 0

)
, B = det

(
p3 p⊥1 p5

〈p6, p3〉 0 〈p6, p5〉

)
, and

C = det

(
p3 p4 p⊥2

〈p6, p3〉 〈p6, p4〉 0

)
.

A similar calculation for the constraints represented by the edges 87, 47, 57 gives

at4t5 + bt4 + ct5 = 0, (21)

where a =

(
p8 p⊥1 p⊥2

〈p7, p8〉 0 0

)
, b = det

(
p8 p⊥1 p5

〈p7, p8〉 0 〈p7, p5〉

)
, and

c = det

(
p8 p4 p⊥2

〈p7, p8〉 〈p7, p4〉 0

)
.

Equations (20) and (21) imply that t5 = kt4 for some constant k depending only
on p. Substitution back into equation (20) gives a quadratic equation for t4 with
two distinct real roots, one of which is t4 = 0. The other root gives us a realisation
(G, q) which is equivalent but not congruent to (G, p). Hence (G, p) is not globally
bicompletable in R2.

Theorem 19 now implies that the graph G+ obtained from G by adding the edges
{11, 12, 22} is not globally completable in R2.

It is known that the 1-extension operation introduced in Section 4 preserves the
global rigidity of graphs. We showed in [13] that the double 1-extension operation (de-
fined in Section 2.3), which is a natural analogue of 1-extension in the completability
setting, preserves global completability if the initial graph satisfies the completability-
stress rank condition given in [20]. Since the graph G+ can be constructed from the
globally completable graph K◦2 by 0-extension and double 1-extension and since 0-
extension preserves global completability, we may conclude that double 1-extension
does not preserve global completability in general.

Example 2. We next investigate the configuration space of a semi-generic realization
of the graph G given in Figure 2 in R2. Since G is a maximal planar bipartite graph,
G is locally bicompletable in R2 by [15, 13]. We will show that (G, p) is globally
bicompletable for some but not all generic p.
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By Lemma 15 and (the bicompletability version of) Proposition 14, it will suffice to
consider a semi-generic framework (G, p), in standard position with respect to (0, 1).
We will compute all possible realizations (G, q) which are equivalent to (G, p). Since
G is locally bicompletable, we may assume that q is semi-generic and in standard
position with respect to (0, 1) by (the bicompletability version of) Proposition 13.
Since G[0, 1, 2, 3] is globally bicompletable, we have pi = qi for i ∈ {0, 1, 2, 3}. Since
G has edges 14, 17, 05, we also have

q4 = p4 + t4p
⊥
1 (22)

q5 = p5 + t5p
⊥
0 (23)

q7 = p7 + t7p
⊥
1 (24)

for some t4, t5, t7 ∈ R.
Proposition 20 implies that the constraints represented by the three sets of

edges {38, 58, 78}, {29, 59, 49} and {46, 56, 76} are equivalent to the system of three
quadratic equations

a1t5t7 + a2t5 + a3t7 = 0, (25)

b1t4t5 + b2t5 + b3t4 = 0, (26)

c1t4t5 + c2t4t7 + c3t5t7 + c4t4 + c5t5 + c6t7 = 0 (27)

where:

a1 = det

(
p3 p⊥0 p⊥1

〈p8, p3〉 0 0

)
, a2 = det

(
p3 p⊥0 p7

〈p8, p3〉 0 〈p8, p7〉

)
, a3 =

det

(
p3 p5 p⊥1

〈p8, p3〉 〈p8, p5〉 0

)
;

b1 = det

(
p2 p⊥0 p⊥1

〈p9, p2〉 0 0

)
, b2 = det

(
p2 p⊥0 p4

〈p9, p2〉 0 〈p9, p4〉

)
, b3 =

EGRES Technical Report No. 2015-08



Section 6. Three Examples 22

det

(
p2 p5 p⊥1

〈p9, p2〉 〈p9, p5〉 0

)
;

c1 = det

(
p⊥1 p⊥0 p7
0 0 〈p6, p7〉

)
, c2 = det

(
p⊥1 p5 p⊥1
0 〈p6, p5〉 0

)
, c3 =

det

(
p4 p⊥0 p⊥1

〈p6, p4〉 0 0

)
,

c4 = det

(
p⊥1 p5 p7
0 〈p6, p5〉 〈p6, p7〉

)
, c5 = det

(
p4 p⊥0 p7

〈p6, p4〉 0 〈p6, p7〉

)
,

c6 = det

(
p4 p5 p⊥1

〈p6, p4〉 〈p6, p5〉 0

)
.

Clearly c2 = 0. We can rewrite (26) and (27) as

t4(b1t5 + b3) + b2t5 = 0 (28)

t4(c1t5 + c4) = −(c3t5t7 + c5t5 + c6t7) (29)

We can now substitute (29) into the equation we get by multiplying (28) by (c1t5 +c4)
to obtain

−(c3t5t7 + c5t5 + c6t7)(b1t5 + b3) + b2t5(c1t5 + c4) = 0. (30)

We next rewrite (25) and (30) as

t7(a1t5 + a3) + a2t5 = 0 (31)

t7(c3t5 + c6)(b1t5 + b3) = t5[b2(c1t5 + c4)− c5(b1t5 + b3)]. (32)

We then substitute (32) into the equation we get by multiplying (31) by (c3t5 +
c6)(b1t5 + b3) to obtain

t5(d1t
2
5 + d2t5 + d3) = 0 (33)

where d1 = a1(b2c1−b1c5)+a2b1c3, d2 = a1(b2c4−b3c5)+a3(b2c1−b1c5)+a2(b3c3+b1c6),
and d3 = a3(b2c4−b3c5)+a2b3c6. This cubic equation will have either one or three real
roots depending on the sign of the discriminant D = d22 − 4d1d3. It follows that the
framework (G, p) will be globally bicompletable when D < 0, and will not be globally
bicompletable when D > 0. It remains to show that both alternatives are possible.

If we take p such that p⊥0 =

(
1
0

)
, p⊥1 =

(
0
1

)
, p3 =

(
1
−1

)
, p4 =

(
1
1

)
, p5 =(

1
1

)
, p6 =

(
0
1

)
, p7 =

(
1
0

)
, p8 =

(
1
1

)
, p9 =

(
1
0

)
, then a1 = 0, b1 = p2,x, c1 = 0, c3 =

1, a2 = 1, a3 = −2, b2 = p2,x − p2,y, b3 = 0, c4 = 1, c5 = 0, c6 = 0. Hence d1 = p2,x,
d2 = 0, d3 = −2(p2,x − p2,y) and D = 8p2,x(p2,x − p2,y), which can be both positive
and negative depending on the entries of p2.

This example shows that global bicompletability is not a generic property. We can
now apply Theorem 19 to deduce that global completablity is not a generic property
either.
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Example 3.
Theorems of Jackson and Jordán [11] for d = 2, or Gortler, Healy, and Thurston [8]

for general dimension, imply that the global rigidity of graphs can be characterized
by a rank condition on stress matrices. An analogous condition, which we have re-
ferred to as the completability-stress rank condition, was shown to be sufficient to
imply global completability in [13]. This rank condition is not necessary in general,
however, since any graph which can be constructed from a globally completable graph
by a simple 0-extension is globally completable by Lemma 3, but cannot satisfy the
rank condition. It is perhaps plausible that all gobally completable graphs can be
constructed from graphs satisfying the completability-stress rank condition by a se-
quence of 0-extensions. In Figure 3 we give an example which shows that this is not
the case.

Let G be the graph in Figure 3, and let (G, p) be a generic realization in R2.
Consider any realization (G, q) equivalent to (G, p). Note that {1, 2, 3, 4} induces a
globally completable subgraph since it can be constructed from K◦2 by 0-extension.
Hence we may assume p(i) = q(i) for i = 1, . . . , 4. Also {5, . . . , 10} induces K2,4

which is globally bicompletable. Hence there is a 2-by-2 nonsingular matrix A such
that q(i) = Ap(i) for i = 5, . . . , 8, and q(i) = (A−1)>p(i) for i = 9, 10. Due to
the existence of the four bridging edges between {1, 2, 3, 4} and {5, . . . , 10}, we have
p(i)>(I −A)p(i+ 4) = 0 for i = 1, . . . , 4, which implies that A = I since p is generic.
Thus (G, q) is congruent to (G, p), and G is globally completable in R2.

Since G is globally completable in R2, it is locally completable in R2, and hence
is c-independent since |E| = 2|V | − 1. It follows that the only completability-stress
of a generic realization of G is the zero stress and hence the rank condition cannot
be satisfied. Since G has no vertex of degree two, it cannot be constructed by a
0-extension.

Note that this construction gives a globally completable graph from any pair of a
globally completable graph and a globally bicompletable graph.
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7 Combinatorial sufficient conditions for com-

pletability

In this section our goal is to show that if the minimum degree of an n-vertex graph G
is sufficiently large, or the number of pairs of non-adjacent vertices is sufficiently small
(compared to n), then G is locally (resp. globally) completable in R2. Our bounds
turn out to be essentially tight.

These results will imply that if sufficiently many entries are known in each
row/column of the given partially filled matrix (or if the number of unknown en-
tries is sufficiently small) then - in the generic case - the completion is locally (resp.
globally) unique.

We shall frequently use the fact that the graph operations introduced in Section
2.3 preserve local (or global) completability in Rd.

7.1 Minimum degree bounds

The degree of a vertex v in a graph G is the number of edges incident to v, counting
loops once. Let δ(G) denote the minimum degree of G. We will use the fact that
K4+e (the graph obtained from K4 by adding a loop) and K5−e (the graph obtained
from K5 by deleting an edge) are locally completable in R2, since they can be obtained
from K◦2 by a 0-extension and one or two vertex splits, respectively.

Since the complete tripartite graph Km,m,1 is not locally completable in R2 by
Lemma 9, the bound in the next result is almost tight.

Theorem 36. Let G = (V,E) be a semisimple graph on n vertices with δ(G) ≥
dn/2e+ 2. Then G is locally completable in R2.

Proof. We use induction on n. Note that the minimum degree condition implies that
n ≥ 4.

We first show that G has a locally completable subgraph on at least four vertices.
Suppose not. Then K5 − e 6⊆ G.

Suppose that G has a subgraph H isomorphic to K4. Since K5−e 6⊆ G, each vertex
of G − H is adjacent to at most two vertices of H. We can now apply induction to
G−H to deduce that G−H is a locally completable graph on at least four vertices.
Hence we may assume that K4 6⊂ G.

The minimum degree condition implies that there exists a subgraph F1 of G which
is isomorphic to K3. Let V (F1) = {v1, v2, v3}. The minimum degree condition also
implies that vi and vi+1 have a common neighbour zi+2 in G− F1, reading subscripts
modulo three, and the fact that G has no K4 implies that z1, z2, z3 are distinct. Let
F2 = G[v1, v2, v3, z1, z2, z3].

If each vertex of G − F2 is adjacent to at most three vertices of F2 then we may
apply induction to deduce that G−F2 is a locally completable graph on at least four
vertices. Hence some vertex w of G − F2 is adjacent to four vertices of F2. Since
K4 6⊂ G, G[V (F2) ∪ {w}] contains one of the two graphs F3, F4 in Figure 4.

We can reduce F3 to the locally completable graph K5 − e by deleting z2 and then
contracting (i.e. applying the inverse of vertex-splitting to) the pair z1, z3. Hence F3
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is locally completable. Similarly, we can reduce F4 to a K4 + e by contracting the
pair z1, z3 and then applying the inverse of double 1-extension. Thus F4 is locally
completable. It follows that G has a locally completable subgraph on at least four
vertices.

We may now choose a maximal locally completable subgraph H of G. Let |V (H)| =
t. Suppose that H 6= G. If t < dn/2e then the minimum degree condition implies that
there are at least t(dn/2e + 2 − t) > n − t edges from H to G −H, and hence some
vertex of G − H is adjacent to two vertices of H. On the other hand, if t ≥ dn/2e
then each vertex of G − H is adjacent to at least dn/2e + 2 − n + t ≥ 2 vertices of
H. In both alternatives we may construct a larger locally completable subgraph by
performing a 0-extension on H.

By using Theorem 31 we can deduce the following sufficient condition for global
completability.

Theorem 37. Let G = (V,E) be a semisimple graph on n vertices. Suppose that
δ(G) ≥ dn/2e+ 3. Then G is globally completable in R2.

We close this subsection by considering a possible extension to Rd. Lemma 9 implies
that Km,m,d−1 is not locally completable in Rd for all m, and hence that the degree
bound in the following conjecture would be best possible.

Conjecture 38. For every d ≥ 1 there is an integer cd such that every semisimple
graph G on n ≥ cd vertices with δ(G) ≥ (n+ d)/2 is locally completable in Rd.

Some evidence in favour of this conjecture can be deduced from our next result.

Theorem 39. For all d ≥ 1 and ε > 0 there exists an integer N = Nd,ε such that every
semisimple graph G on n > N vertices with δ(G) ≥ n(1 + ε)/2 is locally completable
in Rd.

Proof. The Erdös-Stone Theorem [6] tells us that there exists an N such that every
semisimple graph G on n > N vertices with δ(G) ≥ n(1 + ε)/2 has a subgraph F
isomorphic to Kd,d,d. Lemma 9 implies that F is a locally completable graph on 3d
vertices. We can now choose a maximal locallly completable subgraph H of G, and
use (the d-dimensional version of) the argument given in the last paragraph of the
proof of Theorem 36 to deduce that H = G.
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7.2 Bounds on the number of missing edges

Let G = (V,E) be a simple graph. We say that a pair u, v ∈ V of non-adjacent
vertices with u 6= v is a missing edge of G. If G is locally (or globally) completable in
Rd on at least d+ 1 vertices then each vertex must be incident with at least d edges.
This implies that there exist simple graphs on n vertices with n − d missing edges
which are not locally (or globally) completable in Rd.

The number of edges from a vertex v to a set X of vertices is denoted by dG(v,X).

Theorem 40. Let G = (V,E) be a simple graph on n ≥ 3(2d + 1) vertices. Suppose
that G has at most n− d− 1 missing edges. Then G is globally completable in Rd.

Proof. We first remark that K2d+1 is locally completable in Rd. This can be checked
by first observing that a simple 0-extension G′ of K◦d is locally completable in Rd

and that a spanning subgraph of K2d+1 can be obtained from G′ by vertex-splitting
operations by eliminating a loop at each step. Hence K2d+2 is globally completable in
Rd by Theorem 31.

Now the number of edges in G is at least
(
n
2

)
− (n − d − 1), which is larger than

(1 − 1
2d+1

)n
2

2
since n ≥ 3(2d + 1). Therefore by Turán’s theorem [25] G contains a

subgraph H which is isomorphic to K2d+2.
To conclude the proof we show that a spanning subgraph of G can be obtained from

H by a sequence of simple 0-extensions. Let {v1, . . . , v2d+2} be the vertices of H, and
consider an ordering {v1, v2, . . . , vn} of the vertices which starts with the vertices of
H and satisfies

d(vi, {v1, v2, . . . , vi−1}) ≥ d(vj, {v1, v2, . . . , vi−1})

for all 2d+ 3 ≤ i < j ≤ n. Such an ordering can be found greedily.
We claim that for all 2d + 3 ≤ i ≤ n we have d(vi, {v1, v2, ..., vi−1}) ≥ d (which

implies the statement of the theorem). Indeed, by assuming that the inequality fails
for vi we can deduce that all vertices after vi send at most d − 1 edges back to
the set {v1, v2, ..., vi−1}, which means that the number of missing edges is at least
(n − i + 1)(i − d) ≥ n − d. This contradicts the fact that G has at most n − d − 1
missing edges.

By a more detailed analysis it is possible to reduce the lower bound for n. We shall
demonstrate this for local completability in R2. First we use an observation of Berger,
Kleinberg, and Leighton [2]. For completeness we give (a slightly simplified) proof of
their result.

The degree-k extension operation adds a new vertex v to a graph and at least k
new edges incident with v.

Lemma 41. [2] Let G = (V,E) be a simple graph on n vertices. Suppose that G
has at most n − 5 missing edges. Then G can be obtained from K5 by a sequence of
degree-4 extensions.
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Proof. Let H be the complement of G. Since H has n vertices and at most n − 5
edges, it has at least five connected components. By choosing vertices from five
different components we can find five pairwise non-adjacent vertices v1, v2, v3, v4 in
H. Consider an ordering v1, v2, ..., vn of the vertices of H which starts with the five
chosen vertices and satisfies

dG(vi, {v1, v2, ..., vi−1}) ≤ dG(vj, {v1, v2, ..., vi−1})

for all 6 ≤ i < j ≤ n. Then we can use the argument given in the last paragraph of
the proof of Theorem 40 to conclude that d(vi, {v1, v2, ..., vi−1}) ≥ 4 for 6 ≤ i ≤ n.

Theorem 42. Let G = (V,E) be a simple graph on n ≥ 6 vertices. Suppose that G
has at most n− 3 missing edges. Then G is locally completable in R2.

Proof. It follows from Lemma 41 that G can be obtained either from K5 or K5 − e
by a sequence of degree-2 extensions, or from K5 minus two edges by a sequence of
degree-4 extensions.

In the first case we can deduce that G is locally completable in R2 by observing
that a degree-2 extension corresponds to applying a 0-extension and possibly adding
some new edges, and using the fact that K5 − e is locally completable.

Consider the second case. The graph obtained from K5 minus two edges by a
degree-4 extension operation is a graph H on six vertices with at most three missing
edges. It is easy to see that H can be obtained from K5 − e by a degree-3 extension
(and hence it is locally completable in R2) or H can be obtained from K6 by deleting
three disjoint edges (and hence is isomorphic to K2,2,2 which is locally completable
by Lemma 9). We can now deduce that G is locally completable in R2 as in the first
case.

The preceding results in this subsection have been restricted to simple graphs. It is
also natural to consider semisimple graphs on n vertices and to compare the number
of edges to that of the complete semisimple graph K◦n. We close this section with
two results of this type, which are valid in all dimensions. Henceforth, we will also
consider a pair u, u to be a missing edge of G if there is no loop incident with u in G.

Theorem 43. Let G = (V,E) be a semisimple graph on n ≥ d vertices. Suppose that
G has at most n− d missing edges. Then G is locally completable in Rd.

Proof. Note that the hypotheses imply that each vertex has at least d incident edges.
We use induction on the number of vertices. We may assume that G 6= K◦n and hence
that n > d.

Choose a vertex v of G with at most n− 1 incident edges. Then G− v has at most
n− d− 1 = (n− 1)− d missing edges and hence is locally completable by induction.
Since G can be obtained from G− v by a (possibly non-simple) 0-extension and edge
additions, G is also locally completable in Rd.

The bound n − d is best possible. To see this consider the graph obtained from a
complete semisimple graph by attaching a vertex v of degree d− 1. Theorems 43 and
31 imply a similar bound for global completability.
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Theorem 44. Let G = (V,E) be a semisimple graph on n ≥ d vertices. Suppose that
G has at most n− d− 1 missing edges. Then G is globally completable in Rd.

The graph obtained from a complete semisimple graph by attaching a vertex v of
degree d which has a loop on it shows that this bound is also best possible.

8 Concluding remarks

We conclude the paper with some open questions. As we noted earlier, the complexity
of deciding whether a given graph is locally (or globally) completable in Rd remains
open for all d ≥ 2.

One may also consider the completion problem of matrices with complex entries
and search for a charaterization of those partially filled Hermitian matrices which
have a unique complex completion. We note that, in this case, global completability
is known to be a generic property by [14, Lemma 4.4].

Motivated by corresponding results for rigidity and global rigidity, we also ask the
following questions. Is it true that, if a graph is redundantly locally completable
in Rd (i.e., it is locally completable after removing any edge), then G is globally
completable if and only if the completability-stress condition holds (c.f. [13, Theorem
6.2])? In particular, is global completability a generic property of redundantly locally
completable graphs?

The configuration space of a framework (G, p) is the set of all q ∈ Rd|V | for which
(G, q) is equivalent to (G, p). It seems likely that the proof technique used by Hen-
drickson [10] can be used to show that, if (G, p) is generic and globally completable,
then for each e ∈ E the framework (G − e, p) is either locally completable or has
an unbounded configuration space. Hence it would be useful to determine when the
configuration space of a (generic) framework in Rd is bounded.

Acknowledgement

This work was supported by the Hungarian Scientific Research Fund grant no.
K81472, CK80124, and K109240. The third author was supported by JSPS Postdoc-
toral Fellowships for Research Abroad and JSPS Grant-in-Aid for Young Scientists
(B) (No. 15K15942).

References

[1] L. Asimov and B. Roth, The rigidity of graphs. Tran. Amer. Math. Soc., 245:279–
289, 1978.

[2] B. Berger, J. Kleinberg, T. Leighton, Reconstructing a three-dimensional model
with arbitrary errors, J. ACM, Vol. 46, No. 2, March 1999, pp. 212-235.

[3] R. Connelly, Generic global rigidity, Discrete Comput. Geom. 33:549-563, 2005.

EGRES Technical Report No. 2015-08



References 29

[4] R. Connelly and W. Whiteley, Global rigidity: The effect of coning. Discrete
Comput. Geom. 43:717–735, 2010.

[5] M. E.-Nagy, M. Laurent, and A. Varvitsiotis, Complexity of the positive semidefi-
nite matrix completion problem with a rank constraint, in: K. Bezdek et al. (eds.),
Discrete Geometry and Optimization, Fields Institute Communications 69, pp.
105-120, 2014.

[6] P. Erdős and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math.
Soc. 52, (1946), 1087-1091.

[7] H. Gluck, Almost all simply connected closed surfaces are rigid. In Geometric
topology, volume 438 of Lecture Notes in Mathematics, pages 225–240. Springer,
1975.

[8] S. Gortler, A. Healy, and D. Thurston, Characterizing generic global rigidity,
American J. Math., 132:897–939, 2010.

[9] D. Hadwin, K.J. Harrison, and J.A. Ward, Rank-one completions of partial ma-
trices and completely rank-nonincreasing linear functionals, Proc. Amer. Math.
Soc. 134, No. 8., pp. 2169-2178, 2006.

[10] B. Hendrickson, Conditions for unique graph realizations, SIAM J. Comput.,
12:65–84, 1992.

[11] B. Jackson and T. Jordán, Connected rigidity matroids and unique realizations
of graphs. J. Combin. Theory Ser. B, 94:1–29, 2005.

[12] B. Jackson, T. Jordán and Z. Szabadka, Globally linked pairs of vertices in
equivalent realizations of graphs, Discrete Comput. Geom., 35:493–512, 2006.

[13] B. Jackson, T. Jordán and S. Tanigawa, Combinatorial conditions for the unique
completability of low rank matrices, SIAM J. Discrete Math. 28-4 (2014), pp.
1797-1819.

[14] B. Jackson and J. C. Owen, The number of equivalent realisations of a rigid
graph, arXiv:1204.1228, 2012.

[15] G. Kalai, E. Nevo, and I. Novik, Bipartite rigidity, to appear in Tran. Amer.
Math. Soc.
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