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Lifting symmetric pictures to polyhedral scenes

Viktória E. Kaszanitzky? and Bernd Schulze??

Abstract

Scene analysis is concerned with the reconstruction of d-dimensional objects,
such as polyhedral surfaces, from (d− 1)-dimensional pictures (i.e., projections
of the objects onto a hyperplane). In this paper we study the impact of sym-
metry on the lifting properties of pictures. We first use methods from group
representation theory to show that the lifting matrix of a symmetric picture
can be transformed into a block-diagonalized form. Using this result we then
derive new symmetry-extended counting conditions for a picture with a non-
trivial symmetry group in an arbitrary dimension to be minimally flat (i.e.,
‘non-liftable’). These conditions imply very simply stated restrictions on the
number of those structural components of the picture that are fixed by the vari-
ous symmetry operations of the picture. We then also transfer lifting results for
symmetric pictures from Euclidean (d − 1)-space to Euclidean d-space via the
technique of coning. Finally, we offer some conjectures regarding sufficient con-
ditions for a picture realized generically for a symmetry group to be minimally
flat.

1 Introduction

An important and well studied problem in Artificial Intelligence, Computer Vision and
Robotics is to find efficient methods for determining whether a straight line drawing
in the Euclidean plane (also known as a ‘2-picture’) corresponds to the projection of
a 3-dimensional polyhedral surface (also known as a polyhedral ‘3-scene’). Applica-
tions of these results include image understanding, monocular vision and automatic
reconstructions of 3-dimensional polyhedral objects or environments.

In the Computer Vision community, this problem was first studied by Mackworth
and Huffman [7,11]. Using ‘labeling schemes’ and ‘reciprocal diagrams’, they obtained
necessary conditions for the realizability of 2-pictures as polyhdral 3-scenes. However,
the geometric method of the ‘reciprocal diagram’ has already been used by J. C.
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Section 1. Introduction 2

Maxwell and L. Cremona in the 19th century as a graphical tool to analyze the
statics of trusses and mechanical structures [5, 12]. This work provides a beautiful
connection between the field of polyhedral scene analysis and the field of static (or
equivalently, infinitesimal) rigidity of frameworks [25, 27]. For further connections
between these fields and other areas of discrete geometry, such as parallel redrawings of
configurations (which is the dual interpretation of liftings of pictures) and Minkowski
decomposability of polytopes, see [31, 32] for example. While reciprocal diagrams
provide a powerful tool to check for inconsistencies in pictures, they do not provide
sufficient conditions for the realizability of pictures as polyhedral scenes.

In [20–22] Sugihara used linear programming methods to establish both a nec-
essary and sufficient condition for a general picture to represent a polyhedron (see
also [23]). Various other necessary and sufficient conditions were subsequently ob-
tained by Crapo, Whiteley, et al. using a variety of different methods ranging
from projective geometry and Grassmann-Cayley algebra to invariant theory (see
e.g. [3, 4, 13,24,28–30]).

A fundamental tool for analyzing a given picture is the lifting matrix, whose rank,
row dependencies and column dependencies completely determine the liftability prop-
erties of the picture (see e.g. [3,29,31,32]). In particular, this matrix yields some simple
necessary counting conditions for a (d− 1)-dimensional picture to be ‘flat’ (i.e., non-
liftable to a d-dimensional polyhedral scene) in terms of the number of vertices, faces
and incidences of the underlying combinatorial incidence structure. Following a con-
jecture of Sugihara [21], Whiteley showed in [29] that these counts are also sufficient
for ‘generic’ pictures (with the same underlying incidence structure) to be flat.

(a) (b) (c)

Figure 1: A (minimally) flat 2-picture (where all four interior regions are faces) (a)
which becomes sharp if realized with reflectional symmetry (b). A non-trivial (and
sharp) lifting of the picture in (b) is shown in (c).

In this paper, we study the impact of symmetry on the lifting properties of (d− 1)-
dimensional pictures. This has important practical applications since symmetry is
ubiquitous in both man-made and natural structures. Moreover, there has recently
been a surge of interest in studying the impact of symmetry on the static or infinitesi-
mal rigidity properties of structures (see e.g. [2,6,10,14,17,18]), and hence it is natural
to apply similar group-theoretic methods to the lifting analysis of symmetric pictures.

In Section 4 we first show that the lifting matrix of a symmetric (d−1)-picture can be
transformed into a block-diagonalized form using methods from group representation
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Section 2. Pictures, liftings, and scenes 3

theory. This is a fundamental result, since the block-decomposition of the lifting
matrix can be used to break up the lifting analysis of a symmetric picture into a
number of independent subproblems, one for each block of the lifting matrix. In fact,
the analogous result for the rigidity matrix of a symmetric framework (see [10, 14])
is basic to most of the recent results regarding the rigidity analysis of symmetric
structures (see e.g. [2, 6, 17]). Similarly to [14], the block-decomposition of the lifting
matrix is obtained by showing that it intertwines two particular matrix representations
of the given symmetry group. For the lifting matrix, one of these representations is
associated with the incidences of the picture and the other one is associated with the
vertices and faces of the picture (see Theorem 4.1).

In Section 5 we then use these results, together with some methods from character
theory, to derive new necessary counting conditions for a symmetric picture to be
‘minimally flat’ (i.e., flat with the property that the removal of any incidence leads to
a picture which does have a non-trivial lifting). We then follow the approach in [2]
to derive a complete list of the necessary conditions for 2-dimensional pictures, as
these are the most important structures for practical applications. Similar counts
for higher-dimensional pictures can easily be obtained for any symmetry group using
Corollary 5.5. A well established tool in rigidity theory for transferring results from
an Euclidean space to the next higher dimension (as well as to other types of metrics)
is the technique of ‘coning’ (see e.g. [19, 26]). In the end of Section 5 we show that
coning can also be used to transfer lifting results for pictures from (d − 1)-space to
d-space.

Finally, in Section 6 we offer some conjectures regarding combinatorial characteri-
zations of minimally flat pictures which are as generic as possible subject to the given
symmetry constraints. Moreover, we briefly discuss the question of whether a picture
which is generic modulo symmetry has a ‘sharp’ lifting, i.e. a lifting where any two
faces sharing a vertex lie in different hyperplanes.

2 Pictures, liftings, and scenes

A (polyhedral) incidence structure S is an abstract set of vertices V , an abstract set
of faces F , and a set of incidences I ⊆ V × F .

A (d−1)-picture is an incidence structure S together with a corresponding location
map r : V → Rd−1, ri = (xi, yi, . . . , wi)

T , and is denoted by S(r).
A d-scene S(p, P ) is an incidence structure S = (V, F ; I) together with a pair

of location maps, p : V → Rd, pi = (xi, . . . , wi, zi)
T , and P : F → Rd, P j =

(Aj . . . , Cj, Dj)T , such that for each (i, j) ∈ I we have Ajxi+ . . .+Cjwi+zi+Dj = 0.
(We assume that no hyperplane is vertical, i.e., is parallel to the vector (0, . . . , 0, 1)T .)

A lifting of a (d− 1)-picture S(r) is a d-scene S(p, P ), with the vertical projection
Π(p) = r. That is, if pi = (xi, . . . , wi, zi)

T , then ri = (xi, . . . , wi)
T = Π(pi).

A lifting S(p, P ) is trivial if all the faces lie in the same plane. Further, S(p, P ) is
folded (or non-trivial) if some pair of faces have different planes, and is sharp if each
pair of faces sharing a vertex have distinct planes. A picture is called sharp if it has
a sharp lifting. Moreover, a picture which has no non-trivial lifting is called flat (or
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Section 3. Symmetric incidence structures and pictures 4

trivial). A picture with a non-trivial lifting is called foldable.
The lifting matrix for a picture S(r) is the |I| × (|V | + d|F |) coefficient matrix

M(S, r) of the system of equations for liftings of a picture S(r): For each (i, j) ∈ I,
we have the equation Ajxi + Bjyi + . . . + Cjwi + zi + Dj = 0, where the variables
are ordered as [. . . , zi, . . . ; . . . , A

j, Bj, . . . , Dj, . . .]. That is the row corresponding to
(i, j) ∈ I is:

i
j︷ ︸︸ ︷

(i, j) 0 . . . 0 1 0 . . . 0 0 . . . 0 ri 1 0 . . . 0︸ ︷︷ ︸
|V |

︸ ︷︷ ︸
d|F |

Theorem 2.1 (Picture Theorem). [29,31] A generic picture of an incidence structure
S = (V, F ; I) with at least two faces has a sharp lifting, unique up to lifting equivalence,
if and only if |I| = |V |+ d|F | − (d+ 1) and |I ′| ≤ |V ′|+ d|F ′| − (d+ 1) for all subsets
I ′ of incidences with at least two faces.

A generic picture of S has independent rows in the lifting matrix if and only if for
all non-empty subsets I ′ of incidences, we have |I ′| ≤ |V ′|+ d|F ′| − d.

Note that it follows from the Picture Theorem that a generic picture of an incidence
structure S = (V, F ; I) is minimally flat, i.e. flat with independent rows in the lifting
matrix, if and only if |I| = |V |+ d|F | − d and |I ′| ≤ |V ′|+ d|F ′| − d for all non-empty
subsets I ′ of incidences.

3 Symmetric incidence structures and pictures

An automorphism of an incidence structure S = (V, F ; I) is a pair α = (π, σ), where
π is a permutation of V and σ is a permutation of F such that (v, f) ∈ I if and only
if (π(v), σ(f)) ∈ I for all v ∈ V and f ∈ F . For simplicity, we will write α(v) for π(v)
and α(f) for σ(f).

The automorphisms of S form a group under composition, denoted Aut(S). An
action of a group Γ on S is a group homomorphism θ : Γ → Aut(S). The incidence
structure S is called Γ-symmetric (with respect to θ) if there is such an action. For
simplicity, if θ is clear from the context, we will sometimes denote the automorphism
θ(γ) simply by γ.

Let Γ be an abstract group, and let S be a Γ-symmetric incidence structure (with
respect to θ). Further, suppose there exists a group representation τ : Γ→ O(Rd−1).
Then we say that a picture S(r) is Γ-symmetric (with respect to θ and τ) if

τ(γ)(ri) = rθ(γ)(i) for all i ∈ V and all γ ∈ Γ. (1)

In this case we also say that τ(Γ) = {τ(γ)| γ ∈ Γ} is a symmetry group of S(r), and
each element of τ(Γ) is called a symmetry operation of S(r). Throughout this paper,
we will use the Schoenflies notation for symmetry operations and symmetry groups,
as this is one of the standard notations in the literature on symmetric structures
[2, 6, 10, 14].
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Section 4. Block-decomposing the lifting matrix of a symmetric picture 5

4 Block-decomposing the lifting matrix of a sym-

metric picture

In this section we will show that by changing the canonical bases for R|I| and R|V |+d|F |
to appropriate symmetry-adapted bases, the lifting matrix of a symmetric picture can
be transformed into a block-decomposed form.

Let Γ be an abstract group, and let S = (V, F ; I) be a Γ-symmetric incidence
structure (with respect to θ : Γ → Aut(S)). Further, let S(r) be a Γ-symmetric
(d− 1)-picture with respect to the action θ and the homomorphism τ : Γ→ O(Rd−1).
We fix an ordering of the vertices in V , the faces in F and the incidences in I.

We let PV : Γ → GL(R|V |) be the linear representation of Γ defined by PV (γ) =
[δθ(γ)(j)]i,j, where δ denotes the Kronecker delta symbol. That is, PV (γ) is the permu-
tation matrix of the permutation of V induced by θ(γ). Similarly, we let PF : Γ →
GL(R|F |) be the linear representation of Γ defined by PF (γ) = [δθ(γ)(j)]i,j. That is,
PF (γ) is the permutation matrix of the permutation of F induced by θ(γ). Moreover,
note that for each γ ∈ Γ, the automorphism θ(γ) of S clearly also induces a permuta-
tion of the incidences I of S. So, analogously to PV and PF , we let PI : Γ→ GL(R|I|)
be the linear representation of Γ which consists of the permutation matrices of the
permutations of I induced by θ. We call PI the internal representation of Γ (with
respect to θ and τ).

The external representation of Γ (with respect to θ and τ) is the linear representa-
tion

PV ⊕ (τ̂ ⊗ PF ) : Γ→ GL(R|V | ⊕ Rd|F |),

where τ̂ : Γ → O(Rd) is the augmented representation of τ , defined by τ̂(γ) =(
τ(γ) 0

0 1

)
.

Recall that given two linear representations, ρ1 : Γ→ GL(X) and ρ2 : Γ→ GL(Y )
with representation spaces X and Y , a linear map T : X → Y is said to be a Γ-linear
map of ρ1 and ρ2 if T ◦ρ1(γ) = ρ2(γ)◦T for all γ ∈ Γ. The vector space of all Γ-linear
maps of ρ1 and ρ2 is denoted by HomΓ(ρ1, ρ2).

Theorem 4.1. Let S = (V, F ; I) be a Γ-symmetric incidence structure (with respect
to θ), let τ : Γ → O(Rd−1) be a homomorphism, and let S(r) be a Γ-symmetric
(d− 1)-picture (with respect to θ and τ). Then M(S, r) ∈ HomΓ(PV ⊕ (τ̂ ⊗ PF ), PI).

Proof: Suppose we have M(S, r)c = b. Then we need to show that for all γ ∈ Γ,
we have M(S, r)(PV ⊕ (τ̂ ⊗ PF ))(γ)c = PI(γ)b.

Fix γ ∈ Γ, and let θ(γ) = (π, σ). The automorphism of I induced by θ(γ) we denote
by α.

Let (i, j) ∈ I. Further, let π(i) = k and σ(j) = l. Thus, α((i, j)) = (k, l). Note
that PI(γ)b is an |I| × 1 column vector which is indexed by the incidences in I. By
the definition of PI(γ), for the (k, l)-th component, (PI(γ)b)(k,l), of PI(γ)b we have
(PI(γ)b)(k,l) = (b)(i,j). So we need to show that (M(S, r)(PV ⊕ (τ̂ ⊗ PF ))(γ)c)(k,l) =
(b)(i,j).
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Section 4. Block-decomposing the lifting matrix of a symmetric picture 6

Note that (M(S, r)c)(k,l) = (b)(k,l) = zk + Alxk + Blyk + . . . + C lwk + Dl. By the
definition of PV ⊕ (τ̂ ⊗ PF )(γ), (M(S, r)(PV ⊕ (τ̂ ⊗ PF ))(γ)c)(k,l) is equal to

zi + (xk, yk, . . . , wk, 1)

(
τ(γ) 0

0 1

)
Aj

Bj

...
Dj

 .

By symmetry (recall that π(i) = k, and hence τ(γ)(ri) = rk), this is equal to

zi + (xi, yi, . . . , wi, 1)

(
τ(γ) 0

0 1

)T (
τ(γ) 0

0 1

)
Aj

Bj

...
Dj

 .

Since τ(γ) (and hence also τ̂(γ)) is an orthogonal matrix, this is equal to

zi + xiA
j + . . .+ wiC

j +Dj = (b)(i,j).

This completes the proof.
Since M(S, r) ∈ HomΓ(PV ⊕ (τ̂⊗PF ), PI), there are non-singular matrices A and B

such that BTM(S, r)A is block-diagonalized, by Schur’s lemma. If ρ0, . . . , ρn are the
irreducible representations of Γ, then for an appropriate choice of symmetry-adapted
coordinate systems, the lifting matrix takes on the following block form

BTM(S, r)A := M̃(S, r) =

 M̃0(S, r) 0
. . .

0 M̃n(S, r)

 , (2)

where the submatrix block M̃i(S, r) corresponds to the irreducible representation ρi
of Γ.

More precisely, the symmetry-adapted coordinate systems can be obtained as fol-
lows. Recall that every linear representation of Γ can be written uniquely, up to
equivalency of the direct summands, as a direct sum of the irreducible linear repre-
sentations of Γ. So we have

PV ⊕ (τ̂ ⊗ PF ) = λ0ρ0 ⊕ . . .⊕ λnρn, where λ0, . . . , λn ∈ N ∪ {0}. (3)

For each t = 0, . . . , n, there exist λt subspaces
(
V (ρt)

)
1
, . . . ,

(
V (ρt)

)
λt

of the R-vector

space R|V |+d|F | which correspond to the λt direct summands in (3), so that

R|V |+d|F | = V (ρ0) ⊕ . . .⊕ V (ρn), (4)

where
V (ρt) =

(
V (ρt)

)
1
⊕ . . .⊕

(
V (ρt)

)
λt

. (5)
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Section 5. Symmetry-extended counting rules for the foldability of pictures 7

Similarly, for the internal representation PI of Γ, we have the direct sum decompo-
sition

PI = µ0ρ0 ⊕ . . .⊕ µnρn, where µ0, . . . , µn ∈ N ∪ {0}. (6)

For each t = 0, . . . , n, there exist µt subspaces
(
W (ρt)

)
1
, . . . ,

(
W (ρt)

)
µt

of the R-vector

space R|I| which correspond to the µt direct summands in (6), so that

R|I| = W (ρ0) ⊕ . . .⊕W (ρn), (7)

where
W (ρt) =

(
W (It)

)
1
⊕ . . .⊕

(
W (ρt)

)
µt

. (8)

If we choose bases
(
A(ρt)

)
1
, . . . ,

(
A(ρt)

)
λt

for the subspaces in (5) and we also choose

bases
(
B(ρt)

)
1
, . . . ,

(
B(ρt)

)
µt

for the subspaces in (8), then
⋃n
t=0

⋃λt
i=1

(
A(ρt)

)
i

and⋃n
t=0

⋃µt
i=1

(
B(ρt)

)
i

are symmetry-adapted bases with respect to which the lifting ma-
trix is block-decomposed as shown in (2).

Definition 4.2. A vector c ∈ R|V |+d|F | is symmetric with respect to the irreducible
linear representation ρt of Γ if c ∈ V (ρt). Similarly, we say that a vector b ∈ R|I| is
symmetric with respect to ρt if b ∈ W (ρt).

Note that the kernel of the block matrix M̃t(S, r) is isomorphic to the space of all
liftings of the Γ-symmetric picture S(r) which are symmetric with respect to ρt.

5 Symmetry-extended counting rules for the fold-

ability of pictures

Recall from the Picture Theorem (Theorem 2.1) that if S(r) is minimally flat, then
it satisfies |I| = |V | + d|F | − d. Clearly, if |I| < |V | + d|F | − d, then S(r) has a
non-trivial lifting, and if |I| > |V | + d|F | − d, then the lifting matrix M(S, r) has a
non-trivial row dependence.

In Section 5.1, we will use the results of the previous section to derive a symmetry-
extended version of this formula, which will provide further necessary counting con-
ditions for a symmetric picture in an arbitrary dimension to be minimally flat. As we
will see, these conditions can be stated in a very simple way in terms of the numbers
of structural components of the picture that are fixed by the various symmetry op-
erations. In Section 5.2 we will then derive a complete list of the necessary counting
conditions for symmetric pictures in the plane to be minimally flat. Finally, in Sec-
tion 5.3 we consider the transfer of lifting results for pictures from (d − 1)-space to
d-space via coning.

5.1 Symmetry-extended counting rules

Recall that if ρ : Γ→ GL(X) is a linear representation of a group Γ with representa-
tion space X then a subspace U of X is said to be ρ-invariant if ρ(γ)(U) ⊆ U for all
γ ∈ Γ.
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5.1 Symmetry-extended counting rules 8

Proposition 5.1. Let S(r) be a picture which is Γ-symmetric with respect to θ : Γ→
Aut(S) and τ : Γ → Rd−1. Then the space T (S, r) of trivial liftings of S(r) is a
PV ⊕ (τ̂ ⊗ PF )-invariant subspace of R|V | ⊕ Rd|F |.

Proof: Let t be any element of T (S, r). Then t is an element of the kernel of
the lifting matrix M(S, r) of the form (. . . , zi, . . . , . . . , A

j, Bj, . . . , Dj, . . .)T , where
Aj = Ak, Bj = Bk, . . ., Dj = Dk for all 1 ≤ j, k ≤ |F |. It follows from Theorem 4.1
that (PV ⊕ (τ̂ ⊗ PF ))(t) is also an element of the kernel of M(S, r), and it follows
immediately from the definition of PV ⊕(τ̂⊗PF ) that (PV ⊕(τ̂⊗PF ))(t) is of the form
(. . . , z′i, . . . , . . . , A

′j, B′j, . . . , D′j, . . .)T , where A′j = A′k, B′j = B′k, . . ., D′j = D′k for
all 1 ≤ j, k ≤ |F |. This gives the result.

We denote by (PV ⊕ (τ̂ ⊗ PF ))(T ) the subrepresentation of PV ⊕ (τ̂ ⊗ PF ) with
representation space T (S, r). Recall that the character of a representation ρ : Γ →
GL(X) is the row vector χ(ρ) whose i-th component is the trace of ρ(γi), for some
fixed ordering γ1, . . . , γ|Γ| of the elements of Γ.

Theorem 5.2 (Symmetry-extended counting rule). Let S(r) be a (d−1)-picture which
is Γ-symmetric with respect to θ and τ . If S(r) is minimally flat, then we have

χ(PI) = χ(PV ⊕ (τ̂ ⊗ PF ))− χ((PV ⊕ (τ̂ ⊗ PF ))(T )). (9)

Proof: By Maschke’s Theorem, T (S, r) has a (PV ⊕(τ̂⊗PF ))-invariant complement
Q in R|V |+d|F |. We may therefore form the subrepresentation (PV ⊕ (τ̂ ⊗ PF ))(Q) of
PV⊕(τ̂⊗PF ) with representation space Q. Since (S, r) is minimally flat, the restriction
of the linear map represented by the lifting matrix M(S, r) to Q is an isomorphism
onto R|I|. Moreover, since M(S, r) is Γ-linear with respect to the representations PV ⊕
(τ̂ ⊗PF ) and PI , this restriction is Γ-linear for the representations (PV ⊕ (τ̂ ⊗PF ))(Q)

and PI . Hence (PV ⊕ (τ̂ ⊗ PF ))(Q) and PI are isomorphic representations of Γ. It
follows that

χ(PI) = χ((PV ⊕ (τ̂ ⊗ PF ))(Q)) = χ(PV ⊕ (τ̂ ⊗ PF ))− χ((PV ⊕ (τ̂ ⊗ PF ))(T )).

Suppose for a Γ-symmetric picture S(r) we have χ(PI) 6= χ(PV ⊕(τ̂⊗PF ))−χ((PV ⊕
(τ̂ ⊗PF ))(T )). Then, by Theorem 5.2, we my conclude that S(r) is not minimally flat,
that is, S(r) either has a non-trivial lifting, or a row-dependence in the lifting matrix
M(S, r), or both. Further information about the non-trivial liftings of S(r) and the
row dependencies of M(S, r) may be obtained as follows.

It is a well-known fact from group representation theory that if Γ is a finite group
with the irreducible linear representations ρ0, . . . , ρn, and H : Γ → GL(X) is any
linear representation of Γ with H = α0ρ0 ⊕ . . . ⊕ αnρn, where α0, . . . , αn ∈ N ∪ {0},
then for the character of H we have χ(H) = α0χ(ρ0)⊕ . . .⊕αnχ(ρn). Thus, by (6) we
have χ(PI) = µ0χ(ρ0)⊕. . .⊕µnχ(ρn). Similarly, the character of (PV ⊕(τ̂⊗PF ))(Q) can
be written as χ((PV ⊕ (τ̂ ⊗ PF ))(Q)) = κ0χ(ρ0)⊕ . . .⊕ κnχ(ρn) for some κ0, . . . , κn ∈
N∪{0}. Since χ(PI) 6= χ((PV ⊕(τ̂⊗PF ))(Q)), we have κt 6= µt for some t ∈ {0, . . . , n}.

For t = 0, . . . , n, the dimension of W (ρt) (recall (8)) is equal to the dimension of
the representation ρt multiplied by µt. Similarly, the dimension of V (ρt) (recall (5))
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5.1 Symmetry-extended counting rules 9

minus the dimension of the space of trivial liftings of S(r) which are symmetric with
respect to ρt (recall Def. 4.2) is equal to the dimension of ρt multiplied by κt. Thus,
if κt > µt, then, by (2), there exists a non-trivial lifting of S(r) (i.e., a non-trivial
element in the kernel of M(S, r)) which is symmetric with respect to ρt, and if κt < µt,
then there exists a non-trivial row dependence of M(S, r) (i.e., a non-zero element in
the co-kernel of M(S, r)) which is symmetric with respect to ρt.

Before we illustrate this symmetry-adapted counting rule by means of an example,
we show how the characters in (9) can be computed in a very simple way. We need
the following definitions.

Let S be an incidence structure and let θ : Γ→ Aut(S) be a group action on S. A
vertex v of S is said to be fixed by γ ∈ Γ (with respect to θ) if γv = v. Similarly, a face
f = {v1, . . . , vm} of S is said to be fixed by γ ∈ Γ (with respect to θ) if γf = f , i.e., if
γ({v1, . . . , vm}) = {v1, . . . , vm}. Finally, an incidence (i, j) of S is said to be fixed by
γ ∈ Γ (with respect to θ) if γ((i, j)) = (i, j) The sets of vertices, faces, and incidences
of a Γ-symmetric incidence structure S which are fixed by γ ∈ Γ are denoted by Vγ,
Fγ, and Iγ, respectively.

Remark 5.3. Note that if a (d − 1)-picture S(r) is Γ-symmetric (with respect to θ
and τ) and a vertex i is fixed by some γ ∈ Γ, then ri must occupy a special geometric
position in Rd−1. For example, if τ(γ) is a reflection in the plane, then ri must lie
in the corresponding mirror line. Similarly, if τ(γ) is a rotation in the plane, then ri
must lie at the center of rotation (i.e., the origin). Similar geometric restrictions are
imposed on any faces (or incidences) of S(r) that are fixed by an element γ ∈ Γ.

Proposition 5.4. Let Γ = {γ1, . . . , γ|Γ|} be an abstract group and let S(r) be a (d−1)-
picture which is Γ-symmetric with respect to θ and τ . Then we have

(i) χ(PI) = (|Iγ1|, . . . , |Iγ|Γ||);

(ii) χ(PV ⊕ (τ̂ ⊗ PF )) = (|Vγ1|+ tr(τ̂(γ1)) |Fγ1|, . . . , |Vγ|Γ| |+ tr(τ̂(γ|Γ|)) |Fγ|Γ| |);

(iii) χ((PV ⊕ (τ̂ ⊗ PF ))(T )) = χ(τ̂).

Proof: (i) Note that tr(PI(γ)) = |Iγ| for each γ ∈ Γ.
(ii) Similarly, we have tr(PV (γ)) = |Vγ|, tr(PF (γ)) = |Fγ|, and tr((τ̂ ⊗ PF )(γ)) =

tr(τ̂(γ))tr(PF (γ)) for each γ ∈ Γ.
(iii) A basis for the space T (S, r) of trivial liftings of S(r) is given by the d vec-

tors τ1 = (x1, . . . , x|V |,−e1, . . . ,−e1)T , τ2 = (y1, . . . , y|V |,−e2, . . . ,−e2)T , . . ., τd−1 =
(w1, . . . , w|V |,−ed−1, . . . ,−ed−1)T and τd = (1, . . . , 1,−ed, . . . ,−ed)T , where ei denotes
the i-th canonical basis vector of Rd. An elementary calculation shows that for every
γ ∈ Γ, we have

(PV ⊕ (τ̂ ⊗ PF ))(T )(γ)τj = (τ̂(γ))1jτ1 + · · ·+ (τ̂(γ))djτd.

This gives the result.
By Proposition 5.4, the symmetry-extended counting rule in (9) can be simplified

to
χ(PI) = χ(PV ⊕ (τ̂ ⊗ PF ))− χ(τ̂), (10)
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5.1 Symmetry-extended counting rules 10

and each of these characters can be computed very easily. (The calculations of the
characters χ(PI), χ(PV ⊕ (τ̂ ⊗PF )), and χ(τ̂) for pictures in dimension 2 are shown in
Table 2.) Moreover, note that this vector equation gives one equation for each element
of the group Γ. This leads to the following very useful corollary of Theorem 5.2, which
allows us to detect non-trivial liftings in symmetric pictures by simply counting the
number of structural components of the picture that are ‘fixed’ by a given symmetry
operation of the picture.

Corollary 5.5. Let (S, r) be a (d− 1)-picture which is Γ-symmetric with respect to θ
and τ . If (S, r) is minimally flat, then for each γ ∈ Γ,

|Iγ| = |Vγ|+ tr(τ̂(γ)) (|Fγ| − 1). (11)

Proof: This follows immediately from Theorem 5.2 and Proposition 5.4.
The following example illustrates how to apply the symmetry-extended counting

rule to a picture in dimension 2.

Example 5.6. Consider the 2-picture with the reflectional symmetry group Cs =
{id, s} in Figure 2. For this picture, we have |V | = 6, |F | = 4, |I| = 15, and hence
|I| = |V | + 3|F | − 3 = 15. So, for generic positions of the vertices, we obtain flat
pictures. However, using our symmetry-extended counting rule we can easily show
that the mirror symmetry shown in Figure 2 induces a non-trivial lifting. The group
Cs has two non-equivalent irreducible representations ρ0 and ρ1, each of which is of
dimension 1 (see Table 1).

Cs id s

ρ0 1 1
ρ1 1 -1

Table 1: The characters of the irreducible representations of the group Cs.

Since tr(τ̂(id)) = 3, tr(τ̂(s)) = 1, |V |+ 3|F | = 18, and |Vs|+ |Fs| = 2 + 2 = 4, we
have

χ(PV ⊕ (τ̂ ⊗ PF ))− χ((PV ⊕ (τ̂ ⊗ PF ))(T )) = (18, 4)− (3, 1) = (15, 3) = 9ρ0 + 6ρ1.

Further, since |I| = 15 and |Is| = 1, we have

χ(PI) = (15, 1) = 8ρ0 + 7ρ1.

Thus, we may conclude that the picture in Figure 2 has a non-trivial lifting which is
symmetric with respect to ρ0 (i.e., the lifting preserves the mirror symmetry) and a
row dependence which is symmetric with respect to ρ1.

Note that for this particular example, we could also have used the results in [2] to
see that the corresponding bar-joint framework has a self-stress, and then deduce the
existence of a (sharp) lifting via the technique of the reciprocal diagram [11, 12].
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f1

f2 f3f4

Figure 2: A 2-picture with mirror symmetry which has a symmetry-induced non-
trivial lifting (see also Figure 1(c)).

5.2 When is a symmetric 2-picture minimally flat?

The possible non-trivial symmetry operations of a picture in dimension 2 are reflec-
tions in lines through the origin (denoted by s), and rotations about the origin by an
angle of 2π

n
, where n ≥ 2 (denoted by Cn). Therefore, the possible symmetry groups

in the plane are the identity group C1, the rotational groups Cn, n ≥ 2 (generated by
a single rotation Cn), the reflection group Cs (generated by a single reflection s), and
the dihedral groups Cnv, n ≥ 2.

id Cn>2 C2 s

χ(PI) |I| |In| |I2| |Is|
χ(PV ⊕ (τ̂ ⊗ PF )) |V |+ 3|F | |Vn|+ (1 + 2 cos 2π

n
)|Fn| |V2| − |F2| |Vs|+ |Fs|

χ(τ̂) 3 1 + 2 cos 2π
n

−1 1

Table 2: Calculations of characters for the symmetry-extended counting rule for min-
imally flat pictures in dimension 2.

In Table 2, we show the calculations of characters for the counting condition in
(9) (or equivalently, (10)) for 2-pictures. In this table, |Vn|, |Fn|, and |In| denote
the numbers of vertices, faces, and incidences that are fixed by an n-fold rotation Cn,
n ≥ 2, respectively. Similarly, |Vs|, |Fs|, and |Is| denote the numbers of vertices, faces,
and incidences that are fixed by a reflection s, respectively (recall also the notation
introduced in Subsection 5.1).

From equation (11) and Table 2, we obtain the following necessary conditions for
a Γ-symmetric 2-picture (with respect to θ and τ) to be minimally flat. If χ(PI) =
χ(PV ⊕ (τ̂ ⊗ PF ))− χ(τ̂), then

id: |I| = |V |+ 3|F | − 3 (12)

C2: |I2| = |V2| − |F2|+ 1 (13)

s: |Is| = |Vs|+ |Fs| − 1 (14)

Cn>2: |In| = |Vn|+ (|Fn| − 1)(1 + 2 cos
2π

n
) (15)
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5.2 When is a symmetric 2-picture minimally flat? 12

where a given equation applies when the corresponding symmetry operation is present
in τ(Γ). Some observations on minimally flat 2-pictures, arising from this set of
equations are:

(i) Every symmetry group contains the identity id, and hence we must always have
the standard count |I| = |V |+ 3|F | − 3.

(ii) It follows from (13) that the presence of a half-turn C2 imposes limitations on
the placements of vertices and faces. Note that if |V2| = 0 or |F2| = 0, then
|I2| = 0. Thus, we must have |F2| > 0. Also, if |V2| = 0, then we must have
|F2| = 1. If |V2| = 1 then by |I2| ≤ |F2| either |I2| = |F2| = 1 or |I2| = 0, |F2| = 2
holds.

(iii) Similarly, by (14), presence of a mirror line implies that if |Vs| = 0, then |Fs| = 1,
and if |Fs| = 0, then |Vs| = 1.

(iv) By (15), presence of a rotation of higher order Cn>2 gives rise to the following
conditions.

If n = 3, then the equation in (15) becomes |I3| = |V3|.
If n = 4, then the equation in (15) becomes |I4| = |V4|+ |F4| − 1. Therefore, if
|V4| = 0, then |F4| = 1 and, if |V4| = 1 then |I4| = |F4| ≤ 1 by |I4| ≤ |I2|.
If n = 6, then the equation in (15) becomes |I6| = |V6| + 2|F6| − 2. Therefore,
|F6| > 0 (for otherwise, |V6| = 2 and the location map of the picture would
be non-injective). Further, if |V6| = 0, then |F6| = 1 and, if |V6| = 1 then
|I6| = |F6| = 1 holds by |I6| ≤ |I2|.
Finally, if Cn is present, where n /∈ {2, 3, 4, 6}, we must have |Fn| = 1 and
|In| = |Vn|.

C2 C3 C4 Cs

Figure 3: Some symmetric minimally flat 2-pictures (where all interior regions are
faces).

Similarly, we may obtain lists of necessary conditions for symmetric pictures in 3-
or higher-dimensional space to be minimally flat (using Corollary 5.5).
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C2 Cs C3v

Figure 4: Some symmetric 2-pictures with a (sharp) symmetry-induced lifting (where
all interior regions are faces).

5.3 Coning (d− 1)-pictures

In the following we show that the technique of ‘coning’ can be used to construct
(minimally) flat Γ-symmetric d-pictures from (minimally) flat Γ-symmetric (d − 1)-
pictures. Let S = (V, F ; I) be an incidence structure and let S(r) be a (d− 1)-picture
for d ≥ 2. The coned incidence structure S̃ = (Ṽ , F̃ ; Ĩ) is obtained by adding a new
vertex v to V , replacing each face f ∈ F by f ∪{v}, and adding the incidences (v, f̃),
f̃ ∈ F̃ . A realization of S̃ as a d-picture S̃(r̃) is called a coned picture of S(r). An
example of a coned 2-picture is shown in Figure 5.

Let Γ be a group, and let S(r) be a Γ-symmetric (d − 1)-picture (with respect to
θ and τ) with n vertices. Then S(r) is said to be Γ-generic if the set of coordinates
of the image of r are algebraically independent over QΓ, where QΓ denotes the field
generated by Q and the entries of the matrices in τ(Γ). In other words, S(r) is
Γ-generic if there does not exist a polynomial h(x1, . . . , x(d−1)n) with coefficients in
QΓ such that h((r1)1, . . . , (rn)d−1) = 0. (Note that if Γ is the trivial group, then
QΓ = Q. In this case, a Γ-generic picture is simply called generic.) Clearly, the set
of all Γ-generic realizations of S is a dense (but not open) subset of all Γ-symmetric
realizations of S. Moreover, all Γ-generic realizations of S share the same lifting
properties. We say that S is Γ-generically (minimally) flat in Rd−1 if all Γ-generic
realizations of S in Rd−1 are (minimally) flat.

For a Γ-symmetric (d − 1)-picture S(r) (with respect to θ : Γ → Aut(S) and
τ : Γ → O(Rd−1)), we let τ̃ : Γ → O(Rd) be the augmented representation, i.e.,

τ̃(γ) =

(
τ(γ) 0

0 1

)
. Moreover, for the coned incidence structure S̃ = (Ṽ , F̃ ; Ĩ) (with

cone vertex v), we define θ̃ : Γ→ Aut(S̃) as follows: θ̃(γ)|V = θ(γ), θ̃(γ)(v) = v, and
θ̃(γ)(f ∪ {v}) = (θ(γ)(f)) ∪ {v} for all f ∈ F and γ ∈ Γ.

Theorem 5.7. Let S = (V, F ; I) be a Γ-symmetric incidence structure (with respect
to θ), and let S(r) be a (d− 1)-picture which is Γ-symmetric with respect to θ and τ .
Then the following hold:

(i) S(r) has a non-trivial lifting if and only if the coned d-picture S̃(r̃), with the
cone vertex at the point (0, . . . , 0, α) ∈ Rd, for some non-zero α ∈ R, has a
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non-trivial lifting.

(ii) S is Γ-generically (minimally) flat (with respect to θ and τ) in Rd−1 if and only
if S̃ is Γ-generically (minimally) flat (with respect to θ̃ and τ̃) in Rd.

Proof: (i) Let r1, . . . , r|V | be the vertices of the picture S(r). Embed S(r) into the

space Rd via r̃i = (ri, 0) for i = 1, . . . , |V |. Then form the coned picture S̃(r̃), with
the cone vertex r̃0 = (0, . . . , 0, α) ∈ Rd, α 6= 0.

The lifting matrix of S(r) is of the form

M(S, r) =

i fj
...

...
(i, fj) 0 . . . 0 1 0 . . . 0 0 . . . 0 [xi, yi, . . . , wi, 1] 0 . . . 0

...
...

.

The lifting matrix of the coned picture S̃(r̃) (with the cone vertex fixed) is of the form

M ′(S̃, r̃) =

i fj
...

...
(i, fj) 0 . . . 0 1 0 . . . 0 0 . . . 0 [xi, yi, . . . , wi, 0, 1] 0 . . . 0

...
...

...
...

(0, fj) 0 . . . 0 0 0 . . . 0 0 . . . 0 [0, 0, . . . , 0, α, 1] 0 . . . 0
...

...

.

Note that we added |F | rows (one for each incidence of the form (0, fj), j = 1, . . . , |F |,
where 0 is the cone vertex) and |F | columns. Furthermore, for each added column
(under face j) we have a 0 in each row, except in the one added row corresponding to
the incidence (0, fj), where the entry is equal to α. Thus we have increased the rank
by |F |, and preserved the dimension of the kernel. Now, if we add the missing column
for the cone vertex, then we obtain the lifting matrix of the coned picture S̃(r̃):

M(S̃, r̃) =

0 i fj

0
...

...

(i, fj)
... 0 . . . 0 1 0 . . . 0 0 . . . 0 [xi, yi, . . . , wi, 0, 1] 0 . . . 0

0
...

...

1
...

...

(0, fj)
... 0 . . . 0 0 0 . . . 0 0 . . . 0 [0, 0, . . . , 0, α, 1] 0 . . . 0

1
...

...

This added a 1-dimensional space of liftings (namely the space {λτd|λ ∈ R} of all
‘vertical’ translations of the picture (recall the proof of Prop. 5.4)), but did not add
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any non-trivial liftings. The rank of the matrix has not changed, nor has the space of
row-dependencies. This proves (i).

(ii) Note that if there exists some (minimally) flat Γ-symmetric realization of an
incidence structure S, then clearly all Γ-generic realizations of S are also (minimally)
flat. Therefore, by (i), it suffices to show that S(r) is Γ-symmetric with respect to
θ and τ if and only if the coned picture S̃(r̃) (with the cone vertex at the point
(0, . . . , 0, α) ∈ Rd, α 6= 0) is Γ-symmetric with respect to θ̃ and τ̃ .

Let r1, . . . , r|V | be the vertices of the picture S(r), and let r̃0, r̃1, . . . , r̃|V | be the

vertices of the picture S̃(r̃), i.e., r̃0 = (0, 0, . . . , 0, α), and r̃i = (ri, 0) for i = 1, . . . , |V |.
For all γ ∈ Γ, we clearly have τ̃(γ)r̃0 = r̃0 = r̃θ̃(γ)(0). Furthermore, for i 6= 0, S(r)

is Γ-symmetric with respect to θ and τ if and only if

τ̃(γ)r̃i = (τ(γ)ri, 0) = (rθ(γ)(i), 0) = (rθ̃(γ)(i), 0) = r̃θ̃(γ)(i).

This gives the result.

r1 r2

r3r4

r5 r6

r7
r8

(a)

r̃0

r̃1 r̃2

r̃4 r̃3

r̃5 r̃6

r̃7r̃8

(b)

r̃5 r̃6

r̃7

r̃1

r̃3
r̃4

r̃0r̃8

r̃2

(c)

Figure 5: A C4-symmetric 2-picture S(r) (where all five interior regions are faces) (a)
and a C4-symmetric coned picture S̃(r̃) in 3-space with cone vertex r̃0 = (0, . . . , 0, α)
and r̃i = (ri, 0) for i = 1, . . . , 8 (b). A C4-generic realization of S̃ is shown in (c). Note
that S̃ also has five faces, namely the ones corresponding to the ‘interior cells’ of the
cube in (c) except for the ‘top cell’ {r̃0, r̃1, r̃2, r̃3, r̃4}.

6 Further work

In the previous sections we have derived new necessary conditions for a symmetric
picture to be minimally flat. It is now natural to ask whether these conditions,
together with the standard non-symmetric counts, are also sufficient for a picture
which is realized generically for the given symmetry group to be minimally flat. We
conjecture that this is in fact the case, for all symmetry groups in all dimensions.

Conjecture 6.1. A Γ-generic (d− 1)-picture S(r) is minimally flat if and only if

(i) |I| = |V | + d|F | − d and |I ′| ≤ |V ′| + d|F ′| − d for all nonempty subsets I ′ of
incidences;

(ii) S satisfies the conditions for Γ in the symmetry extended counting rule (Corol-
lary 5.5);
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(iii) For every subset I ′ of I which induces a Γ′-symmetric incidence structure S ′

with |I ′| = |V ′| + d|F ′| − d (where Γ′ ⊆ Γ), S ′ satisfies the conditions for Γ′ in
the symmetry extended counting rule.

Note that if every face of the incidence structure S is incident to exactly four vertices
(i.e., if S induces a 4-uniform hypergraph), then the count |I| = |V | + 3|F | − 3 in
condition (i) for d = 3 simplifies to |F | = |V | − 3. Thus, a natural approach to
prove this conjecture for d = 3 is to first focus on incidence structures which induce
4-uniform hypergraphs and to develop a symmetry-adapted version of the recently
established recursive construction of 4-uniform (1, 3)-tight hypergraphs [9]. For each
of the symmetric hypergraph operations in this construction scheme, we then need to
check that it preserves the full rank of the lifting matrix. Finally, one could then try
to extend the result to general incidence structures with the same symmetry.

A similar approach based on symmetry-adapted recursive Henneberg-type graph
constructions was successfully used in [15,16] to establish various symmetry-adapted
versions of Laman’s theorem. These results provide combinatorial characterizations of
symmetry-generic isostatic (i.e. minimally infinitesimally rigid) graphs in the plane.
However, the recursive construction of (non-symmetric) (1, 3)-tight hypergraphs de-
veloped in [9] is more complex than the recursive Henneberg construction of (non-
symmetric) Laman graphs, and hence we are faced with new challenges of both com-
binatorial and geometric nature.

For practical applications of scene analysis, it is of particular interest to develop
methods which allow us to determine whether there exist a (unique) sharp lifting for
a given picture, rather than just a non-trivial lifting. It is therefore natural to ask
whether our results can be extended to provide necessary and/or sufficient conditions
for a symmetric picture to be sharp, rather than just foldable.

A combinatorial characterization of those pictures which have a unique sharp lifting
if realized generically in (d−1)-space (without symmetry) is given by the Picture The-
orem (recall Theorem 2.1). This result is essentially a corollary of the combinatorial
characterization of generic independent pictures (i.e., pictures whose lifting matri-
ces have independent rows) given in [29]. Therefore, in order to obtain a complete
symmetry-adpated version of the Picture Theorem we need to first obtain a combina-
torial characterization of those pictures which are independent if realized generically
with respect to the given symmetry group. Note that in the non-symmetric situa-
tion, any generic independent picture is a substructure of a minimally flat picture.
In general, however, this is no longer the case for symmetric pictures. For example,
it is easy to construct a C3-generic picture in the plane which satisfies |V3| = 1 and
|I3| = |F3| > 1, so that it is not contained in a minimally flat C3-generic picture (by
Corollary 5.5), but whose lifting matrix has independent rows. It follows that a com-
binatorial characterization of Γ-generic minimally flat pictures would in general not
provide us with a combinatorial characterization of Γ-generic independent pictures.
However, once a characterization of Γ-generic independent pictures has been estab-
lished for a group Γ (again using a symmetric recursive construction scheme, e.g.),
then we expect that the proof idea in [29] can be extended to obtain a characterization
of those pictures which have a unique sharp lifting if realized generically with respect
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to Γ.
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