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On minimally highly vertex-redundantly rigid
graphs

Viktória E. Kaszanitzky? and Csaba Király??

Abstract

A graph G = (V,E) is called k-rigid in Rd if |V | ≥ k + 1 and after deleting
any set of at most k − 1 vertices the resulting graph is rigid in Rd. A k-rigid
graph G is called minimally k-rigid if the omission of an arbitrary edge results
in a graph that is not k-rigid. B. Setvatius showed that a 2-rigid graph in R2

has at least 2|V |−1 edges and this bound is sharp. We extend this lower bound
for arbitrary values of k and d and show its sharpness for the cases where k = 2
and d is arbitrary and where k = d = 3. We also provide a sharp upper bound
for the number of edges of minimally k-rigid graphs in Rd for all k.

1 Introduction

A graph G = (V,E) is called k-rigid in Rd or simply [k, d]-rigid if |V | ≥ k + 1 and
for any U ⊆ V with |U | ≤ k − 1 the graph G − U is rigid in Rd. In this context
we will call graphs that are rigid in Rd [1, d]-rigid. Every [k, d]-rigid graph is [l, d]-
rigid by definition for 1 ≤ l ≤ k. We remark that another equivalent definition of
[k, d]-rigidity is also used in the literature. By this equivalent definition a graph is
[k, d]-rigid if |V | ≥ k+1 and the deletion of any set of k−1 vertices results in a graph
that is rigid in Rd. The following well-known lemma shows the equivalence of these
two definitions.

Lemma 1.1. A graph G = (V,E), with |V | ≥ k + 1, is [k, d]-rigid if and only if the
deletion of any set of k − 1 vertices results in a graph that is rigid in Rd.

In this paper we will use both definitions.
G is called minimally [k, d]-rigid if it is [k, d]-rigid but G− e fails to be [k, d]-rigid

for every e ∈ E. G is said to be strongly minimally [k, d]-rigid if it is minimally
[k, d]-rigid and there is no (minimally) [k, d]-rigid graph on the same vertex set with
less edges. If G is minimally [k, d]-rigid but not strongly minimally [k, d]-rigid then it
is called weakly minimally [k, d]-rigid.
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Péter sétány 1/C, Hungary, viktoria@cs.elte.hu
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Section 1. Introduction 2

The investigation of [k, d]-rigid graphs was commenced in the plane by B. Servatius
[11] and was continued recently in higher dimensions by Anderson, Montevallian,
Summers and Yu [9, 10, 12, 13] motivated by multi-agent formations and sensor
networks.

The following theorem gives a formula for the edge number of minimally rigid
graphs.

Theorem 1.2 ([17]). Let G = (V,E) be minimally [1, d]-rigid. If |V | ≥ d + 1 then
|E| = d|V | −

(
d+1
2

)
.

We note that the proof of this theorem follows from the fact, that the edge set of
a minimally [1, d]-rigid graph corresponds to a base of a matroid, called the rigidity
matroid of the graph. Hence it is not surprising that the edge sets of minimally [1, d]-
rigid graphs on the same node set have the same cardinality. However, as we will see
later, this is not true for [k, d]-rigid graphs when k ≥ 2, there are minimally [k, d]-rigid
graphs for any k ≥ 2 and d ≥ 1 with different edge numbers, that is, the set of weakly
minimally [k, d]-rigid graphs is not empty for any d if k ≥ 2.

To see a simple example consider the case where d = 1. It is well known that G
is rigid in R1 if and only if G is connected. Hence G is minimally [k, 1]-rigid if and
only if it is minimally k-connected. It is easy to construct minimally k-connected
graphs with different edge-numbers, for example, the complete bipartite graph Kn−k,k
is minimally k-connected with k(n − k) edges and there are k-regular k-connected
graphs that must be minimal and have kn/2 edges.

It was shown by B. Servatius [11] that the smallest possible number of edges in a
[2, 2]-rigid graph is 2|V | − 1 and this bound is sharp. Later, lower and upper bounds
were provided for the edge number of minimally [k, d]-rigid graphs for d = 2 and 3
in [9, 10, 12, 13] for some other values of [k, d]. We summarize these results in the
following theorem.

Theorem 1.3. Let G = (V,E) be a minimally [k, d]-rigid graph. Then

(i) |E| ≥ 2|V | − 1 if k = d = 2 and |V | is sufficiently large. This bound is sharp.

(ii) |E| ≥ 2|V |+ 2 if k = 3, d = 2 and |V | is sufficiently large. This bound is sharp.

(iii) |E| ≥
⌈
k+1
2
|V |

⌉
if k is arbitrary, d = 2 and |V | is sufficiently large.

(iv) |E| = Ω
((
k+d
2

)
n
)

if k is arbitrary and d = 2 or 3.

The main result of the present paper is a sharp upper bound for the number of
edges of minimally [k, d]-rigid graphs for every pair [k, d]. We provide a lower bound
for the number of edges of minimally [k, d]-rigid graphs which is sharp for k = 2 for
all d and for k = 3, d ≤ 3. We also show that weakly minimally [k, d]-rigid graphs
exist for every pair [k, d] and we disprove a conjecture of Summers, Yu and Anderson
[12, 13].
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1.1 Notation 3

1.1 Notation

In this paper, we skip the basic definitions and theorems of rigidity theory. We refer
the reader to the book of Graver et al. [3] for more details.
Rd(G) denotes the d-dimensional rigidity matroid of G. We call an edge of G an M-

bridge if the deletion of e reduces the rank of Rd(G). We call a set of edges C of G an
M-circuit, if C is a circuit (that is, a minimal dependent set) in Rd(G). We shall also
use some standard notation from graph theory. ∆(G) denotes the maximum degree in
G. Kn is the complete graph with n vertices. Cn denotes the cycle on n vertices. We
will use the notation V (Cn) = {v1, . . . , vn} and E(Cn) = {vivi+1 : 1 ≤ i ≤ n} where
vn+1 := v1. C

d
n is the dth power of Cn, or equivalently E(Cd

n) = {vivj : i−d ≤ j ≤ i+d}
where vn+i := vi. Pn denotes the path on n vertices. We will use the notation
V (Pn) = {v1, . . . , vn} and E(Pn) = {vivi+1 : 1 ≤ i ≤ n − 1}. P d

n is the dth power of
Pn, or equivalently E(P d

n) = {vivj : min{1, i− d} ≤ j ≤ max{n, i+ d}}.

2 Preliminaries – Operations preserving rigidity

Constructive characterizations are useful tools in combinatorial rigidity. Even though
we do not have a constructive characterization theorem for the class of rigid graphs
for d ≥ 3 it can be very useful to find operations that preserve rigidity. In this section
we mention some of these operations.

The d-dimensional Henneberg-0 extension, or simply 0-extension on G adds a new
vertex and connects it to d distinct vertices of G. The d-dimensional 1-extension,
or simply 1-extension deletes an edge uw ∈ E, adds a new vertex v and connects it
to u, v and d − 1 other vertices of G. The d-dimensional 0-extension is also called
d-valent vertex addition and the d-dimensional 1-extension is also called d+ 1-valent
edge split.

Theorem 2.1 ([14]). If G is rigid in Rd and G′ is obtained from G by a d-dimensional
0-extension or 1-extension operation then G′ is rigid in Rd.

As d-dimensional 0- and 1-extensions are used when we are in Rd, we will simply
call them 0- and 1-extensions if d is clear from context. It is well known that a graph
is minimally [1, 2]-rigid graph if and only if it can be built up from the graph K2 by
a sequence of 0- and 1-extensions. However, this is not the case for d = 3, moreover
there is no similar constructive characterization result for minimally [1, 3]-rigid graphs.
Although, there are some operations that are known to preserve rigidity in higher
dimensions. In this paper, we will use the following that we call a (d-dimensional)
simplex-based X-replacement. Let d ≥ 2 and let a, b, w1, . . . , wd−2 be a complete
subgraph of G and cd ∈ E an edge which is node-disjoint from the simplex. The d-
dimensional simplex-based X-replacement extension deletes ab, cd, adds a new vertex
v and connects it to a, b, c, d, w1, . . . , wd−2. When d = 2 or 3, we call a d-dimensional
simplex-based X-replacement a 2-dimensional X-replacement or a triangle-based X-
replacement, respectively. It is folklore that these operations preserve rigidity as the
following lemma shows. For completeness, we give a proof to this lemma in the
Appendix.
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Section 3. The effect of coning on [k, d]-rigid graphs 4

Lemma 2.2. Let G be rigid in Rd and let G′ be the result of a d-dimensional simplex-
based X-replacement applied to G. Then G′ is rigid in Rd.

3 The effect of coning on [k, d]-rigid graphs

We shall also use another type of operation that not only preserves rigidity of graph
but augments a [1, d]-rigid graph to a [1, d+ 1]-rigid one. The cone graph of G is the
graph that arises from G by adding a new vertex v and edges vu for every u ∈ V . We
will denote this graph by G ∗ v. The operation that creates the cone graph of G is
called coning.

Theorem 3.1 (Whiteley [15]). A graph G is [1, d]-rigid if and only if the cone graph
G ∗ v is [1, d+ 1]-rigid.

Next, we prove some important consequences of Theorem 3.1 that will be useful
throughout this paper.

Lemma 3.2. Let e ∈ E be an M-bridge in Rd(G). Then e is a M-bridge in Rd+1(G ∗
v).

Proof. We can assume that G is rigid in Rd. (If it is not rigid then we add a minimum
set of edges that makes it rigid and so e is still a bridge.) Then by Theorem 3.1 G ∗ v
is rigid is Rd+1 but (G− e) ∗ v = (G ∗ v)− e is not. Hence e is a bridge in Rd+1(G ∗ v)
as we claimed.

We remark that Theorem 3.1 cannot be generalized to k-rigid graphs. That is, if G
is [k, d]-rigid for some k ≥ 2, then G ∗ v is not necessarily [k, d+ 1]-rigid. For example
Cn is [2, 1]-rigid, but Cn ∗ v (which is the wheel graph with n + 1 vertices) is not
[2, 2]-rigid. However, the following results show that coning can be used to construct
[k, d]-rigid graphs.

Lemma 3.3. Let G be a [k, d+ 1]-rigid graph. Then G is [k + 1, d]-rigid.

Proof. Let G′ be a [1, d + 1]-rigid graph that we obtain from G by deleting k − 1
arbitrary vertices. Suppose, for a contradiction, that there is a vertex u ∈ V (G′) such
that G′ − u is not [1, d]-rigid. Then (G′ − u) ∗ u is not [1, d+ 1]-rigid by Theorem 3.1
which contradicts the [1, d+ 1]-rigidity of G′ ⊆ (G′ − u) ∗ u.

Lemma 3.4. Let k ≥ 2 and d ≥ 1 be integers and let G = (V,E) be a [k − 1, d]-rigid
graph. Then G ∗ v is [k, d]-rigid.

Proof. We need to show that after deleting k−1 vertices G∗v remains [1, d]-rigid. If v
is omitted, then we are done by the [k− 1, d]-rigidity of G. Otherwise, let u1, ..., uk−1
be the omitted vertices. G − {u1, ..., uk−2} is [1, d]-rigid and v is connected to every
neighbor of vk−1. Hence (G ∗ v) − {u1, ..., uk−1} has a subgraph isomorphic to the
[1, d]-rigid graph G− {u1, ..., uk−2} showing that it is [1, d]-rigid.
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Section 4. Lower bounds for the number of edges in [k, d]-rigid graphs 5

4 Lower bounds for the number of edges in [k, d]-

rigid graphs

In this section, we present several lower bounds for the number of edges in [k, d]-rigid
graphs for arbitrary positive integers k and d. Theorem 1.3 (i)-(iii) summarizes the
lower bounds that were known earlier. First we improve (i) and (ii) and extend them
to every dimension d.

Theorem 4.1. If a graph G = (V,E) is [k, d]-rigid with |V | ≥ d2 + d+ k then

|E| ≥ d|V | −
(
d+ 1

2

)
+ (k − 1)d+ max

{
0,

⌈
k − 1− d+ 1

2

⌉}
. (1)

Note that the bound given in (1) coincides with the bounds given in Theorem 1.3
(i)-(ii) for [k, d] = [2, 2], [3, 2] hence it is sharp for these values of k and d. In Sections
6 and 7, we show that this lower bound is sharp for [2, d] where d is arbitrary, and for
[k, d] = [3, 3].

Proof. We prove this theorem by induction on k. For k = 1 the theorem immediately
follows by Theorem 1.2.

Now, let G = (V,E) be a [k, d]-rigid graph for k ≥ 2 with |V | ≥ d2 + d + k and
assume that the theorem is true for k − 1. Let v ∈ V be a node of maximum degree
in G. As G− v is [k − 1, d]-rigid with at least d2 + d+ k − 1 nodes,

|E(G− v)| ≥ d(|V | − 1)−
(
d+ 1

2

)
+ (k − 2)d+ max

{
0,

⌈
k − 2− d+ 1

2

⌉}
by induction. Using this inequality, we have

|E| ≥ d(|V | − 1)−
(
d+ 1

2

)
+ (k − 2)d+ max

{
0,

⌈
k − 2− d+ 1

2

⌉}
+ ∆(G)

= d|V | −
(
d+ 1

2

)
+ (k − 1)d+ max

{
0,

⌈
k − 2− d+ 1

2

⌉}
+ (∆(G)− 2d)

Here, max
{

0,
⌈
k − 2− d+1

2

⌉}
= 0 = max

{
0,
⌈
k − 1− d+1

2

⌉}
if k − 1 ≤ d+1

2
and

max
{

0,
⌈
k − 2− d+1

2

⌉}
+1 =

⌈
k − 2− d+1

2

⌉
+1 =

⌈
k − 1− d+1

2

⌉
= max

{
0,
⌈
k − 1− d+1

2

⌉}
if k−1 > d+1

2
. Therefore, we need to prove that ∆(G) ≥ 2d for all k and ∆(G) ≥ 2d+1

also holds if k − 1 > d+1
2

.
To prove that ∆(G) ≥ 2d for all k, let us observe that if a graph H = (V ′, E ′)

is [1, d]-rigid with |V ′| ≥ d2 + d + 2 then ∆(H) ≥ 2d. (To see this suppose that

∆(H) ≤ 2d− 1. Then |E ′| ≤ |V ′|d− |V
′|

2
< |V ′|d−

(
d+1
2

)
which contradicts Theorem

1.2.) Since a [k, d]-rigid graph is also [1, d]-rigid and we have |V | ≥ d2 + d+ k, we get
that ∆(G) ≥ 2d. But then

|E| ≥ d|V | −
(
d+ 1

2

)
+ (k − 1)d+ max

{
0,

⌈
k − 2− d+ 1

2

⌉}
and hence |E| > d|V | if k − 1 > d+1

2
. Therefore we get ∆(G) ≥ 2d+ 1 if k − 1 > d+1

2

as we wanted.
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Section 5. Upper bound for the number of edges in minimally [k, d]-rigid graphs 6

The following theorem gives a better lower bound if k is large compared to d. This
result extends Theorem 1.3 (iii) for higher dimensions.

Theorem 4.2. Let k ≥ d+2 and let G = (V,E) be a [k, d]-rigid graph with |V | ≥ d+k.
Then |E| ≥

⌈
d+k−1

2
|V |

⌉
.

Proof. If we delete k − 1 neighbors of a node v we get a [1, d]-rigid graph with at
least d + 1 nodes. Since the minimum degree of such a graph is at least d, we get
dG(v) ≥ k − 1 + d. Thus the minimum degree in G is at least k − 1 + d hence
|E| ≥

⌈
d+k−1

2
|V |

⌉
.

5 Upper bound for the number of edges in mini-

mally [k, d]-rigid graphs

In this section, we give an upper bound for the number of edges of minimally [k, d]-
rigid graphs. First we prove the following lemma.

Lemma 5.1. Suppose that G is a minimally [k, d]-rigid graph. Then G is independent
in Rd+k−1(G).

Proof. By the minimality of G, for each e, there is a set Ue ⊆ V such that |Ue| = k−1
and G− Ue − e is not rigid. (G− Ue is rigid by the [k, d]-rigidity of G.) Then e is an
M-bridge in Rd(G − Ue). By Lemma 3.2 e is an M-bridge in Rd+k−1((. . . (G ∗ v1) ∗
. . . ) ∗ vk−1) and so it is an M-bridge in Rd+k−1(G).

By combining Lemma 5.1 and Theorem 1.2 we immediately get the following upper
bound.

Theorem 5.2. Let G = (V,E) be a minimally [k, d]-rigid graph. Then

|E| ≤ (d+ k − 1)|V | −
(
d+ k

2

)
.

The sharpness of this bound for d ≥ 2 will be proved later in Lemma 8.4. As a
graph is [k, 1]-rigid if and only if it is k-connected Mader’s sharp upper bound for the
edge number of minimally k-connected graphs can be applied for the edge number of
minimally [k, 1]-rigid graphs, see [8]. This gives us the following.

Theorem 5.3. Let G = (V,E) be a minimally [k, 1]-rigid graph with |V | ≥ 3k − 1.
Then

|E| ≤ k|V | − k2

and this bound is sharp.
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Section 6. Minimally [2, d]-rigid graphs 7

6 Minimally [2, d]-rigid graphs

In this section, we consider the case where k = 2. First we show that the lower
bound given in Theorem 4.1 is sharp for k = 2 in any dimension and next we disprove
Conjecture 6.3.

Consider graph Cd
n and its subgraph Ld induced by vertices vn−d+1, . . . , vn. (Note

that Ld is isomorphic to Kd.) H
d
n,2 = Cd

n − E(Ld) denotes the graph we get from Cd
n

after deleting the edge set of Ld. First we prove that Hd
n,2 is [2, d]-rigid.

Lemma 6.1. Hd
n,2 is [2, d]-rigid if n ≥ 3d.

Proof. Let vi ∈ V (Hd
n,2) be arbitrary. We will prove that Hd

n,2 − vi is [1, d]-rigid
by constructing it from a subgraph isomorphic to Kd using (d-dimensional) 0- and
1-extensions. (See Figure 1.)

First suppose that vi 6∈ V (Ld). For simplicity, we can assume that bn−d+1
2
c ≤ i ≤

n−d. Since n ≥ 3d we have i ≥ d+1. Vertices v1, . . . , vd induce a subgraph isomorphic
to Kd hence we can add vd+1, . . . , vi−1 in this order using 0-extensions which connect
vj to vertices vj−d+1, . . . , vj−1 for every d+1 ≤ j ≤ i−1. Therefore v1, . . . , vi−1 induce
a [1, d]-rigid subgraph.

Now we will add vertices vi+1, . . . , vi+d in this order using 0-extensions. If j ≤ n−d
then the extension connects vj to vertices vj−d, . . . , vi−1, vi+1, . . . , vj−1 and to v1. Note
that vjv1 is not an edge of Hd

n,2− vi if j ≤ n− d. We will apply 1-extensions on these
extra edges. If j > n− d then it will be connected to vj−d, . . . , vi−1, vi+1, . . . , vn−d and
to v1, . . . , vd−n+j all of which are edges of Hd

n,2 − vi.
From now on we will use 1-extensions only for adding vertices vi+d+1, . . . , vn in this

order. When adding vj for j ≤ n − d we apply the 1-extension on edge vj−dv1 that
connects vj to vj−d+1, . . . , vj−1. In this case we remove the extra edge vj−dv1 and add
a new one vjv1. If j > n − d then similarly we apply the 1-extension on edge vj−dv1
but we connect vj to vj−d, . . . , vn−d and to v2, . . . , vd−n+j and all of these edges are
present in Hd

n,2 − vi. In this case the number of extra edges decreased by one.
If v ∈ V (Ld), then it is easy to see that Hd

n,2 has a subgraph that can be built up
using 0-extensions only (we first build up the subgraph induced by vertices of Hd

n,2

and then we add the nodes in V (Ld)− v).

If G = (V,E) is [2, d]-rigid then |E| ≥ d|V |−
(
d+1
2

)
+d = d|V |−

(
d
2

)
if |V | ≥ d2+d+2

by Theorem 4.1. |E(Hd
n,2)| = dn −

(
d
2

)
since Cd

n has dn edges if n ≥ 2d + 1 and the
deleted edges form a complete subgraph with d vertices. Hence by Lemma 6.1 we get
the main result of this section:

Theorem 6.2. If G = (V,E) is a strongly minimally [2, d]-rigid graph with |V | ≥
d2 + d+ 2 then |E| = d|V | −

(
d
2

)
.

6.1 A counterexample for a conjecture of Summers et al.

B. Servatius proved a constructive characterization theorem for the class of strongly
minimally [2, 2]-rigid graphs that only uses 1-extensions in [11]. As far as we know
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6.1 A counterexample for a conjecture of Summers et al. 8

v7

v6

v5

v4

v2

v1

v3

v9

v8

v11

v10

v12

v13

(a) Add v5 with a 0-extension.

v7

v8

v5

v4

v2

v1

v3

v9

v8

v11

v10

v12

v13

(b) Add v7, v8, v9 with 0-
extensions by adding the extra
(dotted red) edges vjv1 for
7 ≤ j ≤ 9.

v7

v8

v5

v4

v2

v1

v3

v9

v8

v11

v10

v12

v13

(c) Add v10 with 1-extension on
the (crossed red) extra edge v7v1
by adding the extra (dotted red)
edge v10v1

v7

v8

v5

v4

v2

v1

v3

v9

v8

v11

v10

v12

v13

(d) Add v11, v12, v13 with 1-
extensions on the (red) edges
v8v1, v9v1, v10v1, respectively.

Figure 1: Building up C3
13 − E(L3)− v5 using Henneberg operations.

finding an inductive construction for the class of minimally [2, 2]-rigid graphs is an
open problem. It was observed in [13] that the 2-dimensional X-replacement preserves
minimally [2, 2]-rigidity in specific cases. Summers, Yu and Anderson conjectured
that the 3-valent vertex addition and the 2-dimensional X-replacement operations
are sufficient to build up every weakly minimally [2, 2]-rigid graph with at least nine
vertices.

Conjecture 6.3 ([12, 13]). Let G = (V,E) be a minimally [2, 2]-rigid graph with at
least nine vertices. Then there exists either (a) a degree 4 vertex on which a reverse
X-replacement operation can be performed to obtain a weakly minimal [2, 2]-rigid graph
or (b) there exists a degree three vertex on which a reverse 3-valent vertex addition
can be performed to obtain a weakly minimally [2, 2]-rigid graph.
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Section 7. Strongly minimally [3, 3]-rigid graphs 9

Now we disprove Conjecture 6.3 by constructing minimally [2,2]-rigid graphs that
do not have a vertex at which the reverse degree 3 vertex addition or the reverse
X-replacement can be performed. To give such an example we will need the following
simple observation.

We define an operation called K4-extension that preserves [2, 2]-rigidity. Let G =
(V,E) be a graph with |V | ≥ 4, and let v1, v2, v3, v4 ∈ V be four distinct vertices.
The K4-extension adds four new vertices u1, u2, u3, u4 to G, connects vi to ui for every
1 ≤ i ≤ 4 and uk to ul for every pair 1 ≤ k, l ≤ 4.

Claim 6.4. If G = (V,E) is [2, 2]-rigid then G′ = (V ′, E ′) obtained by a K4-extension
is also [2, 2]-rigid. Furthermore G′ − e is not [2, 2]-rigid for any e ∈ E ′ − E.

Proof. Clearly, G′ − v is rigid for any v ∈ V ′.
Consider the graph G′ − e for some e ∈ E ′ − E. Let ui ∈ V ′ − V be such that e

is not incident to ui. We claim that G′′ = G′ − ui − e is not rigid. G′′ consist of G
and a set of three vertices that is incident to five edges only. Hence there are only
2|V |−3+5 = 2|V ′|−4 independent edges in G′′ thus G′′ is not rigid as we claimed.

Now letG0 = (V0, E0) be a [2, 2]-rigid graph with V0 ≥ 4. Apply some K4-extensions
to vertices of V0, let the resulting graph be G1 = (V1, E1) (see Figure 2). Suppose
that every vertex in V0 is incident to at least five edges from E1 − E0. After the
extensions delete edges from E1 (if necessary) to obtain a minimally [2, 2]-rigid graph
G2 = (V1, E2). By Claim ?? deleting any edge from E1 − E0 results in a graph
that is not [2, 2]-rigid hence the minimum degree in G2 is four and all the degree
four vertices are in V1 − V0. Clearly we cannot perform the reverse degree 3 vertex
addition in G2. Every vertex in V1 − V0 is contained in a K4 subgraph of G2 and
every reverse X-replacement on one of these vertices creates a parallel pair of edges.
Thus no reverse X-replacement operation preserves minimal [2, 2]-rigidity of G2. This
disproves Conjecture 6.3.

We remark that for any positive integer t graph G1 can be constructed such that
every vertex in V0 is incident to at least t edges from E1 − E0. Hence the minimum
degree in G2 is four and the vertices in V0 have degree at least t. Since t can be
arbitrarily large this example shows that it may not be easy to find a constructive
characterization that only uses operations that add low-degree vertices.

7 Strongly minimally [3, 3]-rigid graphs

In this section, we show that the lower bound given in Theorem 4.1 is sharp when
k = d = 3.

Lemma 7.1. C3
n is [3, 3]-rigid if n ≥ 9.

Proof. Let vi, vj ∈ V (C3
n) be arbitrary. We will prove that C3

n − {vi, vj} is [1, 3]-
rigid by constructing it from a subgraph isomorphic to K4 using 3-dimensional 0- and
1-extensions and simplex-based X-replacements.
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d c

ba

Figure 2: A counterexample H for Conjecture 6.3 that we get by performing five K4-
extensions on the subgraph induced by vertices a, b, c, d. K4 is minimally [2, 2]-rigid
hence Gc is [2, 2]-rigid by Claim 6.4. It can be easily seen that deleting any of the
edges bc, cd, db from graph Gc − a results in a non-rigid graph. By symmetry the
deletion of any edge of the starting graph results in a graph that is not [2, 2]-rigid.
This implies that Gc is minimally [2, 2]-rigid.

We can assume that j = n and i ≥ dn
2
e. n ≥ 9 hence i ≥ 5 and as in the proof of

Lemma 6.1 it can be seen easily that the subgraph induced by v1, . . . , vi−1 is rigid.
Let ` = n − i − 1. We have to perform ` more extensions to add the remaining

vertices. We split the proof into two cases depending on `.
If 1 ≤ ` ≤ 3, we add vi+1 and connect it to v1, vi−2, vi−1. If ` ≥ 2 then we add vi+2

and connect it to v1, vi−1, vi+1. If ` = 3 then we can add vi+3 performing a 1-extension
on edge vi+1v1 and connecting vi+3 to vi+2 and v2.

If ` ≥ 4 then we will need a simplex-based X-replacement on edges v2vn−3, v1vn−4.
In this case we will add vertices vi+1, vi+2, vi+3 by 0-extensions, vi+4, . . . , vn−2 by
1-extensions. We will perform these operations such that after adding vn−2 edges
v2vn−3, v1vn−2, v1vn−4, vn−2vn−4 will be present in the resulting graph.

Let σ : Z→ {1, 2} be a function with σ(t) := 2 if t ≡ `− 2 (mod 3) and σ(t) := 1
otherwise. We add vi+1 with 0-extension that connects it to vi−2, vi−1, vσ(1). Then add
vi+2 with a 0-extension that connects it to vi−1, vi+1, vσ(2). Next, we add vi+3 with a
0-extension that connects it to vi−1, vi−2, vσ(3). Then we add vi+m for 4 ≤ m ≤ `− 1
in sequence with 1-extension on vi+m−3vσ(m−3) that connects it to vi+m−2, vi+m−1.
Finally, we add vn−1 with a simplex-based X-replacement on edges v2vn−3, v1vn−4 as
vn−2v1vn−1 is a triangle.

We have proved that C3
n is [3, 3]-rigid. It is easy to see that C3

n has 3n edges if
n ≥ 7. These together with Theorem 4.1 gives the following:

Theorem 7.2. If G = (V,E) is a strongly minimally [3, 3]-rigid graph with |V | ≥ 15,
then |E| = 3|V |.
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v6

v13

v1

v2
v3

v4

v5

v7

v8

v9
v10

v11

v12

(a) Add u5 with a 0-extension.

v6

v13

v1

v2
v3

v4

v5

v7

v8

v9
v10

v11

v12

(b) Add v7, v8, v9 with 0-
extensions by adding extra edges
vi+mvσ(i).

v6

v13

v1

v2
v3

v4

v5

v7

v8

v9
v10

v11

v12

(c) Add v10 and v11 with 1-
extensions on edges v7v2, v8v1, re-
spectively. By performing the
first of these extensions we create
the extra edge v10v2.

v6

v13

v1

v2
v3

v4

v5

v7

v8

v9
v10

v11

v12

(d) Add v12 with triangle-
based X-replacement on edges
v2v10, v1v9. (Note that v1v9v11 is
a triangle.)

Figure 3: Building up C3
12 − {u, v}.

8 Higher dimensions revisited

It remains open whether the lower bounds given in Theorem 4.1 and 4.2 are tight for
some other pairs [k, d] different from [2, d], [3, 2] and [3, 3]. This question seems to
be more complicated for larger values of k and d as there are just a few operations
known that preserve rigidity in higher dimensions.

We note that a proof similar to that of Lemma 7.1 works if one wants to prove
that Cd

n is [3, d]-rigid for any other d ≥ 4. As the edge number of these graphs does
not coincide with the bound given in Theorem 4.1, we skip the details. However,
we conjecture that the lower bound given in Theorem 4.1 is sharp for k = 3 for
all d ≥ 3. To formulate the conjecture more precisely, recall that Ld denotes the
complete subgraph of Cd

n spanned by vertices vn−d+1, . . . , vn. Let L′d denote the graph
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that we get from Ld by deleting the Hamiltonian cycle that consists of edges vivi+1 for
n−d+1 ≤ i ≤ n−1 and vn−d+1vn. Note that L′3 is the empty graph on three vertices.
Lemma 7.1 states that Cd

n − L′d is strongly minimally [3, 3]-rigid. |E(Cd
n − L′d)| =

dn−
(
d
2

)
+ d = dn−

(
d+1
2

)
+ 2d which motivates the following conjecture.

Conjecture 8.1. Cd
n−L′d is a strongly minimally [3, d]-rigid graph if n is sufficiently

large. Thus the lower bound given in Theorem 4.1 is sharp for k = 3 and d ≥ 3.

Now we turn to the case where k ≥ d+ 2. Our conjecture is that the bound given
in Theorem 4.2 is tight in these cases. We formulate this conjecture precisely only for
d = 2 and k = 4 and 5.

Let C
[1,2,4]
n be the graph that we get from Cn by adding the edges between the nodes

with distances 2 and 4 and let C
[1,2, 52 ]
n be the graph that we get from Cn by adding the

edges between the nodes with distance 2 and between every second pair of nodes with
distance 5 (in this case, we can complete the graph only with some different edges if
n is odd: the last two node pairs will have distance 2 and we connect all distance 5
neighbors to the first node.)

Conjecture 8.2. C
[1,2, 52 ]
n is a strongly minimally [2, 4]-rigid graph and C

[1,2,4]
n is a

strongly minimally [2, 5]-rigid graph if n is sufficiently large. Thus the lower bound
given in Theorem 4.2 is sharp for d = 2 and k = 4 and 5.

8.1 Examples for minimally [k, d]-rigid graphs

The question whether weakly minimally [k, d]-rigid graphs exist for every pair [k, d]
can still be solved without knowing the edge count of strongly minimally [k, d]-rigid
graphs. There are examples for weakly minimally [2, 2]-rigid graphs in [11, 12, 13] but
the existence of weakly minimally [k, d]-rigid graphs for other values of k and d was
open so far. In this section, we will give examples for minimally [k, d]-rigid graphs
with the same number of vertices but with different number of edges. Such a pair
of graphs shows that the graph with the larger number of edges has to be weakly
minimally [k, d]-rigid.

Let Hd
n,i denote the cone graph of Hd

n,(i−1) for i ≥ 3. (For the definition of Hd
n,2 see

Section 6.) By Lemma 3.4 and Lemma 6.1, we can get get a minimally [k, d]-rigid
graph by deleting some edges of Hd

t,k (to obtain minimality).

Corollary 8.3. Let n, d and k be three positive integers such that t ≥ 3d and k ≥ 2.
Then there exists a minimally [k, d]-rigid graph Hd

t,k,reduced with n = t+ k− 2 vertices

and at most (d+ k − 2)n−
(
d
2

)
+
(
k−2
2

)
− (d+ k − 2)(k − 2) edges.

We shall use Lemma 3.3 in the proof of the following lemma that also shows that
the upper bound given in Theorem 5.2 is sharp for d ≥ 2.

Lemma 8.4. Let t ≥ 1, k ≥ 1 and d ≥ 2 be three integers. There exists a minimally
[k, d]-rigid graph with n = t+ k + d− 1 vertices and (k + d− 1)n−

(
k+d
2

)
edges.
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Proof. Define graph Y c
t as follows for any integers c and t. Take the disjoint union of an

independent set It of t nodes (on the vertex set {v1, . . . , vt}) and a complete graph Kc

(on the vertex set {w1, . . . , wc}) and add edges viwj for every pair 1 ≤ i ≤ t, 1 ≤ j ≤ c
(see Figure 4).

I6

K3

Figure 4: Y 3
6 .

Y 1
t is minimally [1, 1]-rigid as it is a tree. Hence by Theorem 3.1 we get that Y c

t is
minimally [1, c]-rigid as we get this graph after using the coning operation c− 1 times
on Y 1

t . Thus Y k+d−1
t is [1, k + d− 1]-rigid and hence it is [k, d]-rigid by Lemma 3.3.

Next we show that Y k+d−1
t is minimally [k, d]-rigid. We have seen this for k = 1.

Now let k, d ≥ 2. Let uv ∈ E(Y k+d−1
t ) be an arbitrary edge. By symmetry, we can

assume that u, v ∈ {v1, v2, w1, w2}. Observe that after the omission of the k−1 nodes
vd+1, . . . , vk+d+1 from Y k+d−1

t we get Y d
t that is a minimally [1, d]-rigid graph as we

observed before. Since d ≥ 2, uv ∈ E(Y d
t ) also holds. But Y d

t − uv is not [1, d]-rigid
by the minimally [1, d]-rigidity of Y d

t , hence Y k+d−1
t −uv is not [k, d]-rigid. Therefore,

Y k+d−1
t is minimally [k, d]-rigid.
Clearly, |V (Y k+d−1

t )| = t+k+d−1 =: n and |E(Y k+d−1
t )| =

(
k+d−1

2

)
+(k+d−1)t =

(k + d− 1)(t+ k + d− 1)− (k + d− 1)2 +
(
k+d−1

2

)
= (k + d− 1)n−

(
k+d
2

)
.

Some other examples for minimally [k, d]-rigid graphs can be found in a preliminary
version of this paper (see [6]). Now, we are ready to prove the following theorem.

Theorem 8.5. Let d and k be positive integers with k ≥ 2. Then there are weakly
minimally [k, d]-rigid graphs, that is, there are minimally [k, d]-rigid graphs that are
not strongly minimally [k, d]-rigid.

Proof. By Corollary 8.3, there exists a minimally [k, d]-rigid graph on n nodes with at
most (d+k−2)n−

(
d
2

)
+
(
k−2
2

)
−(d+k−2)(k−2) edges if n ≥ 3d+k−2. By Lemma 8.4,

Y k+d−1
n−k−d+1 is a minimally [k, d]-rigid graph on n nodes with at most (k+d−1)n−

(
k+d
2

)
edges if n ≥ k+d. Since (d+k−2)n−

(
d
2

)
+
(
k−2
2

)
−(d+k−2)(k−2) < (k+d−1)n−

(
k+d
2

)
if n is sufficiently large, Y k+d−1

n−k−d+1 is a weakly minimally [k, d]-rigid graph for k, d ≥ 2
if n is sufficiently large.

9 Concluding remarks

The results presented in this paper are about the edge numbers of minimally [k, d]-
rigid graphs. Similar questions were asked about minimally globally [k, d]-rigid graphs
in [10, 12] where G = (V,E) is globally [k, d]-rigid if |V | ≥ k+1 and after deleting any
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set of at most k− 1 vertices the resulting graph is globally rigid in Rd. Other version
of the problem is [k, d]-edge-rigidity (and global [k, d]-edge-rigidity) where instead of
any set of at most k − 1 vertices we delete any set of at most k − 1 edges of the
graph. Proving similar results on these variants of the problem is a possible direction
of future research. Some of our methods (for example our lower bound for large k in
Theorem 4.2) can be used easily for these graph classes. For example, as rigidity is a
necessary condition for global rigidity, all our lower bounds are valid for globally [k, d]-
rigid graphs. We note that a sharp upper bound for the edge number of minimally
[2,2]-edge-rigid graphs was recently given by Jordán [5].

A different direction is to characterize inductively the class of graphs mentioned
above for some values of [k, d] which seems to be an interesting and difficult open
question.
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10 Appendix

In this section, we prove Lemma 2.2. In the proof we will use special (non-generic)
realizations of graphs. Again, we refer to the book of Graver et. al [3] for definitions.

It is well-known (as it is used for the proof of the Henneberg-1 part of Theorem
2.1) that for a 0-extension we do not really need a generic realization, that is, the
following lemma holds for not necessarily generic frameworks.

Lemma 10.1. Let (G, p) be independent in the d-dimensional rigidity matroid and let
G′ be the graph that arises from G by a d-dimensional 0-extension such that V (G′) =
V (G) + v and let p′ be a realization of G′ in Rd such that p(u) = p′(u) for every
u ∈ V . Suppose that p′(v) and its d neighbors have full affine span. Then (G′, p′) is
independent in the d-dimensional rigidity matroid.

Now we prove Lemma 2.2.
Proof of Lemma 2.2. We may assume that G is minimally rigid in Rd by deleting

some redundant edges of G other than those we use for the extension. Let (G, p)
be a generic realization of G. Let S be the hyperplane that contains the (d − 1)
dimensional simplex spanned by p(a), p(b), p(w1), . . . , p(wd−2) and let ` be the line of
p(c), p(d). Put p(v) = S∩ ` and let G0 = (V +v, E∪{va, vc}∪{vwi : 1 ≤ i ≤ d−2}).
By Lemma 10.1, the framework (G0, p) is independent and hence minimally rigid.

Now we construct framework (G′, p) from (G0, p) by replacing edges ab and cd
with vb and vd, respectively. We shall prove that (G′, p) is rigid. First add vb, let
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G1 = G0 + vb. There is a unique M-circuit in (G1, p) in the d-dimensional rigid-
ity matroid which is the Kd+1 induced by v, a, b, w1, . . . , wd−2. (Note that points
p(v), p(a), p(b), p(w1), . . . , p(wd−2) lie on a hyperplane.) Thus with the notation G1 −
ab = G2 framework (G2, p) is independent.

Similarly, with the notation G3 = G2 + vd the unique M-circuit in framework
(G3, p) in the the d-dimensional rigidity matroid is the triangle spanned by v, c, d.
Again, with removing cd we get an independent framework, equivalently (G′, p) is
rigid as we claimed.
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