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H–1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587–4451.

Generic global rigidity of
body-hinge frameworks

Tibor Jordán, Csaba Király, and
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Generic global rigidity of body-hinge frameworks

Tibor Jordán?, Csaba Király??, and Shin-ichi Tanigawa? ? ?

Abstract

A d-dimensional body-hinge framework is a structure consisting of rigid
bodies in d-space in which some pairs of bodies are connected by a hinge,
restricting the relative position of the corresponding bodies. The framework is
said to be globally rigid if every other arrangement of the bodies and their hinges
can be obtained by a congruence of the space. The combinatorial structure of a
body-hinge framework can be encoded by a multigraph H, in which the vertices
correspond to the bodies and the edges correspond to the hinges. We prove that
a generic body-hinge realization of a multigraph H is globally rigid in Rd, d ≥ 3,
if and only if (

(
d+1
2

)
− 1)H − e contains

(
d+1
2

)
edge-disjoint spanning trees for

all edges e of (
(
d+1
2

)
− 1)H. (For a multigraph H and integer k we use kH

to denote the multigraph obtained from H by replacing each edge e of H by
k parallel copies of e.) This implies an affirmative answer to a conjecture of
Connelly, Whiteley, and the first author.

We also consider bar-joint frameworks and show, for each d ≥ 3, an infinite
family of graphs satisfying Hendrickson’s well-known necessary conditions for
generic global rigidity in Rd (that is, (d+1)-connectivity and redundant rigidity)
which are not generically globally rigid in Rd. The existence of these families
disproves a number of conjectures, due to Connelly, Connelly and Whiteley, and
the third author, respectively.

1 Introduction

A d-dimensional framework is a pair (G, p), where G = (V,E) is a graph and p is a map
from V to Rd. We consider the framework to be a straight line realization of G in Rd.
Two realizations (G, p) and (G, q) of G are equivalent if ||p(u)−p(v)|| = ||q(u)−q(v)||
holds for all pairs u, v with uv ∈ E, where ||.|| denotes the Euclidean norm in Rd.
Frameworks (G, p), (G, q) are congruent if ||p(u)− p(v)|| = ||q(u)− q(v)|| holds for all
pairs u, v with u, v ∈ V .
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Section 1. Introduction 2

We say that (G, p) is globally rigid in Rd if every d-dimensional framework which
is equivalent to (G, p) is congruent to (G, p). The framework (G, p) is rigid if there
exists an ε > 0 such that, if (G, q) is equivalent to (G, p) and ||p(u) − q(u)|| < ε for
all v ∈ V , then (G, q) is congruent to (G, p). Intuitively, this means that if we think
of a d-dimensional framework (G, p) as a collection of bars and joints where points
correspond to joints and each edge to a rigid (i.e. fixed length) bar joining its end-
points, then the framework is globally rigid if its bar lengths determine the realization
up to congruence, and it is rigid if it has no non-trivial continuous deformations that
preserve all bar lengths, see e.g. [27]. It is a hard problem to decide if a given
framework is rigid or globally rigid. Indeed Saxe [17] showed that it is NP-hard
to decide if even a 1-dimensional framework is globally rigid and Abbot [1] showed
that the rigidity problem is NP-hard for 2-dimensional frameworks. These problems
become more tractable, however, if we consider generic frameworks i.e. frameworks
in which there are no algebraic dependencies between the coordinates of the vertices.

It is known that the rigidity of frameworks in Rd is a generic property, that is,
the rigidity of (G, p) depends only on the graph G and not the particular realization
p, if (G, p) is generic (see [27]). We say that the graph G is rigid in Rd if every
(or equivalently, if some) generic realization of G in Rd is rigid. The problem of
characterizing when a graph is rigid in Rd has been solved for d = 1, 2, and is a major
open problem for d ≥ 3.

A similar situation holds for global rigidity. Gortler, Healy and Thurston [8] proved
that the global rigidity of d-dimensional frameworks is a generic property for all d ≥ 1.
We say that a graph G is globally rigid in Rd if every (or equivalently, if some) generic
realization of G in Rd is globally rigid. Hendrickson [9] proved two key necessary
conditions for the global rigidity of a graph. We say that G is redundantly rigid in Rd

if removing any edge of G results in a rigid graph.

Theorem 1.1 ([9]). Let G be a globally rigid graph in Rd. Then either G is a complete
graph on at most d+ 1 vertices, or G is
(i) (d+ 1)-connected, and
(ii) redundantly rigid in Rd.

He conjectured that the necessary conditions of Theorem 1.1 are also sufficient to
imply the global rigidity of the graph in Rd. It is indeed so for d = 1, 2. It is not
hard to verifiy that a 1-dimensional generic framework (G, p) is globally rigid if and
only if either G is the complete graph on two vertices or G is 2-connected. The
characterization for d = 2 is as follows.

Theorem 1.2 ([10]). Let G be a graph. Then G is globally rigid in R2 if and only
if either G is a complete graph on two or three vertices, or G is 3-connected and
redundantly rigid in R2.

However, there exist counterexamples to his conjecture for d ≥ 3, and characterizing
the globally rigid graphs in three-space and in higher dimensions remains another
major open problem in rigidity theory.

In this paper, we shall give a combinatorial characterization of the d-dimensional
global rigidity of a special class of graphs, called body-hinge graphs, which represent
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Section 1. Introduction 3
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Figure 1: (a) A body-hinge framework in R3, (b) the underlying graph H, and (c) the
body-hinge graph GH .

generic body-hinge frameworks. A d-dimensional body-hinge framework is a structural
model consisting of rigid bodies and hinges. Each hinge is a (d−2)-dimensional affine
subspace that joins some pair of bodies. The bodies are free to move continuously in Rd

subject to the constraint that the relative motion of any two bodies joined by a hinge is
a rotation about the hinge. The framework is rigid if every such motion preserves the
distances between all pairs of points belonging to different rigid bodies, i.e. the motion
extends to an isometry of Rd. In the underlying graph of the framework the vertices
correspond to the bodies and the edges correspond to the hinges. See Figure 1(a),(b).
We can obtain an equivalent bar-joint framework by replacing each body by a bar-
joint realization of a large enough complete graph in such a way that two bodies joined
by a hinge share d − 1 joints. The graph of such a bar-joint framework is a body-
hinge graph. More precisely, for a multigraph H, the (d-dimensional) body-hinge graph
induced by H, denoted by GH , is obtained from H by replacing each vertex v ∈ V
by a complete graph B(v) (the body of v) on (d− 1)dH(v) + d+ 1 vertices, in which
d + 1 vertices inducing a Kd+1 form the core C(v) of the body and the remaining
vertices are partitioned into sets of d − 1 vertices so that each set is assigned to one
edge incident with v. (We use dH(v) to denote the degree of vertex v in H.) For
each edge e = uv the bodies B(u) and B(v) share the d − 1 vertices assigned to e
in these bodies. This set of d− 1 vertices assigned to e, denoted by H(e), is a hinge
between the corresponding bodies. The cores of the bodies are parwise disjoint. See
Figure 1(c).

Body-hinge frameworks (and body-hinge graphs) are extensively studied objects in
rigidity theory with various applications. Among others, they can be used to investi-
gate the flexibility of molecules, due to the fact that molecular conformations can be
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1.1 Families of not globally rigid graphs 4

modeled by body-hinge frameworks with certain additional geometric constraints, see
[14, 27]. Tay [21, 22] and Whiteley [25] characterized rigid d-dimensional body-hinge
graphs in terms of their underlying multigraphs.

For a multigraph H and integer k we use kH to denote the multigraph obtained
from H by replacing each edge e of H by k parallel copies of e.

Theorem 1.3 ([21, 22], [25]). Let H = (V,E) be a multigraph. Then the body-
hinge graph GH is rigid in Rd if and only if (

(
d+1
2

)
− 1)H contains

(
d+1
2

)
edge-disjoint

spanning trees.

Body-bar frameworks (and their graphs) are equally important in rigidity theory.
Roughly speaking, they consist of full-dimensional rigid bodies connected by disjoint
bars. Tay [20, 23] provided a characterization of rigid d-dimensional body-bar graphs
and a recent result of Connelly, Jordán, and Whiteley [5] gives a combinatorial char-
acterization of globally rigid body-bar graphs in Rd, for all d ≥ 1. In their paper they
also conjectured a sufficient condition for the global rigidity of body-hinge graphs.
We give an affirmative answer to their conjecture. Furthermore, we show that the
conjectured sufficient condition is also necessary. Our main result is as follows.

Theorem 1.4. Let H = (V,E) be a multigraph and d ≥ 3. Then the body-hinge graph
GH is globally rigid in Rd if and only if (

(
d+1
2

)
− 1)H − e contains

(
d+1
2

)
edge-disjoint

spanning trees for all edges e of (
(
d+1
2

)
− 1)H.

Note that the two-dimensional characterization is slightly different, see Theorem
5.1.

1.1 Families of not globally rigid graphs

One of the important steps towards a possible characterization of global rigidity in
higher dimensions is to identify new necessary or sufficient conditions for global rigid-
ity. In particular, finding more counterexamples to Henderickson’s conjecture is a
challenging problem. We say that a graph G is an H-graph in Rd if it satisfies Hen-
drickson’s necessary conditions in Rd (c.f. Theorem 1.1) but it is not globally rigid in
Rd. For d = 3, Connelly [2] showed that the complete bipartite graph K5,5 is an H-
graph. He presented H-graphs for all d ≥ 3 as well. These H-graphs are all complete
bipartite graphs on

(
d+2
2

)
vertices. Frank and Jiang [7] found two more (bipartite)

H-graphs in R4 and infinite families of H-graphs in Rd for d ≥ 5. Some of their H-
graphs in Rd, d ≥ 5, contain the complete graph Kd+1 as a subgraph. We remark
that a d-dimensional H-graph G can be turned into a d + 1-dimensional H-graph by
applying the coning operation, which adds a new vertex v to G along with all edges
from v to the vertex set of G [6, 7].

Connelly conjectured that K5,5 is the only H-graph in R3 [4, 6]. Connelly and
Whiteley [6] conjectured that there exist no H-graphs in Rd containing Kd+1 as a
subgraph. They also conjectured that the number of H-graphs is finite in Rd, for all
d ≥ 3. Although the above mentioned examples [7] disproved the latter conjectures
for d ≥ 5, they remained open in the three- and four-dimensional cases. Tanigawa
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Section 2. Preliminaries 5

[19] noted that every body-hinge graph which is rigid in Rd satisfies Hendrickson’s
necessary conditions and contains Kd+1 as a subgraph. This motivated him to con-
jecture that a body-hinge graph is globally rigid in Rd if and only if it is rigid in Rd.
As a by-product of Theorem 1.4 we shall disprove (the remaining cases of) each of
these conjectures by constructing various infinite families of H-graphs for all d ≥ 3.
Some of these families are in fact body-hinge graphs.

We close this section by analysing one of our 3-dimensional H-graphs which will
also illustrate some of our arguments. The graph G of Figure 2a is 4-connected and
minimally rigid in R3. Minimal rigidity can be verified by using some of the well-
known inductive constructions or by using Theorem 1.3. Note that it can be obtained
from the body-hinge graph induced by a six-cycle by deleting the cores of the bodies.

Theorem 1.1 implies that G is not globally rigid in R3. The graph Ĝ of Figure
2b is obtained from G by attaching a vertex of degree four to each of its six K4

subgraphs. Thus Ĝ is 4-connected and redundantly rigid in R3. Since the new vertices
are attached to complete subgraphs, the fact that G is not globally rigid implies that
Ĝ is not globally rigid either in R3. We obtain that Ĝ is an H-graph in R3.

By using the same argument we can deduce that the body-hinge graph induced by
the six-cycle is a 3-dimensional H-graph, too. Furthermore, as we shall see, we can
construct an infinite family of H-graphs by replacing each vertex of the six-cycle by
some multigraph M for which 5M contains 6 edge-disjoint spanning trees (and taking
the induced body-hinge graph), see Section 4.2.

(a) A 4-connected minimally rigid
graph G in R3.

(b) A 4-connected, redundantly rigid
graph Ĝ in R3, which is not globally
rigid in R3.

Figure 2: The construction of an H-graph in R3.

2 Preliminaries

Let H = (V,E) be a multigraph. For a partition P of V let eH(P) denote the
number of edges of H connecting distinct members of P . We say that H is (m, `)-
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Section 3. Truncated body-hinge graphs and skeletons 6

tree-connected, for some non-negative integers k, `, if

eH(P) ≥ m(t− 1) + ` (1)

for all partitions P = {X1, X2, ..., Xt} of V with t ≥ 2. A theorem of Nash-Williams
[16] and Tutte [24] implies that H is (m, `)-tree-connected if and only if H−F contains
m edge-disjoint spanning trees for all F ⊆ E with |F | ≤ `.

In what follows we shall be interested in multigraphs satisfying (1) with respect to
parameters m and ` for which m =

(
d+1
2

)
, for some d ≥ 1, and for some ` ∈ {0, 1, 2}.

We shall use a simpler terminology and say that an (m, `)-tree-connected multigraph,
where ` = 0 (resp. ` = 1, ` = 2), is m-tree-connected (resp. highly m-tree-connected,
doubly highly m-tree-connected).

To simplify the notation, D will denote the number
(
d+1
2

)
, where d (the dimension,

in most cases) is clear from the context. For a multigraph H containing at least k
copies of some edge e, we use ke to refer to k copies of e in H. The next lemma
shows how a certain reduction step at some vertex with two neighbours preserves the
tree-connectivity properties of the multigraph.

Lemma 2.1. Let H be a multigraph and let v be a vertex of degree two in H with
NH(v) = {u,w}. Let Hv = H− v+uw be obtained from H by removing v and adding
a new edge uw. Suppose that (D − 1)H is highly D-tree-connected for some d ≥ 2.
Then (D−1)Hv is highly D-tree-connected and (D−1)Hv−2(uw) is D-tree-connected.

Proof. To prove the first statement, put H ′ = (D − 1)Hv and suppose, for a con-
tradiction, that H ′ is not highly D-tree-connected. Then there is partition P ′ =
{X1, X2, ..., Xt} of V (H ′) with t ≥ 2 for which eH′(P ′) ≤ D(t− 1). If u and w belong
to the same member, say P1, then by adding v to P1 we obtain a partition P of V
with e(D−1)H(P) = eH′(P ′) ≤ D(t− 1), contradicting the assumption that (D − 1)H
is highly D-tree-connected. If u and v are in different members then by adding a
new member {v} to P ′ we obtain a partition P of V with t + 1 members satisfying
e(D−1)H(P) = eH′(P ′) − (D − 1) + 2(D − 1) ≤ D(t − 1) + (D − 1) = Dt − 1, a
contradiction.

The proof of the second statement is similar.

The connectivity, edge-connectivity, and tree-connectivity parameters of H, (D −
1)H, and GH are related as follows. The proof of the next simple lemma is omitted.

Lemma 2.2. (i) Suppose that (D − 1)H is D-tree-connected. Then H is 2-edge-
connected.
(ii) Suppose that H is k-edge-connected. Then GH is (d− 1)k-connected.
(iii) Suppose that (D− 1)H is D-tree-connected for some d ≥ 3. Then GH is (d+ 1)-
connected.
(iv) H is 3-edge-connected if and only if 2H is doubly highly 3-tree-connected.

3 Truncated body-hinge graphs and skeletons

We shall consider graphs obtained from a body-hinge graph GH , induced by some
multigraph H, by deleting one vertex of the hinge set H(e), for some e ∈ E(H). In
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Section 4. Globally rigid body-hinge graphs 7

this graph that we denote by G(H,e), the two bodies associated with the endvertices
of e share only d− 2 vertices.

The following lemma is implicit in [19, Theorem 5.2]. The proof is given in the
Appendix for completeness.

Lemma 3.1. Let H = (V,E) be a multigraph and e ∈ E(H). Suppose that (D −
1)H − 2e is D-tree-connected. Then G(H,e) is rigid in Rd.

Let H = (V,E) be a multigraph. The skeleton SH of the induced body-hinge graph
GH is obtained by deleting the cores C(v) for all v ∈ V . The rigidity, global rigidity,
and connectivity properties of GH and SH are the same in the following sense.

Lemma 3.2. Let H be a multigraph with minimum degree at least two and let d ≥ 3
be an integer. Then GH is globally rigid in Rd (rigid in Rd, (d+ 1)-connected, resp.)
if and only if SH is globally rigid in Rd (rigid in Rd, (d+ 1)-connected, resp.).

Proof. The lemma follows by observing that GH is obtained from SH by iteratively
attaching complete subgraphs to complete subgraphs of size at least 2(d − 1) ≥ d +
1.

The skeleton of G(H,e) is defined in the same manner as the graph obtained from
G(H,e) by deleting the cores C(v) for all v ∈ V .

4 Globally rigid body-hinge graphs

In this section we prove our main result. We shall use the following sufficient condi-
tions for global rigidity. For some graph G and X ⊆ V (G), the graph G + K(X) is
obtained from G by adding all edges uv, where u and v are non-adjacent vertices of
X in G.

Theorem 4.1 ([19]). Let G = (V,E) be a graph and let x ∈ V . Suppose that G − x
is rigid in Rd and G− x+K(NG(x)) is globally rigid in Rd. Then G is globally rigid
in Rd.

We say that G is vertex-redundantly rigid in Rd if G − v is rigid in Rd for all
v ∈ V (G).

Theorem 4.2 ([19]). If G is vertex-redundantly rigid in Rd then it is globally rigid
in Rd.

We shall also rely on the well-known vertex splitting operation. Let G be a
graph, let v1 ∈ V , let v1v2, ..., v1vd be d − 1 designated edges incident with v1,
and let v1vd+1, ..., v1vd+k1 and v1vd+k1+1, ..., v1vd+k1+k2 be a bipartition of the remain-
ing edges incident with v1. The (d-dimensional) vertex splitting operation at v1 re-
moves the edges v1vd+1, ..., v1vd+k1 , adds a new vertex v0, and adds the new edges
v0v1, v0v2, ..., v0vd, v0vd+1, ..., v0vd+k1 . Whiteley [26] proved that this operation pre-
serves the rigidity of graphs in Rd. The vertex splitting operation is non-trivial if
k1 ≥ 1 and k2 ≥ 1 hold. The new edge v0v1 is called the bridging edge in the resulting
graph. The following result is due to Connelly [4, Section 11].
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4.1 The main result 8

B(u) \ C(u) B(w) \ C(w)

B(v) \ C(v)

(a) SH

Bv(u) Bv(w)

Bv(v)

(b) Sv
H

Figure 3: The construction of Sv
H from SH in R5. The figure shows the bodies cor-

responding to vertex v with NH(v) = {u,w} of the underlying multigraph H before
and after the edge contractions.

Theorem 4.3 ([4]). Let G be globally rigid in Rd and let G′ be obtained from G by a
non-trivial vertex splitting operation. If the bridging edge e is redundant (i.e. G′ − e
is rigid in Rd) then G′ is also globally rigid in Rd.

4.1 The main result

Before the proof of our main result, we prove one more lemma that we need only in
the higher dimensional cases, when d ≥ 4. To verify the three-dimensional case the
next lemma and the preceeding discussion can be skipped.

Let H = (V,E) be a multigraph and suppose that H contains a vertex v of degree
two with NH(v) = {u,w}. Let H(uv) = {x1, . . . , xd−1} and H(vw) = {y1, . . . , yd−1}
denote the hinge sets associated with uv and vw in the corresponding d-dimensional
skeleton SH . If d = 3 then we simply put Sv

H = SH . Otherwise, when d ≥ 4, we denote
by Sv

H the graph obtained from SH by contracting the edges xiyi for all 3 ≤ i ≤ d− 1.
See Figure 3. This operation changes the bodies of u, v, w and results in deformed
hinge sets associated with edges uv and vw. We shall use Bv(a) and Hv(e) to denote
the bodies and hinges in Sv

H associated with the vertices and edges of H, respectively.
Thus |Bv(u) ∩Bv(w)| = d− 3 and Bv(v) induces a complete graph Kd+1.

We recall another basic notion of rigidity theory which will be used in the proof
of the next lemma. Let (G, p) be a d-dimensional framework with G = (V,E). An
infinitesimal motion of (G, p) is a map m : V → Rd satisfying

〈p(u)− p(v),m(u)−m(v)〉 = 0 for all edges uv ∈ E. (2)

A trivial infinitesimal motion of (G, p) is a map for which m(v) = Sp(v) + t holds for
all v ∈ V , for some d × d skew-symmetric matrix S and some t ∈ Rd. It is easy to
see that these are indeed infinitesimal motions. A framework (G, p) is infinitesimally
rigid if it has only trivial infinitesimal motions.

Lemma 4.4. Let H = (V,E) be a multigraph and v be a vertex of degree two in H.
Suppose that d ≥ 3. Then SH is globally rigid in Rd if and only if Sv

H is globally rigid
in Rd.
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4.1 The main result 9

Proof. We shall prove the “only if” direction. The other direction can be proved
in a similar fashion. As above, let NH(v) = {u,w}, H(uv) = {x1, . . . , xd−1}, and
H(vw) = {y1, . . . , yd−1}. Denote the vertex obtained by the contraction of edge xiyi
by zi, for 3 ≤ i ≤ d− 1.

Consider a generic realization (SH , p) of SH in Rd. Then the intersection L of the
two affine subspaces spanned by the hinge sets H(uv) and H(vw), respectively, is a
(d−4)-dimensional affine subspace of Rd. Take d−3 points a3, . . . , ad−1 in such a way
that their affine span is equal to L and define p′ : V (Sv

H) → Rd so that p′(j) = p(j)
for all j ∈ V (Sv

H) with j 6= zi and by putting p′(zi) = ai for 3 ≤ i ≤ d− 1. It follows
that the affine subspaces spanned by H(e) and Hv(e) are the same for all e ∈ E(H).
Thus, informally speaking, the frameworks (SH , p) and (Sv

H , p
′) give rise to the same

body-hinge structure, since their underlying multigraphs as well as the corresponding
hinge subspaces are all the same.

This equivalence is not entirely obvious in our bar-and-joint setting. The fact that
these structures are indeed equivalent as far as global and infinitesimal rigidity are
concerned can be made precise as follows.

Let (Sv
H , q

′) be a realization of Sv
H which is equivalent to (Sv

H , p
′). Then for each

i ∈ V (H) there is an isometry fi such that q′(x) = fi(p
′(x)) for each x ∈ Bv(i). Note

that for any edge e = ij we have fi(s) = fj(s) for all points s that belong to the affine
span of p′(Hv(e)). Hence, if we define a realization (SH , q) such that q(x) = fi(p(x))
for x ∈ B(i) for each i ∈ V (H), then q is well-defined. Note that (Sv

H , p
′) is congruent

to (Sv
H , q

′) if and only if the isometries fi are the same for all i ∈ V (H), which is
equivalent to saying that (SH , p) is congruent to (SH , q). Thus (Sv

H , p
′) is globally

rigid if (and only if) (SH , p) is globally rigid.
Similarly, one can check that (Sv

H , p
′) is infinitesimally rigid if (SH , p) is infinitesi-

mally rigid. Let m′ : V (Sv
H) → Rd be an infinitesimal motion of (Sv

H , p
′). Since each

rigid body affinely spans Rd, for each i ∈ V (H), there is a skew-symmetric matrix
Si and a vector ti ∈ Rd such that m′(x) = Sip

′(x) + ti for x ∈ B(i). Note that, for
edge e = ij, we have Sis + ti = Sjs + tj for all points s that belong to the affine
span of p′(Hv(e)). Hence, if we define an infinitesimal motion m of (SH , p) such that
m(x) = Sip(x) + ti for x ∈ B(i), for each i ∈ V (H), then m is well-defined. Note
that m is trivial if and only if the pairs (Si, ti) are the same for all i ∈ V (H), which
is equivalent to saying that m′ is trivial.

The realization (SH , p) is globally rigid and generic. Hence it is infinitesimally
rigid. Thus the above arguments imply that (Sv

H , p
′), which may not be generic, is

also globally rigid and infinitesimally rigid. By a theorem by Connelly and Whiteley
[6, Corollary 14], this implies that Sv

H is globally rigid, as required.

We note that the “if” direction in Lemma 4.4 also follows from Theorem 4.3 by
observing that SH can be obtained from Sv

H by a sequence of vertex splitting operations
and adding edges in such a way that in each iteration the bridging edge is part of
complete subgraph Kd+2 (and hence it is redundant) in the resulting graph.

We are now ready to prove our main result (Theorem 1.4) that we restate here for
convenience.
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4.1 The main result 10

Theorem 4.5. Let H = (V,E) be a multigraph and d ≥ 3. Then the body-hinge graph
GH is globally rigid in Rd if and only if (D − 1)H is highly D-tree-connected.

Proof. To prove necessity, suppose, for a contradiction, that GH is globally rigid in Rd

but (D − 1)H is not highly D-tree-connected. This implies that there is a partition
P of V with t ≥ 2 members satisfying e(D−1)H(P) ≤ D(t− 1). By adding sufficiently
many new edges inside the non-singleton partition classes to make their induced body-
hinge graphs globally rigid and then contracting each of them into one vertex we may
suppose that each partition member is a single vertex. This in turn implies that

(D − 1)|E(H)| = D|V (H)| −D. (3)

Hence there is a vertex v of degree two in H.
By Lemmas 3.2 and 4.4, Sv

H is globally rigid. Call an edge a hinge-edge if it is
induced by some hinge set. Remove non-hinge edges from each body of Sv

H so that
the sparsified skeleton, denoted by TH , spans a minimally rigid graph on the vertex set
of each body of Sv

H . This can be done, since each hinge set induces a small complete
graph Kd−1 and the hinge sets are pairwise disjoint (except in the body of v, which
induces Kd+1 and hence is already minimally rigid) and hence they can be extended
to a spanning minimally rigid graph within each body. It is clear that TH is rigid. We
claim that TH is minimally rigid. This follows by counting the edges and using (3):

|E(TH)| =
∑

u∈V (H)\{v}

(
d[(d− 1)dH(u)]−

(
d+ 1

2

))
+

(
d+ 1

2

)
−
(
d− 1

2

)
|E(H)|

=
∑

u∈V (H)

(
d(d− 1)dH(u)−

(
d+ 1

2

))
− d(d− 3)−

(
d− 1

2

)
|E(H)|

= (d− 1)

(
3

2
d+ 1

)
|E(H)| −

(
d+ 1

2

)
|V (H)| − d(d− 3)

= d((d− 1)|E(H)| − (d− 3))−
(
d+ 1

2

)
= d|V (Sv

H)| −D
= d|V (TH)| −D.

It follows that the edges of Kd+1 induced by B(v) are M -bridges (i.e. edges that
belong to all rigid spanning subgraphs) in Sv

H . So Sv
H is not redundantly rigid. We

can conclude, by using Theorem 1.1 and Lemma 4.4, that SH is not globally rigid.
By Lemma 3.2 this implies that GH is not globally rigid either, a contradiction. This
proves necessity.

To prove sufficiency, suppose that (D−1)H is highly D-tree-connected. The proof is
by induction on |V |. The statement is trivial for |V | = 1. If (D−1)H is doubly highly
D-tree-connected then we can use Lemma 3.1 to deduce that GH is vertex-redundantly
rigid in Rd and then it follows from Theorem 4.2 that GH is globally rigid in Rd, as
required. Thus we may suppose that there is a partition P = {P1, ..., Pt} of V with
t ≥ 2 and (D − 1)e(P) = D(|P| − 1) + 1. We can also assume that H[Pi] is highly
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4.2 Infinite families of H-graphs 11

D-tree-connected for all i (for otherwise we could refine P by an appropriate partition
of Pi). By induction, GH[Pi] is globally rigid for all i. If one partition class, say P1, is
not a singleton then consider H ′ obtained from H by contracting P1 to a vertex v1.
Then (D − 1)H ′ is highly D-tree-connected and hence, by induction, its body-hinge
graph is globally rigid. So we may suppose that each partition class is a singleton and
hence (D − 1)|E| = D|V | −D + 1. Thus there is vertex in H with dH(v) = 2.

By Lemmas 3.2 and 4.4, it suffices to show that Sv
H is globally rigid. Let NH(v) =

{u,w}. Let H(uv) \Bv(v) = {x1, x2} and H(vw) \Bv(v) = {y1, y2} be the two pairs
of hinge-vertices not involved in the contractions when constructing Sv

H from SH .
Notice that x1y1 is incident to d−1 triangles in Sv

H , and hence the contraction of x1y1
corresponds to the inverse operation of vertex splitting. Let S ′ be the graph obtained
from Sv

H by contracting x1y1. Then observe that S ′− x2y2 is the skeleton of G(Hv ,uw),
where Hv = H−v+uw. Since H is highly D-tree-connected, Lemma 2.1 implies that
(D − 1)Hv − 2(uw) is D-tree-connected. This in turn implies that S ′ − x2y2 is rigid
by Lemma 3.1. It follows from Whiteley’s vertex-splitting theorem that Sv

H − x2y2 is
rigid, and xiyj is redundant in Sv

H for any i = 1, 2 and j = 1, 2 by symmetry.
Since S ′ − x2y2 is rigid, S ′ − x2 is clearly rigid (since x2 does not belong to any of

the “hinge sets” in S ′ − x2y2). Observe that S ′ − x2 + K(NS′(x2)) is the skeleton of
GHv . Since (D − 1)Hv is highly D-tree-connected with |V (Hv)| < |V (H)|, S ′ − x2 +
K(NS′(x2)) is globally rigid by induction. Therefore by Theorem 4.1 S ′ is globally
rigid.

Since SH is constructed from S ′ by a vertex splitting operation and x1y1 is redundant
in Sv

H , we can apply Theorem 4.3 to conclude that SH is globally rigid.

4.2 Infinite families of H-graphs

By using the necessary condition of Theorem 1.4 we can easily construct infinite
families of d-dimensional H-graphs for all d ≥ 3. Let H be a multigraph for which
(D − 1)H is D-tree-connected but not highly D-tree-connected, or equivalently, for
which (D − 1)H contains D edge-disjoint spanning trees and at the same time has a
partition P = {X1, X2, ..., Xt} of V with t ≥ 2 satisfying

eH(P) =
D(t− 1)

D − 1
.

For example we may obtain such multigraphs H from a cycle of length D by replacing
each vertex by any subgraph H ′ for which (D−1)H ′ contains D edge-disjoint spanning
trees.

Then GH is redundantly rigid (it follows by Theorem 1.3 and the fact that each
edge belongs to a large enough complete subgraph), and (d+1)-connected (by Lemma
2.2(iii)), but not globally rigid in Rd (by Theorem 1.4). Thus it is a d-dimensional
body-hinge graph which is also an H-graph.

It is possible to construct several other examples, including families which are not
body-hinge graphs. For example, as noted earlier, the cone of an H-graph is also an
H-graph. Another way to create examples is to take a body-hinge H-graph and then
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Section 5. Globally rigid body-hinge graphs in two dimensions 12

replace one (or more) of its bodies by a globally rigid graph, keeping the same vertices
of attachment.

5 Globally rigid body-hinge graphs in two dimen-

sions

Theorem 1.2 gives a complete description of globally rigid graphs in R2. We can use
this result to characterize those multigraphs H that induce globally rigid body-hinge
graphs in two dimensions. It turns out that the necessary and sufficient condition is
different from that of the higher dimensional version in Theorem 1.4.

Theorem 5.1. Let H be a multigraph and let GH be the two-dimensional body-hinge
graph induced by H. Then GH is globally rigid in R2 if and only if H is 3-edge-
connected.

Proof. Suppose that GH is globally rigid. Then GH is 3-connected, and hence H
is 3-edge-connected. Conversely, suppose that H is 3-edge-connected. By Lemma
2.2(iv) 2H is (doubly) highly 3-tree-connected. By Theorem 1.3 we conclude that GH

is redundantly rigid, too. Therefore it is globally rigid by Theorem 1.2.

Note that Theorem 5.1 can also be deduced from Lemma 3.1 and Theorem 4.2. If
H is 3-regular then SH is a so-called combinatorial zeolite in the plane. A different
proof for this special case was given in [13].

The reader may wonder why the construction of higher dimensional H-graphs does
not work for d = 2. The key property of each H-graph G given above for d ≥ 3 is
that it is constructed from a rigid and (d + 1)-connected skeleton S, in which each
M-bridge belongs to a subgraph isomorphic to Kd+1, by attaching complete graphs
to these complete subgraphs. By attaching all but one of these complete graphs to
S, we can obtain a rigid and (d + 1)-connected graph G′ in which there is a single
Kd+1-subgraph which contains all M-bridges (then G is obtained from G′ by attaching
one complete graph, making all edges of G redundant).

However, a graph G′ with these properties does not exist in R2.

Lemma 5.2. Let G = (V,E) be a rigid, but not redundantly rigid graph in R2 and
suppose that all M-bridges of G are edges of the same triangle in G. Then G is not
3-connected.

Proof. Suppose, for a contradiction, that G is 3-connected. Let a, b, c ∈ V be the
vertices of the triangle that contains all M-bridges of G. We may assume that e = ab
is an M -bridge. Let G′ be the graph obtained from G by removing edge ab and
attaching two K ′4s along the edges bc, ca, respectively. It is easy to see that G′ is not
rigid. On the other hand, it is nearly 3-connected (that is, it can be made 3-connected
by adding one edge) and that each edge of G′ is redundant. Hence, by [12, Theorem
5.1], G′ is M-connected (that is, its rigidity matroid is connected, see [10]). This in
turn implies that G′ is rigid (see e.g. [10, Lemma 3.1]), a contradiction.
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6 Concluding remarks

Theorem 1.4 gives rise to a polynomial time algorithm to determine whether a body-
hinge graph is globally rigid in Rd. This follows from the fact that, as we noted
earlier, a multigraph H is highly m-tree-connected if and only if H − e contains m
edge-disjoint spanning trees for all e ∈ E(H). Thus efficient tree-packing algorithms
can be used to test whether a given multigraph is highly m-tree-connected. We refer
the reader to [18, Chapter 51] for a complexity survey of tree packing algorithms. A
recent algorithm, focusing on high m-tree-connectivity, can be found in [15].

Another algorithmic observation is that one can easily test whether a given graph
G is a body-hinge graph: the vertices of G with a non-complete neighbour set are the
candidates for being the hinge vertices. If G is a body-hinge graph then these vertices
are partitioned into classes in such a way that two vertices u, v are in the same class
if and only if uv ∈ E and N(u) − v = N(v) − u. This partition, if it exists, can be
used to check whether G is indeed a body-hinge graph and if yes, to determine the
underlying multigraph H.

We did not directly refer to Hendrickson’s (d + 1)-connectivity condition of Theo-
rem 1.1 in our characterization for d ≥ 3 in Theorem 1.4. This is because (d + 1)-
vertex-connectivity follows for ‘free’ for body-hinge graphs GH when (D − 1)H is
highly D-tree-connected, provided d ≥ 3. Another related observation, which follows
from Theorems 1.4 and 5.1, is that if GH is 2d-connected then it is globally rigid in
Rd. Thus the general conjecture, saying that sufficiently high connectivity implies
global rigidity in Rd for all d ≥ 1 [5], holds for body-hinge graphs.
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8 Appendix

In this section, we provide a proof of Lemma 3.1 that we restate here for convenience.

Lemma 8.1. Let H = (V,E) be a multigraph and e ∈ E(H). Suppose that (D −
1)H − 2e is D-tree-connected. Then G(H,e) is rigid in Rd.

Proof. To prove that G(H,e) is rigid in Rd, it suffices to show that it has an infinites-
imally rigid d-dimensional realization, see e.g. [27]. We shall prove that such a
realization exists. Recall that G(H,e) is obtained by removing one vertex from H(e).
The set of the remaining d− 2 vertices in H(e) is denoted by H ′(e).

By the assumption of the lemma (
(
d+1
2

)
− 1)(H − e) + (

(
d+1
2

)
− 3)e contains

(
d+1
2

)
edge-disjoint spanning trees Ti,j, 1 ≤ i < j ≤ d + 1. We must have at least three
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spanning trees containing no copies of e. Thus, by relabelling the trees, if necessary,
we may assume that(((

d+ 1

2

)
− 3

)
e

)
∩ (Td−1,d ∪ Td−1,d+1 ∪ Td,d+1) = ∅. (4)

Let e1, . . . , ed be the standard basis of Rd. It will be convenient to denote the origin
of Rd by ed+1. We shall consider a realization of G(H,e) by defining p : V (G(H,e))→ Rd

as follows. For each v ∈ V (H), we take a realization of the core C(v) such that
{p(v′) | v′ ∈ C(v)} = {ei | 1 ≤ i ≤ d + 1}. For each f ∈ E(H) \ {e}, there is at
least one pair (k, l) of indices such that ((

(
d+1
2

)
− 1)f) ∩ Tk,l) = ∅. Hence one can

define the realization of the hinge H(f) such that {p(v′′) | v′′ ∈ H(f)} = {ei | 1 ≤
i ≤ d + 1, i 6= k, l}. Also, for e, we shall define the realization of H ′(e) such that
{p(v′′) | v′′ ∈ H ′(e)} = {ei | 1 ≤ i ≤ d− 2}.

We shall show that (G(H,e), p) is infinitesimally rigid in Rd. To this end, let us take
an infinitesimal motion m : V (G(H,e)) → Rd of (G(H,e), p). Since {p(v′) | v′ ∈ C(v)}
affinely spans Rd and C(v) induces a complete graph, for each v ∈ V (H), there is a
d× d skew-symmetric matrix Sv and tv ∈ Rd such that m(v′) = Svp(v

′) + tv for every
v′ ∈ C(v) and m(v′′) = Svp(v

′′) + tv for every v′′ adjacent to C(v).
For 1 ≤ i < j ≤ d + 1, consider any edge f = uv ∈ Ti,j. If f 6= e, by the definition

of p, there is at one vertex v′′ ∈ H(f) such that p(v′′) is either ei or ej. Similarly, if
f = e, there is v′′ ∈ H ′(e) such that p(v′′) is either ei or ej by (4). Therefore, one can
take a vertex v′ from C(v) such that {p(v′′), p(v′)} = {ei, ej}.

Let us assume p(v′′) = ei and p(v′) = ej. The constraint (2) of edge v′v′′ implies

0 = 〈p(v′′)− p(v′),m(v′′)−m(v′)〉
= 〈p(v′′)− p(v′), Sup(v

′′) + tu − Svp(v
′)− tv〉

= 〈ei − ej, Suei + tu − Svej − tv〉
= −e>j Suei − e>i Svej + 〈ei − ej, tu − tv〉. (5)

This equation follows even when p(v′′) = ej and p(v′) = ei by changing the role of u
and v.

For j = d+ 1, since ed+1 = 0, (5) implies

〈ei, tu − tv〉 = 0 for 1 ≤ i ≤ d and uv ∈ Ti,d+1.

This implies ta = tb for any pair a, b ∈ V (H) since Ti,d+1 is a spanning tree. Therefore,
using the skew-symmetry of Sv, (5) becomes

e>i Svej = e>i Suej for 1 ≤ i < j ≤ d and uv ∈ Ti,j.

As above, this implies Sa = Sb for any pair a, b ∈ V (H). Thus m is trivial and hence
(G(H,e), p) is infinitesimally rigid in Rd, as claimed. As we remarked above, we can
now deduce that G(H,e) is rigid in Rd.
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