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Nonseparating cycles in planar and Eulerian graphs

Attila Bernáth? and Marcin Kami«ski??

Abstract

A cycle C ⊆ E in a graph G = (V,E) is nonseparating if G−C is connected
(note that we only delete the edges of the cycle). We study the algorithmic
problem of deciding whether a graph contains a nonseparating cycle. We show
how to solve it in polynomial-time in planar graphs and that it is NP-complete
in Eulerian graphs. The former was an open problem raised in [1]; the latter is
a natural question in the context of greedy improvements of feasible solutions
to the graphic TSP Problem.

1 Introduction

In this note we consider undirected graphs with possible parallel edges and loops. We
use standard terminology and refer the reader to [3] for what is not de�ned here. For
some subset of edges C ⊆ E of a graph G = (V,E) let V (C) = {v ∈ V : ∃e ∈ C
with v ∈ e}. A cycle in a graph G = (V,E) is a subset of edges C ⊆ E such that
(V (C), C) is connected and every node in V (C) is incident with two edges of C. A
cycle C ⊆ E in a graph G = (V,E) is nonseparating if G − C is connected (that is,
we only remove the edges of the cycle). There are two similar notions that should not
be confused with ours. The �rst is a non-separating cycle in a graph embedded

on a surface which is a cycle whose removal from the embedded graph does not
disconnect the surface. The second is the notion of a peripheral cycle which is
an induced cycle � as the set of vertices (and not edges) � whose removal does not
disconnect the graph.

The study of nonseparating cycles from the algorithmic perspective was initiated in
[1]. The algorithmic problem of deciding whether a graph has a nonseparating cycle
was considered there and shown NP-complete.

Theorem 1 (Theorem 2.6 in [1]). It is NP-complete to decide whether a graph has a
nonseparating cycle.
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Many other related problems were considered in [1]. For example, the following open
question was posed there: what is the computational complexity of deciding whether
a planar graph has a nonseparating cycle? We give an answer to this question and
show how to �nd a nonseparating cycle in planar graphs in polynomial time. We also
study the problem of deciding whether an Eulerian graph has a nonseparating cycle
and we prove that it is NP-complete. Here is our motivation to look at this problem.
The Graphic TSP problem is the problem of �nding in a connected (unweighted)

graph a shortest tour that visits every vertex at least once. Given a graph G = (V,E),
let 2G = (V, 2E) be the graph that we obtain from G by duplicating every edge. The
Graphic TSP problem can then be formulated as follows (see [6]).

Problem 1. Given a connected graph G = (V,E), �nd a connected Eulerian subgraph
of 2G (spanning the whole set V ) that has the smallest possible number of edges.

The graphic TSP problem is a special case of the Metric TSP problem for which the
best known approximation algorithm is the well-known 1.5-approximation algorithm
due to Christo�des [2]. The best known approximation algorithm for the Graphic TSP
has approximation factor 1.4 [6]. We can observe the following connection between
the Graphic TSP problem and the nonseparating cycle problem. Given a feasible
solution to the graphic TSP problem H (which is an Eulerian subgraph of 2G), a
greedy way of improving the quality of H would be to delete edges from it, while
maintaining feasibility. Obviously, there is such a greedy improvement if and only
if the multigraph H has a nonseparating cycle. We show that it is NP-complete to
decide whether such a greedy improvement exists or not.

2 Planar graphs

In this section we consider the problem of �nding a nonseparating cycle in a planar
graph. We give an algorithm that solves this problem in polynomial time. The base
of the algorithm is the the following lemma.

Lemma 1. Let G = (V,E) be a 2-connected plane graph. Let F ⊆ E be a face of G.
If G − F is disconnected and C is a nonseparating cycle in G, then V (C) intersects
at most one connected component of G− F .

Proof. In 2-connected planar graphs every face is bounded by a cycle. Since G is
2-connected, F is a cycle. Let us suppose that G− F is disconnected and let (Vi, Ei)
be the connected components of G − F (for i = 1, . . . , k, for some integer k ≥ 2).
Thus, V1, . . . , Vk is a partition of V and F,E1, . . . , Ek is a partition of E. Also suppose
that there exists a cycle C ⊆ E such that G− C is connected. We will show that C
intersects only one of Vi's.
Let us assume that C contains vertices of at least two Vi's. Clearly, there must exist

an edge e = x1x2 ∈ F with x1, x2 ∈ V (C) such that x1 and x2 are in two di�erent
sets, say x1 ∈ V1 and x2 ∈ V2. We will say that the vertices and the edges in V1 and
E1 are blue and those in V2 and E2 are red. Furthermore, the edges in F are called
black. (See Figure 1 for an illustration: note that our �gures are in colour.) Without
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loss of generality, x2 is the clockwise neighbour of x1 on the face F and let us number
all the other vertices of the face F in the clockwise order as well, x1, x2, . . . , xn. Let
xt ∈ V2∩V (F ) be the farthest red vertex from x2 on the face F in clockwise direction
and f = xtxt+1 ∈ F be the edge incident to xt in the clockwise direction (we allow
xt = x2 or xt = xn; in the latter case xt+1 = x1). We claim that in G − {e, f} (that
is, we only remove the edges, but leave their endpoints) there is no path between x1
and x2. This implies that there are at most two edge-disjoint paths between x1 and
x2 in G. (In fact, precisely two, by the two paths using the face F ). However, the
properties of C imply that there are at least three edge-disjoint paths between x1 and
x2 in G; a contradiction.
The claim is clearly true if t = 2 (i.e. there is only one red vertex on the face F ),

so from now on we assume that t > 2. Let us take a red path P ⊆ E2 between x2 and
xt. Such a path exists since (V2, E2) is connected. Consider the closed plane curve
obtained from P by connecting its endpoints (informally, add a �chord� of the circle F
between x2 and xt, that is not an edge of G). Since F is a face of the plane graph G,
this will be simple curve (that is, homeomorphic to the circle). This curve separates
x1 from all the edges of F − {e, f} incident to the red vertices. But if there exists a
path P ′ ⊆ E − {e, f} between x1 and x2, then take the edge xy ∈ P ′ so that y is the
�rst red vertex on the path P ′ when we start from x1 (and x precedes it). Clearly,
this edge must be black (otherwise x was also red); a contradiction.

x1

e

P

x2

x3

xt

f

Figure 1: Illustration for the proof of Lemma 1.

Lemma 1 implies a divide-and-conquer polynomial-time algorithm for the problem
of �nding a nonseparating cycle. We sketch the algorithm below (see Algorithm
FindNonSeparatingCycle(G)). The proof of the following theorem is straightforward
from Lemma 1 and the algorithm.

Theorem 2. There exists a polynomial-time algorithm to decide whether a planar
graph has a nonseparating cycle.
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Algorithm FindNonSeparatingCycle(G)

begin
INPUT: A planar graph G (given with a planar representation)
OUTPUT: YES, if G has a nonseparating cycle, NO otherwise

1.1. If G is not 2-connected, then iterate through the blocks of G.
1.2. If G is 2-connected, take an arbitrary face F ⊆ E of G.
1.3. If G− F is connected, then return YES.
1.4. Otherwise, let (Vi, Ei) (i = 1, . . . , k) be the connected components of G− F . For

i = 1, . . . , k do
1.5. If FindNonSeparatingCycle((Vi, Ei ∪ Fi)), then return YES (where Fi = {uv ∈

F : u, v ∈ Vi}. Note that we need these edges, see Figure 2).
1.6. Return NO.
end

Figure 2: Illustration for the algorithm.

We mention that planar duality gives that the Problem of �nding a nonseparating
cycle in a planar graph is eqivalent to �nding a cut in a planar graph that contains
no circuit. By Theorem 2, this problem is polynomially solvable for planar graphs.
However, van den Heuvel [5] has shown that this problem is NP-complete in general
(i.e. not necessarily planar) graphs.
We can clearly modify the algorithm above to solve the following problem.

Problem 2. Given a graph G = (V,E) embedded in the plane and an edge e ∈ E,
�nd a cycle C ⊆ E containing e such that G− C is connected.

A problem related to the problem of �nding a nonseparating cycle in a graph is the
following.

Problem 3. Given a graph G = (V,E) and two vertices s, t ∈ V , �nd an s − t path
P ⊆ E so that G− P is connected.

This problem was shown to be NP-complete in [1], but it was stated as an open
problem for a planar graph G. If s and t fall in the same face of G then we can solve
the problem as follows: connect s and t with a new edge e and solve Problem 2 in
the obtained planar graph G′ and this edge e. However, we don't know the status of
Problem 3 for planar graphs in general.
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3 Nonseparating cycles in Eulerian graphs

In this section we consider the problem of �nding a nonseparating cycle in an Eulerian
graph. This problem is motivated by the graphic TSP problem, as mentioned in the
Introduction.

Theorem 3. It is NP-complete to decide whether an Eulerian graph H has a non-
separating cycle.

Proof. The proof is similar to the proof of Theorem 2.6 in [1]. It is clear that the
problem is in NP. The completeness will be shown by a reduction from the well
known NP-complete problem 3SAT (Problem LO2 in [4]). Let ϕ be a 3-CNF formula
with variable set {x1, x2, . . . , xn} and clause set C = {C1, C2, . . . , Cm}. Assume that
literal xj appears in kj clauses Caj1

, Caj2
, . . . , Cajkj

, and literal xj occurs in lj clauses

Cbj1
, Cbj2

, . . . , Cbjlj
. Construct the following graph Gϕ = (V,E). For any clause C ∈ C

and any literal y occurring in C introduce a vertex v(y, C). Furthermore, for every
variable xj introduce 4 new vertices z1j , z

2
j , pj, qj. For every variable xj, let Gϕ contain

a cycle on the kj + lj + 4 vertices z1j , v(xj, Caj1
), v(xj, Caj2

), . . . , v(xj, Cajkj
), pj, z

2
j , qj,

v(xj, Cbjlj
), v(xj, Cbjlj−1

), . . . , v(xj, Cbj1
) in this order. We say that this cycle is associated

to the variable xj. The edges of these cycles associated to the variables will be called
black, all other edges are red. Add a cycle of length 2 on the vertices pj, qj. Identify
the vertex pairs z2j , z

1
j+1 for every j = 1, 2, . . . , n (where we mean z1n+1 = z11).

p1

v(x2, C)

v(x3, C)

uC p2

q1

q2

z2n = z11

z21 = z12

v(x1, C)

Figure 3: Part of the construction of graph Gϕ for clause C = {x1, x2, x3}.
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For every clause C ∈ C we introduce a new vertex uC . Introduce a cycle of length 2
on uCv(y, C)for every clause C and every literal y in C (i.e., the vertices uC will have
degree 6 and the ones v(y, C) will have degree 4). Finally, put a subdivision vertex on
every red edge. The construction of the graph Gϕ is �nished. Clearly, Gϕ is Eulerian.
An illustration can be found in Figure 3.

Claim 1. The formula ϕ is satis�able if and only if Gϕ has a nonseparating cycle.

The rest of the proof is a proof of the claim (in this proof letter K will be used for
cycles, since letter C is used for clauses). If τ is a truth assignment to the variables
x1, x2, . . . , xn then we de�ne a cycle Kτ in Gϕ as follows: for every j = 1, 2, . . . , n, if
xj is set to TRUE then let Kτ go through the vertices z1j , v(xj, Cbj1

), v(xj, Cbj2
), . . . ,

v(xj, Cbjlj
), qj, z

2
j , otherwise (i.e., if xj is set to FALSE) let Kτ go through z1j , v(xj,

Caj1
), v(xj, Caj2

), . . . , v(xj, Cajkj
), pj, z

2
j . If the truth assignment τ satis�es ϕ then the

cycle Kτ is a nonseparating cycle: since every clause C contains a true literal in τ we
can reach uC in Gϕ−Kτ from z11 , therefore we can reach every node of V in Gϕ−Kτ

from z11 .
On the other hand assume that Gϕ contains a nonseparating cycle K. Note that K

can only use black edges due to the subdivision vertices on the red edges. Furthermore,
K cannot be the cycle associated to a variable xj due to the subdivision vertices on
the red edges connecting pj and qj. Therefore K naturally de�nes a truth assignment
τ as above: for any j = 1, 2, . . . , n, if K goes through the vertices z1j , v(xj, Cbj1

), v(xj,

Cbj2
), . . . , v(xj, Cbjlj

), qj, z
2
j then let τ(xj) be TRUE, otherwise (i.e. if K goes through

z1j , v(xj, Caj1
), v(xj, Caj2

), . . . , v(xj, Cajkj
), pj, z

2
j ) then let τ(xj) be FALSE. By the

nonseparating property of K, the assignment τ satis�es the formula ϕ, �nishing our
prof.

Recall that given a graphic TSP instance with graph G = (V,E), the algorithm of
Christo�des works as follows. First, it �nds an arbitrary spanning tree F ⊆ E in G.
Second, it �nds a minimum cost TF -join JF ⊂ E to correct the parities of the vertices,
where TF is the set of vertices that have an odd degree in the spanning tree F and
the cost is one for every edge. Finally the algorithm outputs F + JF where this +
means that edges in F ∩ JF are doubled in the output (so the output is a subgraph
of 2G). We note that a slight modi�cation of our construction above might be the
output of this algorithm: in Figure 3 the bold edges form a spanning tree F for which
the optimal TF -join is the rest of the edges (if we add some more subdivision nodes
on the thick red edges). This remark indicates that this simple greedy heuristic to
improve the Christo�des algorithm is NP-hard to implement.
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