Egerváry Research Group on Combinatorial Optimization

TECHNICAL REPORTS

TR-2014-05. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres. ISSN 1587-4451.

Nonseparating cycles in planar and Eulerian graphs

Attila Bernáth and Marcin Kamiński

July 2014
Revised September 2014

Nonseparating cycles in planar and Eulerian graphs

Attila Bernáth ${ }^{\star}$ and Marcin Kamiński*ᄎ

Abstract

A cycle $C \subseteq E$ in a graph $G=(V, E)$ is nonseparating if $G-C$ is connected (note that we only delete the edges of the cycle). We study the algorithmic problem of deciding whether a graph contains a nonseparating cycle. This problem was shown to be NP-complete in [1]. We prove a lemma about this problem in planar graphs and we show that it is NP-complete in Eulerian graphs. The former problem was an open problem raised in [1]; the latter is a natural question in the context of greedy improvements of feasible solutions to the graphic TSP Problem.

1 Introduction

In this note we consider undirected graphs with possible parallel edges and loops. We use standard terminology and refer the reader to [3] for what is not defined here. For some subset of edges $C \subseteq E$ of a graph $G=(V, E)$ let $V(C)=\{v \in V: \exists e \in C$ with $v \in e\}$. A cycle in a graph $G=(V, E)$ is a subset of edges $C \subseteq E$ such that $(V(C), C)$ is connected and every node in $V(C)$ is incident with two edges of C. A cycle $C \subseteq E$ in a graph $G=(V, E)$ is nonseparating if $G-C$ is connected (that is, we only remove the edges of the cycle). There are two similar notions that should not be confused with ours. The first is a non-separating cycle in a graph embedded on a surface which is a cycle whose removal from the embedded graph does not disconnect the surface. The second is the notion of a peripheral cycle which is an induced cycle - as the set of vertices (and not edges) - whose removal does not disconnect the graph.

The study of nonseparating cycles from the algorithmic perspective was initiated in [1]. The algorithmic problem of deciding whether a graph has a nonseparating cycle was considered there and shown NP-complete.

Theorem 1 (Theorem 2.6 in [1]). It is NP-complete to decide whether a graph has a nonseparating cycle.

[^0]Many other related problems were considered in [1]. For example, the following open question was posed there: what is the computational complexity of deciding whether a planar graph has a nonseparating cycle? We prove a lemma about this problem in planar graphs. In a previous version of this report we claimed that this lemma implies a polynomial algorithm for this problem in planar graphs. Unfortunately this claim is not true, as it was pointed out to us by Jed Yang. Furthermore, he has shown in [7] that this problem is NP-complete, too.

We also study the problem of deciding whether an Eulerian graph has a nonseparating cycle and we prove that it is NP-complete. Here is our motivation to look at this problem.

The Graphic TSP problem is the problem of finding in a connected (unweighted) graph a shortest tour that visits every vertex at least once. Given a graph $G=(V, E)$, let $2 G=(V, 2 E)$ be the graph that we obtain from G by duplicating every edge. The Graphic TSP problem can then be formulated as follows (see [6]).

Problem 1. Given a connected graph $G=(V, E)$, find a connected Eulerian subgraph of $2 G$ (spanning the whole set V) that has the smallest possible number of edges.

The graphic TSP problem is a special case of the Metric TSP problem for which the best known approximation algorithm is the well-known 1.5-approximation algorithm due to Christofides [2]. The best known approximation algorithm for the Graphic TSP has approximation factor 1.4 [6]. We can observe the following connection between the Graphic TSP problem and the nonseparating cycle problem. Given a feasible solution to the graphic TSP problem H (which is an Eulerian subgraph of $2 G$), a greedy way of improving the quality of H would be to delete edges from it, while maintaining feasibility. Obviously, there is such a greedy improvement if and only if the multigraph H has a nonseparating cycle. We show that it is NP-complete to decide whether such a greedy improvement exists or not.

2 Planar graphs

In this section we consider the problem of finding a nonseparating cycle in a planar graph. We show the following lemma about this problem.

Lemma 1. Let $G=(V, E)$ be a 2-connected plane graph. Let $F \subseteq E$ be a face of G. If $G-F$ is disconnected and C is a nonseparating cycle in G, then $V(C)$ intersects at most one connected component of $G-F$.

Proof. In 2-connected planar graphs every face is bounded by a cycle. Since G is 2 -connected, F is a cycle. Let us suppose that $G-F$ is disconnected and let (V_{i}, E_{i}) be the connected components of $G-F$ (for $i=1, \ldots, k$, for some integer $k \geq 2$). Thus, V_{1}, \ldots, V_{k} is a partition of V and F, E_{1}, \ldots, E_{k} is a partition of E. Also suppose that there exists a cycle $C \subseteq E$ such that $G-C$ is connected. We will show that C intersects only one of V_{i} 's.

Let us assume that C contains vertices of at least two V_{i} 's. Clearly, there must exist an edge $e=x_{1} x_{2} \in F$ with $x_{1}, x_{2} \in V(C)$ such that x_{1} and x_{2} are in two different
sets, say $x_{1} \in V_{1}$ and $x_{2} \in V_{2}$. We will say that the vertices and the edges in V_{1} and E_{1} are blue and those in V_{2} and E_{2} are red. Furthermore, the edges in F are called black. (See Figure 1 for an illustration: note that our figures are in colour.) Without loss of generality, x_{2} is the clockwise neighbour of x_{1} on the face F and let us number all the other vertices of the face F in the clockwise order as well, $x_{1}, x_{2}, \ldots, x_{n}$. Let $x_{t} \in V_{2} \cap V(F)$ be the farthest red vertex from x_{2} on the face F in clockwise direction and $f=x_{t} x_{t+1} \in F$ be the edge incident to x_{t} in the clockwise direction (we allow $x_{t}=x_{2}$ or $x_{t}=x_{n}$; in the latter case $x_{t+1}=x_{1}$). We claim that in $G-\{e, f\}$ (that is, we only remove the edges, but leave their endpoints) there is no path between x_{1} and x_{2}. This implies that there are at most two edge-disjoint paths between x_{1} and x_{2} in G. (In fact, precisely two, by the two paths using the face F). However, the properties of C imply that there are at least three edge-disjoint paths between x_{1} and x_{2} in G; a contradiction.

The claim is clearly true if $t=2$ (i.e. there is only one red vertex on the face F), so from now on we assume that $t>2$. Let us take a red path $P \subseteq E_{2}$ between x_{2} and x_{t}. Such a path exists since $\left(V_{2}, E_{2}\right)$ is connected. Consider the closed plane curve obtained from P by connecting its endpoints (informally, add a "chord" of the circle F between x_{2} and x_{t}, that is not an edge of G). Since F is a face of the plane graph G, this will be simple curve (that is, homeomorphic to the circle). This curve separates x_{1} from all the edges of $F-\{e, f\}$ incident to the red vertices. But if there exists a path $P^{\prime} \subseteq E-\{e, f\}$ between x_{1} and x_{2}, then take the edge $x y \in P^{\prime}$ so that y is the first red vertex on the path P^{\prime} when we start from x_{1} (and x precedes it). Clearly, this edge must be black (otherwise x was also red); a contradiction.

Figure 1: Illustration for the proof of Lemma 1.

In a previous version of this report we claimed that this lemma implies a divide-andconquer type polynomial-time algorithm for the problem of finding a nonseparating cycle in a planar graph. Unfortunately this claim is not true, as it was pointed out to us by Jed Yang. Furthermore, he has shown in [7] that this problem is NP-complete, too.

We mention that planar duality gives that the problem of finding a nonseparating cycle in a planar graph is eqivalent to finding a cut in a planar graph that contains no circuit. By the previous remark, this problem is NP-complete for planar graphs, too. We note that van den Heuvel [5 has shown that this problem is NP-complete in general (i.e. not necessarily planar) graphs.

3 Nonseparating cycles in Eulerian graphs

In this section we consider the problem of finding a nonseparating cycle in an Eulerian graph. This problem is motivated by the graphic TSP problem, as mentioned in the Introduction.

Theorem 2. It is NP-complete to decide whether an Eulerian graph H has a nonseparating cycle.

Proof. The proof is similar to the proof of Theorem 2.6 in [1]. It is clear that the problem is in NP. The completeness will be shown by a reduction from the well known NP-complete problem 3SAT (Problem LO2 in [4). Let φ be a 3-CNF formula with variable set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and clause set $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$. Assume that literal x_{j} appears in k_{j} clauses $C_{a_{1}^{j}}, C_{a_{2}^{j}}, \ldots, C_{a_{k_{j}}^{j}}$, and literal $\overline{x_{j}}$ occurs in l_{j} clauses $C_{b_{1}^{j}}, C_{b_{2}^{j}}, \ldots, C_{b_{l_{j}}^{j}}$. Construct the following graph $G_{\varphi}=(V, E)$. For any clause $C \in \mathcal{C}$ and any literal y occurring in C introduce a vertex $v(y, C)$. Furthermore, for every variable x_{j} introduce 4 new vertices $z_{j}^{1}, z_{j}^{2}, p_{j}, q_{j}$. For every variable x_{j}, let G_{φ} contain a cycle on the $k_{j}+l_{j}+4$ vertices $z_{j}^{1}, v\left(x_{j}, C_{a_{1}^{j}}\right), v\left(x_{j}, C_{a_{2}^{j}}\right), \ldots, v\left(x_{j}, C_{a_{k_{j}}}\right), p_{j}, z_{j}^{2}, q_{j}$, $v\left(\overline{x_{j}}, C_{b_{l_{j}^{j}}^{j}}\right), v\left(\overline{x_{j}}, C_{b_{l_{j}-1}^{j}}\right), \ldots, v\left(\overline{x_{j}}, C_{b_{1}^{j}}\right)$ in this order. We say that this cycle is associated to the variable x_{j}. The edges of these cycles associated to the variables will be called black, all other edges are red. Add a cycle of length 2 on the vertices p_{j}, q_{j}. Identify the vertex pairs z_{j}^{2}, z_{j+1}^{1} for every $j=1,2, \ldots, n$ (where we mean $z_{n+1}^{1}=z_{1}^{1}$).

For every clause $C \in \mathcal{C}$ we introduce a new vertex u_{C}. Introduce a cycle of length 2 on $u_{C} v(y, C)$ for every clause C and every literal y in C (i.e., the vertices u_{C} will have degree 6 and the ones $v(y, C)$ will have degree 4). Finally, put a subdivision vertex on every red edge. The construction of the graph G_{φ} is finished. Clearly, G_{φ} is Eulerian. An illustration can be found in Figure 2.

Claim 1. The formula φ is satisfiable if and only if G_{φ} has a nonseparating cycle.
The rest of the proof is a proof of the claim (in this proof letter K will be used for cycles, since letter C is used for clauses). If τ is a truth assignment to the variables $x_{1}, x_{2}, \ldots, x_{n}$ then we define a cycle K_{τ} in G_{φ} as follows: for every $j=1,2, \ldots, n$, if x_{j} is set to TRUE then let K_{τ} go through the vertices $z_{j}^{1}, v\left(\overline{x_{j}}, C_{b_{1}^{j}}\right), v\left(\overline{x_{j}}, C_{b_{2}^{j}}\right), \ldots$, $v\left(\overline{x_{j}}, C_{b_{l_{j}}^{j}}\right), q_{j}, z_{j}^{2}$, otherwise (i.e., if x_{j} is set to FALSE) let K_{τ} go through $z_{j}^{1}, v\left(x_{j}\right.$, $\left.C_{a_{1}^{j}}\right), v\left(x_{j}, C_{a_{2}^{j}}\right), \ldots, v\left(x_{j}, C_{a_{k_{j}}^{j}}\right), p_{j}, z_{j}^{2}$. If the truth assignment τ satisfies φ then the cycle K_{τ} is a nonseparating cycle: since every clause C contains a true literal in τ we

Figure 2: Part of the construction of graph G_{φ} for clause $C=\left\{x_{1}, x_{2}, \overline{x_{3}}\right\}$.
can reach u_{C} in $G_{\varphi}-K_{\tau}$ from z_{1}^{1}, therefore we can reach every node of V in $G_{\varphi}-K_{\tau}$ from z_{1}^{1}.

On the other hand assume that G_{φ} contains a nonseparating cycle K. Note that K can only use black edges due to the subdivision vertices on the red edges. Furthermore, K cannot be the cycle associated to a variable x_{j} due to the subdivision vertices on the red edges connecting p_{j} and q_{j}. Therefore K naturally defines a truth assignment τ as above: for any $j=1,2, \ldots, n$, if K goes through the vertices $z_{j}^{1}, v\left(\overline{x_{j}}, C_{b_{1}^{j}}\right), v\left(\overline{x_{j}}\right.$, $\left.C_{b_{2}^{j}}\right), \ldots, v\left(\overline{x_{j}}, C_{b_{l_{j}^{j}}}\right), q_{j}, z_{j}^{2}$ then let $\tau\left(x_{j}\right)$ be TRUE, otherwise (i.e. if K goes through $\left.z_{j}^{1}, v\left(x_{j}, C_{a_{1}^{j}}\right), v\left(x_{j}, C_{a_{2}^{j}}\right), \ldots, v\left(x_{j}, C_{a_{k_{j}}^{j}}\right), p_{j}, z_{j}^{2}\right)$ then let $\tau\left(x_{j}\right)$ be FALSE. By the nonseparating property of K, the assignment τ satisfies the formula φ, finishing our prof.

Recall that given a graphic TSP instance with graph $G=(V, E)$, the algorithm of Christofides works as follows. First, it finds an arbitrary spanning tree $F \subseteq E$ in G. Second, it finds a minimum cost T_{F}-join $J_{F} \subset E$ to correct the parities of the vertices, where T_{F} is the set of vertices that have an odd degree in the spanning tree F and the cost is one for every edge. Finally the algorithm outputs $F+J_{F}$ where this + means that edges in $F \cap J_{F}$ are doubled in the output (so the output is a subgraph of $2 G$). We note that a slight modification of our construction above might be the output of this algorithm: in Figure 2 the bold edges form a spanning tree F for which the optimal T_{F}-join is the rest of the edges (if we add some more subdivision nodes on the thick red edges). This remark indicates that this simple greedy heuristic to
improve the Christofides algorithm is NP-hard to implement.

References

[1] Attila Bernáth and Zoltán Király, On the tractability of some natural packing, covering and partitioning problems, Proceedings of the 7th Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications, May 31 - June 3, 2011, RIMS, Kyoto University, Kyoto, Japan, 2011, pp. 19-28.
[2] Nicos Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem, Tech. report, CMU, research Report, 1976.
[3] Reinhard Diestel, Graph theory, Springer-Verlag, Electronic Edition, 2005.
[4] Michael R Garey and David S Johnson, Computers and intractability: A guide to the theory of NP-completeness, W. H. Freeman \& Co., New York, NY, USA, 1979.
[5] Jan van den Heuvel, Private communication.
[6] András Sebő and Jens Vygen, Shorter tours by nicer ears: 7/5-approximation for graphic tsp, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs, arXiv preprint arXiv:1201.1870 (2012), (to appear in Combinatorica).
[7] Jed Yang, Some NP-complete edge packing and partitioning problems in planar graphs, ArXiv e-prints (2014), http://adsabs.harvard.edu/abs/2014arXiv1409.2426Y.

[^0]: *Hungarian Academy of Sciences, Institute for Computer Science and Control (MTA-SZTAKI), Budapest, Hungary. Research supported by the ERC StG project PAAl no. 259515, the "Momentum - Big Data" grant of the Hungarian Academy of Sciences and OTKA NK 105645. E-mail: bernath@cs.elte.hu
 ${ }^{* *}$ University of Warsaw, Institute of Computer Science. Email: mjk@mimuw.edu.pl

