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Blocking unions of arborescences

Attila Bernáth? and Gyula Pap??

Abstract: Given a digraph D = (V,A) and a positive integer k, a subset
B ⊆ A is called a k-union-arborescence, if it is the disjoint union of k
spanning arborescences. When also arc-costs c : A → R are given, min-
imizing the cost of a k-union-arborescence is well-known to be tractable.
In this paper we take on the following problem: what is the minimum
cardinality of a set of arcs the removal of which destroys every minimum
c-cost k-union-arborescence. Actually, the more general weighted problem
is also considered, that is, arc weights w : A → R+ (unrelated to c) are
also given, and the goal is to �nd a minimum weight set of arcs the re-
moval of which destroys every minimum c-cost k-union-arborescence. An
equivalent version of this problem is where the roots of the arborescences
are �xed in advance. In an earlier paper [2] we solved this problem for
k = 1. This work reports on other partial results on the problem. We
solve the case when both c and w are uniform � that is, �nd a minimum
size set of arcs that covers all k-union-arbosercences. Our algorithm runs
in polynomial time for this problem. The solution uses a result of Bárász,
Becker and Frank [1] saying that the family of so-called insolid sets (sets
with the property that every proper subset has a larger in-degree) satis�es
the Helly-property, and thus can be (e�ciently) represented as a subtree
hypergraph. We also give an algorithm for the case when only c is uni-
form but w is not. This algorithm is only polynomial if k is not part of
the input.
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1 Introduction

Let D = (V,A) be a digraph with vertex set V and arc set A. A spanning arbores-

cence is a subset B ⊆ A that is a spanning tree in the undirected sense, and every
node has in-degree at most one. Thus there is exactly one node, the root node, with
in-degree zero. Equivalently, a spanning arborescence is a subset B ⊆ A with the
property that there is a root node r ∈ V such that %B(r) = 0, and %B(v) = 1 for
v ∈ V − r, and B contains no cycle. We will also call a spanning arborescence as an
arborescence for short, when the set of nodes is obvious from context. If r ∈ V is
the root of the spanning arborescence B then B is said to be an r-arborescence.
Given also a positive integer k, a subset B ⊆ A is called a k-union-arborescence,

if it is the arc-disjoint union of k spanning arborescences. In the special case when
every arborescence has the same root r, we call B a k-union-r-arborescence.
Given D = (V,A), k and a cost function c : A → R, it is well known how to

�nd a minimum cost k-union-r-arborescence in polynomial time, and to �nd a
minimum cost k-union-arborescence just as well. See [10], Chapter 53.8 for a
reference, where several related problems are considered. The existence of a k-union-r-
arborescence is characterized by Edmonds' Disjoint Arborescence Theorem (Theorem
2), while the existence of a k-union-arborescence is characterized by a theorem of
Frank [4] (see Theorem 3 below). Frank also gave a linear programming description of
the convex hull of k-union-arborescences, generalizing Edmonds' linear programming
description of the convex hull of k-union-r-arborescences. The problem of �nding a
minimum cost k-union-arborescence may also be solved with the use of these results,
either via a reduction to minimum cost k-union-r-arborescences, or minimum weight
matroid intersection.
In this paper we consider the following covering problems, which are polynomial

time equivalent.

Problem 1 (Blocking optimal k-union-arborescences). Given a digraph D =
(V,A), a positive integer k, a cost function c : A → R and a nonnegative weight
function w : A → R+, �nd a subset H of the arc set such that H intersects every
minimum c-cost k-union-arborescence, and w(H) is minimum.

Here the expression "intersects" simply means that the two have nonempty inter-
section. We remark that Problem 1 is polynomially equivalent with the version where
the root is also given in advance, that is, the problem of blocking optimal k-union-r-
arborescences.

Problem 2 (Blocking optimal k-union-r-arborescences). Given a digraph D =
(V,A), a node r ∈ V , a positive integer k, a cost function c : A→ R and a nonnegative
weight function w : A → R+, �nd a subset H of the arc set such that H intersects
every minimum c-cost k-union-r-arborescence, and w(H) is minimum.

In section 3 we will show that the two problems are polynomial time equivalent.
In our previous paper [2] we have solved Problem 1 and Problem 2 in the special

case when k = 1. Our conjecture is that the problem is also polynomial time solvable
when k is not �xed. The main result of this paper is that the problem is polynomial
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Section 2. Notation 3

time solvable when k is part of the input, and both c and w are set to be constant �
that is, when H is required to intersect every k-union-arborescence and we want to
minimize |H|. We also give algorithms for Problems 1 and 2 when c is constant but
w is not, but these algorithms are only polynomial if k is not part of the input.
We remark that the version of Problem 1 and Problem 2 where we set c to be

constant are not easily seen to be equivalent: at least we did not �nd such reductions
(�nd more details in Section 4). Thus it is important to note that in the sequel we will
consider the version of Problem 1 (and not Problem 2 !) with constant cost function
c.
The rest of the paper is organized as follows. In Section 2 we introduce some

notation that we will use. In Section 3 we show that Problems 1 and 2 are polynomial-
time equivalent. In Section 4 we provide general observations on the uniform cost
version of Problems 1 and 2. In Section 5 we give a polynomial algorithm solving
Problem 2 in the case when both c and w are uniform. Finally, in Section 6 we deal
with the uniform cost general weight versions: in Section 6.1 we give an algorithm
for the weighted blocking of k-union-r-arborescences, while in Section 6.2 we give an
algorithm for the weighted blocking of k-union-arborescences. These algorithms are
only polynomial if k is not part of the input.

2 Notation

Let us overview some of the notation and de�nitions used in the paper. The arc set
of the digraph D will also be denoted by A(D). Given a digraph D = (V,A) and a
node set Z ⊆ V , let D[Z] be the digraph obtained from D by deleting the nodes of
V − Z (and all the arcs incident with them). If B ⊆ A is a subset of the arc set,
then we will identify B and the subgraph (V,B). Thus B[Z] is obtained from (V,B)
by deleting the nodes of V − Z (and the arcs of B incident with them). The set of
arcs of D entering Z is denoted δinD (Z), the number of these arcs is %D(Z) = |δinD (Z)|.
An arc-weighted digraph is a triple Dw = (V,A,w) where (V,A) is a digraph and
w : A → R+ is a weight function. For an arc-weighted digraph Dw = (V,A,w) and
subset X of its node set we let %Dw(X) =

∑
{wa : a enters X} denote the weighted

indegree. A subpartition of a subset X of V is a collection of pairwise disjoint non-
empty subsets of X: note that ∅ cannot be a member of a subpartition, but ∅ is a
valid subpartition, having no members at all. For a vector x : A → R and subset
E ⊆ A we let x(E) =

∑
a∈E xa.

3 Equivalence of versions

Theorem 1. The following problems are polynomially equivalent (where Di = (Vi, Ai)
is a digraph, k a positive integer, ci : Ai → R and wi : Ai → R+ for i = 1, 2).

1. Blocking optimal k-union-arborescences (Problem 1): Given D1, k, c1,
w1, �nd H ⊆ A1 so that H intersects every minimum c1-cost k-union-arbores-
cence in D1, and w1(H) is minimum.
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2. Blocking optimal k-union-r-arborescences (Problem 2): Given D2, k, c2,
w2 and a node r ∈ V2, �nd H ⊆ A2 so that H intersects every minimum c2-cost
k-union-r-arborescence in D2, and w2(H) is minimum.

Proof. Problem 2 reduces to Probem 1 by deleting all arcs entering node r from
the input digraph. For the reverse reduction, consider an instance D1, k, c1, w1 of the
Problem 1, and de�ne an instance of Problem 2 as follows. Let V2 = V1+r with a new
node r, and let D2 = (V2, A1∪{rv : v ∈ V1}). Let the costs de�ned as c2(a) = c1(a) for
every a ∈ A1 and c2(rv) = C for every new arc rv (v ∈ V1) where C =

∑
a∈A1

c1(a)+1.
Finally, the weights are de�ned as follows: w2(a) = w1(a) for every a ∈ A1 and
w2(rv) = W for every new arc rv (v ∈ V1) where W =

∑
a∈A1

w1(a) + 1. By these
choices, in the instance to Problem 2 given by D2, k, c2, w2 and r, the minimum c2-cost
k-union-r-arborescences naturally correspond to minimum c1-cost k-arborescences in
D1 (since they will use exactly k arcs leaving r), and for blocking these we will not
use the new arcs because of their large weight.

4 General observations on the uniform cost case

In this section we consider Problem 1 and Problem 2 in the case when c is uniform.
For sake of clarity, we explicitly restate these problems.

Problem 3 (Blocking k-union-arborescences). Given a digraph D = (V,A), a
positive integer k, and a nonnegative weight function w : A→ R+, �nd a subset H of
the arc set such that H intersects every k-union-arborescence, and w(H) is minimum.

Problem 4 (Blocking k-union-r-arborescences). Given a digraph D = (V,A),
a node r ∈ V , a positive integer k, and a nonnegative weight function w : A → R+,
�nd a subset H of the arc set such that H intersects every k-union-r-arborescence,
and w(H) is minimum.

Note that the reduction given in Section 3 shows that Problem 4 is polynomial time
reducible to Problem 3. On the other hand we did not �nd a reduction in the other
direction: Problem 4 seems to be easier than Problem 3.
We �rst recall some de�nitions and results to be used later. First we recall the

fundamental result of Edmonds' characterizing the existence of a k-union-r-arbores-
cence in a digraph.

Theorem 2 (Edmonds' Disjoint Arborescence Theorem, [3]). Given a digraph D =
(V,A), a node r ∈ V and a positive integer k, there exists a k-union-r-arborescence
in D if and only if %D(X) ≥ k for every non-empty X ⊆ V − r.

On the other hand the existence of a k-union-r-arborescence in a digraph is char-
acterized by the following result due to Frank.

Theorem 3 (Frank, [6, 4]). Given a digraph D = (V,A) and a positive integer k,
there exists a k-union-arborescence in D if and only if

∑
X∈X %D(X) ≥ k(|X |− 1) for

every subpartition X of V .
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Note that the condition in the theorem above always (trivially) holds for subpar-
titions having only one member, thus we may only need to check for subpartitions
having at least two members. Furthermore, we may also narrow down to subpartitions
in which every member is an insolid set of the digraph - the notion of insolid sets is
de�ned as follows.

De�nition 1. Given a digraph D = (V,A), a non-empty subset of nodes X ⊆ V is
called in-solid, if %(Y ) > %(X) holds for every nonempty Y ( X.

A simple but useful corollary of the de�nition is the following fact.

Claim 1. Given a digraph D = (V,A) and an arbitrary non-empty subset X ⊆ V ,
there exists an in-solid set X ′ ⊆ X such that %D(X

′) ≤ %D(X).

Note that the insolid set X ′ in this claim can be found in polynomial time (given D
and X), but we will not rely on this fact here. Claim 1 implies that Frank's theorem
can be formulated with insolid sets. We say that a subpartition X is an insolid

subpartition if every member of X is insolid.

Theorem 4 (Equivalent form of Theorem 3). Given a digraph D = (V,A) and a pos-
itive integer k, there exists a k-union-arborescence in D if and only if

∑
X∈X %D(X) ≥

k(|X | − 1) for every insolid subpartition X of V with |X | ≥ 2.

5 The cardinality case

In this section we solve Problem 3 in the case when w ≡ 1 is uniform, too. Note that
the solution of Problem 4 when w ≡ 1 is easy: by Edmonds' Disjoint Arborescence
Theorem the task is to remove all but k − 1 arcs of a minimum cut.
For sake of clarity we state the problem explicitly.

Problem 5. Given a digraph D = (V,A) and a positive integer k, �nd a minimum
size subset H of the arc set such that D−H does not contain a k-union-arborescence.

By Theorem 3, our Problem 5 reduces to �nding a smallest cardinality subset of arcs
which, when removed, will create a violating subpartition. A subpartition X becomes
a violating subpartition if we remove at least

∑
X∈X %D(X)−k(|X |− 1)+1 arcs from

∪{δin(X) : X ∈ X}. Note that this is only possible if
∑

X∈X %D(X)−k(|X |−1)+1 ≤∑
X∈X %D(X), which is equivalent to |X | ≥ 2. Furthermore, by Theorem 4, we can

narrow down to insolid subpartitions. Therefore, Problem 5 is equivalent to the
following problem.

Problem 6. Given a digraph D = (V,A) and a positive integer k, �nd an insolid
subpartition X with |X | ≥ 2 maximizing

∑
X∈X (k − %D(X)).

We solve this problem in two steps: �rst we show how to solve it without the
requirement on the size of the subpartition, and then we show how to force that
requirement. Note that a subpartition X maximizing

∑
X∈X (k − %D(X)) does not

automatically satisfy the requirement |X | ≥ 2: for example in a k-arc-connected
digraph X = {V } is an optimal subpartition. Note that the problem without the
size requirement is a maximum weight matching problem in the hypergraph of insolid
sets, but with the special weight function k − %.
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5.1 Finding an optimal subpartition of unconstrained size

In this section we solve the variant of Problem 6 that comes without the requirement
on the size of the subpartition. In fact we will need the solution of a little more general
problem, namely the following one.

Problem 7. Given a digraph D = (V,A), a nonempty subset V ′ ⊆ V and a positive
integer k, �nd a subpartition X of V ′ maximizing

∑
X∈X (k − %D(X)).

Note that we could restrict ourselves to insolid subpartitions in the problem. The
following simple observation will be useful later.

Claim 2. Given an instance to Problem 7, the subpartition X = ∅ is an optimal
solution if and only if %(X) ≥ k for every nonempty X ⊆ V ′.

For an arbitrary digraph D = (V,A), nonempty subset V ′ ⊆ V and positive integer
k, let BestSubpart(V ′) denote an optimum solution of our unconstrained Problem 7
(that is, a maximizer of max{

∑
X∈X (k − %(X)) : X is a subpartition of V ′}). Note

that BestSubpart(V ) always has at least one member (since the subpartition {V } is
better than the empty subpartition).
Fortunately, the family of insolid sets has a nice structure: as observed in [1], the

family of insolid sets forms a subtree hypergraph, de�ned as follows. (Actually, the
authors of [1] proved that the family of solid sets - the family of all insolid or outsolid
sets - forms a subtree hypergraph, and the subtree representation can be found in
polynomial time. Here we only need the property for the family of insolid sets.)

De�nition 2. A hypergraph H = (V, E) is called a subtree hypergraph if there exists
a tree T spanning the node set V such that every hyperedge in E induces a subtree of
T . The tree T is called a basic tree (or representative tree) for the hypergraph H.

Bárász, Becker and Frank proved that a representative tree for insolid sets exists,
and can be found in polynomial time. The subtree hypergraph property and its
polynomial time construction is quite surprising, given the fact that the number of
insolid sets might be exponential.

Theorem 5 (Bárász, Becker, Frank [1]). The family Fin = Fin(D) of in-solid sets
of a digraph D = (V,A) is a subtree hypergraph. The representative tree can be found
in polynomial time in the size of the digraph.

For a digraph D, let Tin = Tin(D) denote a representative tree for the family Fin
of insolid sets. In fact we will only need to solve Problem 7 for a set V ′ that induces
a subtree of Tin. Observe however that this is not a restriction: if Tin[V

′] is not
connected then solving Problem 7 for the components of Tin[V

′] and taking the union
of the obtained subpartitions gives a solution for V ′. Therefore we may assume in
Problem 7 that V ′ induces a subtree of Tin.
Unfortunately, enumerating all the insolid sets is not possible, because there can be

exponentially many of them (an example can be found in [8]). However, in the case
of insolid sets, the digraph itself provides a succint representation, thus we can query
Fin through certain oracles using the likes of minimum cut algorithms.
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We cite the following theorem that characterizes the optimum in Problem 7 for an
arbitrary subtree hypergraph. (Note that the notion of subtree hypergraphs is very
general, and thus this min-max is outside of the realm of e�cient algorithms, because
a subtree hypergraph may not be given as part of the input. The theorem holds
anyway, and we will apply in a way that it also implies a polynomial running time.)
For sake of completeness, we also provide a proof and algorithm here.

Theorem 6 (Frank [5]). If E ⊆ 2V
′
is a subtree hypergraph and val : E → R+ is a

weight function then

max{
∑
e∈E ′

vale : E ′ is a collection of disjoint members of E} = (1)

min{
∑
v∈V ′

yv : y : V ′ → R, y ≥ 0,
∑
v∈e

yv ≥ vale for every e ∈ E}. (2)

Proof. We give an algorithmic proof of this theorem. Consider the following LP
problem.

max
∑
e∈E

valexe (3)

x : E → R, x ≥ 0, (4)∑
e:v∈e

xe ≤ 1 for every v ∈ V ′. (5)

This LP is a relaxation of the maximum weight matching problem given in (1), while
its LP dual is the minimization problem (2). Weak duality shows that the maximum
in the theorem cannot be larger than the minimum. For the proof we need to show
that the primal LP has an integer optimum solution for every weight function val.
This is shown by the following dynamic programming algorithm. A sketch of the
below algorithm goes as follows: Initially, we set node weights yv to be very large.
We specify a node r to be the root of the representative tree T , and start scanning
the tree taking the leaves �rst. When a node v is scanned, its weight yv is lowered
as much as possible to maintain dual feasibility. When all nodes are scanned, E ′ is
set up by tight sets, starting with one covering the node with positive weight closest
to the root node, and recursively, adding tight sets for the remaining components.
(A set e ∈ E is said to be tight with respect to the given feasible dual solution y if∑

v:v∈e yv = vale.) The algorithm is detailed below.

Algorithm MaxWeightMatching(V ′, T, E , val)
begin
INPUT: A tree T on node set V ′, a family E ⊆ 2V

′
of subtrees of T , and a weight

function val : E → R (E and val are available via certain oracles: see later).
OUTPUT: A collection E ′ of disjoint members of E and a dual solution y of the LP
Problem (3)-(5) so that

∑
e∈E ′ vale =

∑
v∈V ′ yv.

1.1. Find some value M with M > maxe∈E vale.
1.2. Initialize yv =M for every v ∈ V ′.
1.3. Fix an arbitrary node r ∈ V ′ and orient T out of r to get ~T .
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1.4. Let r = v1, v2, . . . , vn be an order of the nodes of V so that vivj ∈ ~T implies

that i < j. Let Vi be the node set of the subtree of ~T rooted at vi for every i.
1.5. For every i = n, n− 1, . . . , 1
1.6. Decrease yvi as much as possible so that y remains feasible for Problem

(2): let ei be a minimizer of min{y(e) − vale : vi ∈ e ∈ E , e ⊆ Vi} and
let yvi = max(valei − y(ei − vi), 0) (note that ei becomes tight, if yvi stays
positive).

1.7. Let i = 1, S = ∅ and E ′ = ∅. //Throughout S ⊆ V and E ′ ⊆ E
1.8. For i = 1, 2, . . . , n do
1.9. If yvi > 0 and vi 6∈ S then
1.10. Let E ′ := E ′ + {ei} and S := S ∪ ei
1.11. Output E ′ and y.
end

The algorithm clearly proves the minmax theorem. In order to implement it in
polynomial time in n = |V ′| we have to provide the subroutines needed in Steps 1.1
and 1.6.

Oracles for insolid sets Next, we analyze this algorithm for the solution of Prob-
lem 7 to show that it can be implemented in polynomial time when E is the family of
insolid sets and vale = k − %D(e) (for this weight function y(e) ≥ vale ∀e ∈ E implies
y(Z) ≥ k − %D(Z) for every non-empty Z ⊆ V ). For that, we need to establish sub-
routines for Steps 1.1 and 1.6 that have running time polynomial in the size of the
graph.
It is easy to realize Step 1.1 of Algorithm MaxWeightMatching: M = k+ 1 will be

a good choice.
Step 1.6 can be realized with minimum cut computation as follows. Let Vi = V (Tvi)

be the node set of the subtree of T rooted at vi and de�ne a digraph D′ = (V + s, A′)
as follows: add a new node s to D, introduce an arc sv from s to every v ∈ Vi of
multiplicity yv (note that y stays integer during the algorithm). Then by a minimum
cut algorithm we �nd an inclusionwise minimal minimizer Z of min{%D′(Z) : vi ∈
Z ⊆ Vi}. We claim that if y(Z − vi) < k − %(Z) (that is, y(vi) will not decrease to
0) then Z is in-solid in D. By Claim 1, there is an insolid (D-insolid, to be precise)
set Z ′ ⊆ Z such that %D(Z

′) ≤ %D(Z). If vi ∈ Z ′ then Z ′ = Z by our choice of Z.
If vi /∈ Z ′, then y(Z ′) + %D(Z

′)− k ≤ y(Z − vi) + %D(Z)− k < 0, contradicting with
y(Z ′) ≥ k − %D(Z ′). In other words, we in fact maintain y(Z) ≥ k − %D(Z) for every
non-empty Z ⊆ V ′ (besides non-negativity of y), and in Step 1.6 the set Z = ei we
�nd is insolid only if y(vi) does not decrease to zero.
This �nally proves that Problem 7 can be solved in polynomial time.

5.2 Enforcing the size requirement

For an arbitrary digraph D = (V,A), nonempty subset V ′ ⊆ V and positive integer
k, recall that BestSubpart(V ′) denotes an optimum solution of our unconstrained
Problem 7 (that is, a maximizer of max{

∑
X∈X (k − %(X)) : X is a subpartition
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of V ′}). This can be found in polynomial time by the previous section: for a set
V ′ that induces a subtree of Tin we have BestSubpart(V ′) directly in the output of
MaxWeightMatching(V ′, Tin[V

′],Fin[V ′], k − %D), where Fin[V ′] denotes the family
of insolid sets contained in V ′.

Algorithm BestConstrSubpart(D, k)
begin

INPUT: A digraph D = (V,A) and a positive integer k.
OUTPUT: A maximizer of max{

∑
X∈X (k − %(X)) : |X | ≥ 2,X is a subpartition

of V }
1.1. If the subpartition BestSubpart(V ) has at least 2 members then output this and

STOP.
1.2. Let T = Tin be a basic tree of D.
1.3. For every edge e of T consider at most 3 candidates de�ned as follows.
1.4. Let V1 and V2 be the node sets of the 2 components of T − e.
1.5. For i = 1, 2, let Xi be an inclusionwise minimal minimizer of min{%D(X) : ∅ 6=

X ⊆ Vi} (which can be found with minimum cut computations).
1.6. For both i = 1, 2, let Pi =BestSubpart(Vi).
1.7. Candidate 0 is {X1, X2}.
1.8. If |P1| ≥ 1 then Candidate 1 is P1 ∪ {X2}.
1.9. If |P2| ≥ 1 then Candidate 2 is P2 ∪ {X1}.
1.10. Output the best of the candidates above.
end

Theorem 7. Algorithm BestConstrSubpart is correct.

Proof. Clearly, the Algorithm outputs a feasible solution (that is, a subpartition with
at least 2 members), since all its candidates are feasible. Let P be an optimal insolid
subpartition. The proof is complete if we show that one of the candidates is at least
as good as P . Choose an edge e of Tin so that one of the components (call it V1) of
T−e contains only one member of P . If P has only 2 members then clearly Candidate
0 for the edge e is not worse than P , so we can assume that |P| ≥ 3. Let V2 be the
other component of T − e. If BestSubpart(V2) has at least 1 member then Candidate
2 is not worse than P . But if BestSubpart(V2) has no members then Claim 2 gives
that %Dw(X) ≥ k for every nonempty X ⊆ V2, therefore Candidate 0 should not be
worse than P , �nishing the proof.

The following example shows that even if BestSubpart(V ) is not feasible (that is,
it has only 1 member), BestConstrSubpart(V ) might have more than 2 members: let
k = 4 and the digraph be directed circuit of size 3, where every arc has multiplicity 3.

5.3 Analysis

In the algorithm designed above to solve Problem 6, we apply two steps. In the �rst
step (Step 1.2) we determine a basic tree representation of the in-solid sets, which
according to [1] can be done in n3S(n,m) time, where n is the number of nodes and
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m is the number of edges in D, and S(n,m) denotes the time complexity of �nding a
minimum s − t-cut in a digraph with n nodes and m arcs. In the second step (Step
1.6), we apply our algorithm for Problem 7 for O(n) di�erent subsets U of V , which
are determined by removing an edge from the basic tree. For any given subset U ,
Problem 7 is solved in time nS(n+ 1, 3m), since we apply a minimum cut algorithm
to determine the value of y(v) for all nodes v in U by a minimum cut computation for
graphs of at most n+ 1 nodes and at most m+ kn arcs. (To see this, note that only
one node s is added to the graph, and the number of arcs added is equal to the sum of
y(v)'s, which is equal to the sum

∑
X∈π(k− %(X)) over a partition π of U + s.) Note

that kn ≤ 2m, since otherwise there may be no k disjoint arborescences. The total
running time for the algorithm amounts to n2S(n + 1, 3m). Thus, by using Orlin's
algorithm [9] for minimum cut computations, the running time is bounded by O(n4m)
(the bottleneck being Step 1.2).

6 The weighted case

In this section we solve Problems 3 and 4. Our algorithms are only polynomial if k is
�xed (not part of the input).

6.1 Weighted blocking of k-union-r-arborescences

First we give an algorithm solving Problem 4. By Edmonds' disjoint arborescence
theorem, the optimum solution will be all but k − 1 arcs entering a nonempty subset
X ⊆ V − r. Thus what we do is that we guess which k − 1 arcs remain.

Algorithm Blocking-k-union-r-arborescences
begin

INPUT: A digraph D = (V,A), a weight function w : A→ R+, a node r ∈ V , and
a positive integer k. (We assume that %(r) = 0.)
OUTPUT: A subset H of the arcs so that there is no k-union-r-arborescence in
D −H and w(H) is minimum.

1.1. Let best =∞.
1.2. For any subset E of A with |E| = k − 1 do
1.3. Find a minimizer X0 of min{%Dw−E(X) : ∅ 6= X ⊆ V − r}.
1.4. If %Dw−E(X0) < best then let best = %Dw−E(X0) and H = δinD−E(X0)
1.5. Output H.
end

This algorithm runs in time O(mkHO(n,m)) time where HO(n,m) denotes the
time complexity of determining min{%Dw(X) : ∅ 6= X ⊆ V − r} in an arc-weighted
digraph Dw with n nodes and m arcs. Using the algorithm of Hao and Orlin [7] we
have HO(n,m) = O(nm log(n2/m)), giving that Algorithm Blocking-k-union-r-
arborescences has running time O(mknm log(n2/m)).
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6.2 Weighted blocking of k-union-arborescences

Now we turn to Problem 3.

Claim 3. Given a digraph D = (V,A) that contains a k-union-arborescence, let H ⊆
A such that D −H does not contain a k-union-arborescence, and H is inclusionwise
minimal to this property. Then there exists a subpartition X of V such that 2 ≤ |X | ≤
k + 1 and

∑
X∈X %D−H(X) = k(|X | − 1)− 1.

Proof. By Theorem 3, there exists a subpartition X of V such that
∑

X∈X %D−H(X) <
k(|X | − 1): choose such an X with |X | smallest possible. By this minimal choice of
X , %D−H(X) < k for every X ∈ X (if %D−H(X) ≥ k for some X ∈ X then X − {X}
would just as well do). If |X | > k+ 1 then let X ′ ⊆ X be arbitrary with |X ′| = k+ 1
and observe that

∑
X∈X ′ %D−H(X) ≤ (k + 1)(k − 1) < k2, contradicting the minimal

choice of X . Therefore |X | ≤ k+ 1 indeed holds (|X | ≥ 2 is straightforward). By the
minimality of H, H ⊆ ∪X∈X δinD (X) and

∑
X∈X %D−H(X) = k(|X | − 1)− 1.

By Claim 3, the optimum solution of Problem 3 will be all but k(|X | − 1)− 1 arcs
from a set ∪X∈X δin(X) for some subpartition X with 2 ≤ |X | ≤ k+1. Our algorithm
below guesses this set of remaining arcs. As a subroutine we need an algorithm solving
the following problem.

Problem 8. Given a digraph D = (V,A), a weight function w : A → R+ and
a positive integer t, determine min{

∑
X∈X %Dw(X) : X is a subpartition of V and

|X | = t}.

This problem will be solved in Section 6.2.1.

Algorithm Blocking-k-union-arborescences
begin

INPUT: A digraph D = (V,A), a weight function w : A → R+, and a positive
integer k.
OUTPUT: min{w(H) : there is no k-union-arborescence in D −H}.

1.1. If there is no k-union-arborescence in D then output 0 and STOP.
1.2. Let best =∞.
1.3. For t = 2, 3, . . . , k + 1 do
1.4. For every E ⊆ A of size k(t− 1)− 1 do
1.5. Let candidate = min{

∑
X∈X %Dw−E(X) : X is a subpartition of V and

|X | = t}.
1.6. If candidate < best then best = candidate.
1.7. Output best.
end

For sake of simplicity we formulated Algorithm Blocking-k-union-arbores-
cences so that it outputs the weight of the optimal arc set that blocks all k-union-
arborescences: the algorithm can be obviously modi�ed to return the optimal arc set
instead. The running time of Algorithm Blocking-k-union-arborescences will
be analyzed in Section 6.2.2. The proof of correctness is as follows. Let alg be the
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output of Algorithm Blocking-k-union-arborescences and opt = w(OPT ) be
the optimum solution. Clearly, opt ≤ alg. On the other hand, by Claim 3, there exists
a subpartition X such that

∑
X∈X %D−OPT (X) = k(|X | − 1)− 1 and 2 ≤ |X | ≤ k+ 1;

for E = ∪X∈X δinD−OPT (X) the algorithm will �nd a candidate that is not worse than
opt.

6.2.1 Solution of Problem 8

In this section we solve Problem 8 that is used in Step 1.5 of Algorithm Blocking-

k-union-arborescences. Clearly, we can assume that the optimal soltution is an
insolid subpartition. Note the di�erence between this problem and Problem 6: here
we have exact restriction on the size of the subpartition to be found, not just a lower
bound.

Algorithm Best-Fixed-Subpart

begin
INPUT: A digraph D = (V,A), a weight function w : A → R+, and a positive
integer t.
OUTPUT: min{

∑
X∈X %Dw(X) : X is a subpartition of V and |X | = t}.

1.1. Let T be a representative tree for the insolid sets of the weighted digraph Dw.
1.2. Let best =∞
1.3. For every F ⊆ E(T ) of size t− 1 do
1.4. Let Z1, Z2, . . . , Zt be the node sets of the connected components of T − F .
1.5. Let candidate = 0
1.6. For i = 1, 2 . . . , t do
1.7. candidate += min{%Dw(X) : ∅ 6= X ⊆ Zi}.
1.8. If candidate < best then best = candidate.
1.9. Output best.
end

The proof of correctness of Algorithm Best-Fixed-Subpart is left to the reader.

6.2.2 Running time

In this section we analyze the running time of AlgorithmBlocking-k-union-arbores-
cences. Let n and m denote the number of nodes and arcs of the input digraph D.
Recall that S(n,m) denotes the time complexity of �nding a minimum s− t-cut in a
weighted digraph with n nodes and m arcs, and similarly HO(n,m) denotes the time
complexity of determining min{%Dw(X) : ∅ 6= X ⊆ V ′}, where V ′ ⊆ V . The run-
ning time of Algorithm Best-Fixed-Subpart is nt−1HO(n,m) plus the time needed
to determine the representative tree T , which can be done in time O(n3S(n,m)),
as mentioned in Section 5.3. Thus we get O(mk2(nkHO(n,m) + n3S(n,m))) as
an overall complexity for Algorithm Blocking-k-union-arborescences. Sub-
stituting S(n,m) = O(nm) ([9]) and HO(n,m) = O(nm log(n2/m)) ([7]) we get
O(mk2(nk+1m log(n2/m) + n4m)) for the running time.
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