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Algorithms

Tamás Fleiner and Zsuzsanna Jankó ?

Abstract

We build an abstract model, closely related to the stable marriage problem
and motivated by Hungarian college admissions. We study different stability
notions and show that an extension of the lattice property of stable marriages
holds in these more general settings, even if the choice function on one side
is not path independent. We lean on Tarski’s fixed point theorem and the
substitutability property of choice functions. The main virtue of the work is
that it exhibits practically interesting examples where not path independent
choice functions play a role and proves various stability-related results.

Keywords: stable machings, college admission, choice function, lattice

1 Introduction

In this paper, we study different generalizations of Gale and Shapley’s marriage and
college admissions model. In the original model, there are n men and n women, and
each of them has a preference order on the members of the other gender. Gale and
Shapley proved [1] that there always exists a stable solution and it can be found
with the so-called deferred acceptance algorithm. The output of this algorithm is a
man-optimal solution – or, if we change the role of the genders, a woman-optimal
one. In these stable marriage schemes one side of the marriage market receives the
best and the other side the worst possible partners. An observation attributed to
Conway generalizes man and woman optimality. It states that stable marriages form
a complete lattice for the partial order defined by the men. That is, if S1 and S2 are
two stable marriage schemes and each man chooses the better out of his partners,
then these choices determine another stable marriage scheme, denoted by S1 ∨ S2. If
men choose their less preferred partners we get the stable scheme S1 ∧ S2.

?Both authors are members of the MTA-ELTE Egerváry Research Group. Research was sup-
ported by OTKA grants K108383 and K109240.
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Section 1. Introduction 2

Similar applies to colleges and students. It is important for both the marriage and
the college models that each agent on the market has strict preference orders. If
we allow ties in the preference orders then there are three well-known extensions of
stability: we can talk about weakly stable, strongly stable and superstable solutions.

The motivation of this work is a fourth notion that we call “score-stability”. This
is the objective of the centralized mechanism that constructs the college admissions
scheme in Hungary. We use the following rough model for the Hungarian college
admissions problem. Each student submits a set of applications to different colleges
and declares a linear preference order over these applications. Each college has a
strict quota on the number of admissible students. There is a score assigned to each
application based on the entrance exams. After all this information is known, each
college declares a score limit and each student is accepted at the first college on her
preference list where her score is not below the appropriate limit. These score limits
have to be stable, that is no college receives more students than its quota, moreover,
each college would receive more students than its quota if it lowers its score limit
while the other ones keep theirs.

Our models can also be described with substitutable choice functions, as in the
paper of Kelso-Crawford [2], but out choice functions are not necessarily path inde-
pendent. A well-known result of Blair in [3] generalizes the case of strict preferences,
by proving that if both sides of the matching market has path independent substi-
tutable choice functions, then stable solutions form a lattice under a natural partial
order. It seems that in the literature, most of the practically interesting stability no-
tions involve a path independent choice function. (Because if authors define a choice
function with subset-ordering, that implies path independence. ) A counter-example
to this is the Hungarian college entrance mechanism that outputs a stable solution,
even though the choice functions are certainly not path independent. We shall gen-
eralize Blair’s theorem for models involving non-path independent choice functions.
It turns out that if we drop the path independent property then it is not at all clear
what exactly a stable solution is. For this reason, we study four kinds of stabilities:
dominating stability, 3-stability (that is defined by a 3-partition of the contract set),
4-stability (that comes from a 4-partition of the contract set) and score-stability. This
last notion is also generalized to so called “loser-free” choice functions, allowing us
to work with more flexible models describing diverse market situations like company-
worker admissions with no strict preference ordering on the company’s side.

We compare the above four different stability notions. We shall examine the con-
nections between the definitions in regard to the path independent property. Aygün
and Sönmez [4] showed that if F , G are substitutable and path independent choice
functions then 3-stable and dominating stable sets are equivalent, but if F and G
are not path independent, then none of the directions is true. We extend this by
considering the other two stabilities (4-stability and score-stability) as well.

Our model has features similar to that of Azevedo and Leshno [5] about stable
cutoffs, but when they considered continuum number of students, the probability of
ties between students was 0. In their discrete model, colleges had strict preference
order over students (so the choice function is path independent), hence a college
refuses someone only if its quota is full. However, in our model, a college may refuse
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someone while it still has free seats.
In Section 2, we define some basic notations about stable matchings. Section 3

describes four different stability concepts, including the Hungarian college admissions
model. In Section 4, we utilize Tarski’s fixed point theorem to give algorithms for
finding the two extreme solutions, while we study the lattice property in Section
5, where it turns out that domination stability is not so useful – however, using 4-
stability, it is relatively easy to extend Blair’s theorem. We conclude in Section 6 and
the Appendix contains the proofs of the Theorems, Statements and Lemmas missing
from the previous sections.

2 Preliminaries

In the stable marriage model, there are n men: M = m1, . . .mn and women: W =
w1, . . . wn, each of them having a strict preference order on the members of the other
gender. Let G be a bipartite graph with colour classes M and W , and let E – the set
of edges in G – denote the possible marriages.

In this work, contract and edge are synonyms of one another. Thex both describe
a possible marriage or admission. The notion of a contract was introduced in [6].
Our model originally does not include money transfer or wages, the set of contracts
is the set of edges of some underlying bipartite graph G. However, we may allow
multiple edges between two vertices of G and by this, we can model discrete prices
on the contracts, since discrete monetary transfers are equivalent to the possibility of
multiple contracts.

The notation w <m w′ means that man m prefers woman w′ to w. A subset S
of contracts is a matching or marriage scheme in G if no vertex of G is adjacent to
more than one edge in S. A matching S ⊆ E can also be described as an involution
µ : M ∪ W → M ∪ W such that if m and w are married (that is, (m,w) ∈ S)
then µ(m) = w and µ(w) = m, and for an unmatched agent a we define µ(a) = a.
A marriage scheme S is called stable if for any pair (m,w) /∈ S, µ(m) >m w or
µ(w) >w m holds. Men’s preferences define a partial order on stable marriage schemes:
S ≥M S ′, if µ(mi) ≥mi

µ′(mi), for all mi ∈ M and S >M S ′, if S ≥M S ′ and there
exists a man mi such that µ(mi) >mi

µ′(mi). Similarly, there is another partial
ordering ≥W defined by the women. It is well-known that a marriage scheme is
unanimously better for men if and only if it is unanimously worse for women.

Definition 2.1. We call a stable matching S male-optimal (female-optimal) if it is
better for the men (women) than any other stable matching: S ≥M S ′ (S ≥W S ′) for
every stable matching S ′.
A stable matching S is male-pessimal (female-pessimal) if S ≤M S ′ (S ≤W S ′) for
every stable matching S ′.

The Gale-Shapley (or deferred acceptance) algorithm consists of rounds. In each
round, every unengaged man proposes to the most-preferred woman to whom he has
not yet proposed. Each woman then considers all her suitors and keeps her most
preferred one and refuses the others. In the next round all rejected men continue
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proposing to their next choice. The algorithm terminates if no new proposal occurs.
This happens after at most const ·n2 steps since every man proposes to every women
at most once. The outcome of the algorithm is always a stable marriage scheme.

Theorem 2.2. [1] The stable marriage scheme given by the deferred acceptance al-
gorithm is male-optimal and female-pessimal.

Knuth in [7] attributes the observation to John Conway that stable marriages form
a distributive lattice.

Theorem 2.3 (Conway). Assume that S1 and S2 are two stable marriage schemes.
Let every men choose the better of his partners in S1 and S2. This way we get a stable
maching that we denote by S1 ∨ S2.

If the women choose their better partner we get stable matching S1 ∧S2. It follows
that stable marriages form a lattice. Our models are based on the choice functions we
describe next. We shall see that “traditional” models nicely fit this non-traditional
framework.

Definition 2.4. Set function F : 2E → 2E is called a choice function if F (A) ⊆ A
holds for any subset A of ground set E.

For convenience, for a choice function F , let F (A) = A \ F (A) denote the set of
unselected elements. We list some important properties of set functions.

Definition 2.5. A set function F : 2E → 2E is monotone if F (A) ⊆ F (B) whenever
A ⊆ B ⊆ E holds.
A set function F : 2E → 2E is antitone if F (A) ⊇ F (B) whenever A ⊆ B ⊆ E holds.
A choice function F : 2E → 2E is substitutable (sometimes called comonotone) if
F (A) ⊆ F (B) for any A ⊆ B. (That is, if F is a monotone function.)

The substitutable property was originally defined by [2] with prices, differently from
our definition. It was showed in e.g. [6] that substitutability is equivalent with the
property that if an agent chooses from an extended set of contracts, the set of rejected
contracts expands.

Definition 2.6. A choice function F : 2E → 2E is path independent, if F (A) ⊆ B ⊆ A
implies F (A) = F (B) for any subsets A and B of E.

Path independence is called “irrelevance of rejected contracts (IRC)” in the paper
of Aygün and Sönmez [4]:

Definition 2.7. [4] Contracts satisfy the irrelevance of rejected contracts (IRC) for
choice function F if ∀Y ⊂ X, ∀z ∈ X \ Y z /∈ F (Y ∪ {z})⇒ F (Y ) = F (Y ∪ {z})

Crearly, if the set of contracts is finite, this is equivalent to our path independence
definition.

There is an alternative way to define path independence:
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2.1 Examples for choice functions 5

Theorem 2.8. [See e.g. [8]] For a substitutable choice function F , path independence
of F is equivalent to that F (A∪B) = F (F (A)∪ F (B)) hold for any sets A and B of
choices.

Sometimes the choice function is defined by a strict preference order over all subsets
of E, such that F (A) is that subset of A that is the first in the order. In that case,
the choice function will be automatically path independent, since if the best set in A
is S and S ⊆ B ⊆ A then the best set in B is S as well. We will see however, that
typical scoring choice functions are not path independent. So we shall study more
generally not necessarily path independent functions.

We can define the direct sum of two choice functions: ifX∩Y = ∅ and F1 : 2X → 2X ,
F2 : 2Y → 2Y , F : 2X∪Y → 2X∪Y , then F = F1 +F2 means that for every A ⊆ X ∪ Y ,
F (A) = F1(A ∩X) ∪ F2(A ∩ Y ).
For example, on the graph of possible marriages w1 chooses from the contracts w1mi,
and w2 chooses from the contracts w2mi (so these two sets are disjoint). The sum of
all women’s choice function will choose from all of the contracts.

2.1 Examples for choice functions

Here we list some typical choice functions. Some of them are coming from practical
applications, while some others are mostly theoretical, illustrating the flexibility of
substitutable choice functions.
Let v be an agent (i.e. a vertex of G = (V,E)) and let E(v) be the set of possible
contracts involving v (i.e. the edges from v).

1. Agent v’s preferences are strict and always chooses the best one: F (X) = best
member of X.

2. Preferences are strict and we allow polygamy (i.e. a college can have more than
one student). The choice function picks the best k contracts for some fixed k:
F (X) = best k members of X. If |X| ≤ k then F (X) = X.

3. We allow ties in the preference list. Here v chooses the best partner if it is
unique and chooses the empty set if there are more than one best partners.

4. We allow ties in the preference list. Agent v chooses the best partner if it is
unique and it chooses the set of best partners if there are two or more.

5. Let Qk be the following choice function on E(v): For A ⊆ E(v), if |A| ≤ k then
Qk(A) = A, and if |A| > k then Qk(A) = ∅.

6. Hungarian (H-scoring) choice function: Every contract has a certain integral
score: in the college admissions model this is the number of points that the
corresponding student reached at the particular college’s entrance exam. There
is also a quota q, if X is a given set of contracts then v picks score t such that
there are k contracts in X having a score at least t and k ≤ q and there are
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more than q contracts received a score at least t− 1. If no such t exists then v
picks t = 0. The choice function selects the contracts from X having a score at
least t. For example, if v is offered four contracts with scores 3, 2, 2, 1 and the
quota is q = 2, then v chooses only the best contract with score 3 (i.e. t = 3).

7. Permissive (L-scoring) choice function: Agent v has a quota q, but it might
choose more than q contracts. Namely, v chooses the best k2 ≥ q contracts in a
way that it chooses the best k ≤ q using the previous H-scoring method (with
score limit t), and if k < q, then v adds the next group of applicants with score
t − 1. If the H-scoring function chooses exactly k = q applicants, then v keeps
them and does not add new students. Score-stability defined with this choice
function was called L-stable in [9]. In the previous example, v would set the
score limit at 2 and pick three applicants with scores 3, 2, 2.

8. The weighted scoring choice function is similar to the H-scoring choice function,
except every contract also has a cost. Agent v has a budget k instead of a quota
q. For a given X set of contracts v determines t in such a way, that the total
cost of contracts having a score of at least t is not more than k, but the total
cost of contracts having a score of at least t − 1 is more than k. If no such t
exists then t = 0. Now v chooses those contracts from X that have a score of
at least t. For example, if v has 4 applicants according to the table below

a1 a2 a3 a4
scores 4 3 2 1
cost 9 5 5 1

and the budget is 10, then v chooses only a1. (Agent v cannot skip some
applicants and choose cost 9 + 1.)

9. Strict hierarchical choice function: Agent v has a linear preference list over
contracts and there is a downward closed set-system I of subsets of E(v) (that
is, if A ∈ I, B ⊆ A, then B ∈ I).

Let k be the greatest number such that the set of k best contracts of set X
belongs to I. Now, C(X) is the set of these k best applicants.

10. Weak hierarchical choice function: Agent v has a weak preference order (ties
are allowed) over the contracts and there is a downward closed set-system I
of subsets of E(v) . Let k be the greatest number such that the set of k best
contracts of set A is in I and among equally good contracts we choose all or
none. Now, C(A) is the set of these k best applicants.

Statement 2.9. If the costs are increasing (a contract with lower score is more ex-
pensive), then the weighted scoring choice function is path independent.

Proof. From set A, the college’s preference order is c1 ≥ c2 · · · ≥ cn (contract c1 has
the best score, cn has the worst). If F (A) ⊆ B ⊆ A, and F (A) = {c1, c2 . . . ck} then
by definition the college cannot add the next best applicant ck+1 to F (A). Other
contracts in B \F (A) are more expensive than ck+1, so the college cannot choose any
of them, so F (B) = F (A).
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Definition 2.10. Assume that each contract c has some score s(c). A choice function
F is loser-free if any rejected contract has lower score than any accepted contract.
That is, s(c′) < s(c) holds whenever c ∈ F (X) and c′ ∈ X \ F (X).

Note that the above examples 1, 2, 4, 7 are path independent. All of the above
examples are substitutable and loser-free.

Remark 2.11. Any weighted scoring choice function is weak hierarchical and any
weak hierarchal is loser-free. However, not every loser-free choice function is weak
hierarchical:

Example 2.12. If a > b > c and F (A) = A if |A| ≤ 2 and F ({a, b, c}) = {a}, then
F is loser-free and substitutable, but: F ({a, b}) = {a, b}, so {a, b} is supposed to be a
set in I, however F ({a, b, c}) 6= {a, b} so this function is not hierarchical.

Not every weak hierarchical is a weighted scoring choice function:

Example 2.13. The set of contracts is E = {a, b, c, d}, the preference order is a > b >
c > d and I = {∅, {a}, {b}, {c}, {d}, {a, b}{c, d}} so for example F ({a, b, c}) = {a, b}.
But if we want to descibe it with weights: the weight limit is Q. Sets {a, b} and {c, d}
are under Q but {a, c} and {b, d} are “heavier” than Q. So {a, b, c, d} are under and
above 2Q at the same time. Contradiction.

3 Stability concepts

In this section we formulate different stability concepts that we shall study later.

3.1 Dominating stability

In the original stable marriage model, a matching is stable, if it dominates every other
contract, so for every e = (m,w) /∈ S, either µ(m) >m e or µ(w) >w e. A natural
generalization of the notion is dominating stability. In the article of Hatfield and Mil-
grom [6] they defined stable allocations similar to our dominating stability definition.
They said that a doctor-hospital allocation is stable if there is no blocking contract
set.
Unfortunately, it turns out that for non path independent choice functions, a domi-
nating stable solution might not exist. Although this is the direct generalization of the
original stability notion of Gale and Shapley, it seems that in practical applications
this notion does not help too much.

Definition 3.1. We say that an contract-set X is F -dominated by S if F (S∪X)∩X =
∅.

It means if the agent can choose from the union of sets S and X, he will choose S
or a subset of S. Based on this we introduce the dominating function:
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3.1 Dominating stability 8

Definition 3.2. For choice function F : 2X → 2X let dominating function

DF (A) := {x ∈ X : x /∈ F (A ∪ {x})}

denotes the set of contracts F -dominated by A.

Note that DF (A) ∩ A = F (A)

Statement 3.3. If F is a substitutable choice function then DF is monotone.

Proof. Let A ⊆ B. If x ∈ DF (A) then x /∈ F (A ∪ {x}) ⇒ x ∈ F (A ∪ {x}). Since F
is substitutable, x ∈ F (B ∪ {x}) ⇒ x /∈ F (B ∪ {x}) so x ∈ DF (B).

Examples for choice functions and corresponding dominating functions:

Example 3.4. F1 = Q1: There are two students interested in the same college, with
equal scores, but the quota is one. If someone applies alone he is accepted, but if both
of them apply the college rejects both.
F2 = Q2: There are two students applying for the same college, with equal scores, the
quota is two, so everybody is accepted.
F3: There are two students applying for the same college, a is better then b, the quota
is one. So the college chooses a.

∅ {a} {b} {a, b}
F1 ∅ {a} {b} ∅
DF1 ∅ {b} {a} {a, b}
F2 ∅ {a} {b} {a, b}
DF2 ∅ ∅ ∅ ∅
F3 ∅ {a} {b} {a}
DF2 ∅ {b} ∅ {b}

The dominating function has some properties, that will be useful later.

Lemma 3.5. If F is substitutable and path independent, then
F (A) = S ⇔ DF (S) ∩ A = A \ S.
This means the set A \ S is dominated by S if and only if each contract c ∈ A \ S is
dominated by S.

Lemma 3.6. If F is substitutable, path independent and F (A) = S, then DF (A) =
DF (S).

Definition 3.7. Subset S of E is dominating stable, if DF (S) ∪ DG(S) = E \ S.

So every e /∈ S is either F -dominated or G-dominated by S.

Remark 3.8. If S is dominating stable then F (S) = S = G(S), so the set S is
acceptable for both sides.
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3.2 3-stability 9

Proof. Suppose that s ∈ S\F (S). Then by definition, s ∈ DF (S), but DF (S) ⊆ E\S,
a contradiction. For G, a similar proof applies.

Example 3.9. Men and women have strict preferences, F is the common choice
function of men, G is the common choice function of women, which choose the single
best option for every player. If S is dominating stable, then from F (S) = S = G(S),
set S is a matching, and for every e = mw /∈ S contract e /∈ F (S ∪ {e}) or e /∈
G(S∪{e}), so one of m and w does not want to choose mw instead is his/her current
marriage. So in this case dominating stability is equivalent to the original stable
marriage definition of Gale and Shapley.

Note that even for substitutable F and G, a dominating stable solution does not
always exists.

Example 3.10. Let F and G be the following functions, defined on a set of three
contracts: {a, b, c}. F chooses everything, G prefers a to b, b to c and c to a.
Now F is substitutable, path independent, and G is substitutable but not path inde-
pendent.

∅ {a} {b} {c} {a, b} {b, c} {a, c} {a, b, c}
F ∅ {a} {b} {c} {a, b} {b, c} {a, c} {a, b, c}
G ∅ {a} {b} {c} {a} {b} {c} ∅
DF ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
DG ∅ {b} {c} {a} {b, c} {c, a} {a, b} {a, b, c}

Suppose that S is dominating stable, since G(S) = S, the cardinality of S is at most
one. But then DF (S) ∪ DG(S) = DG(S) 6= E \ S, because every contract dominates
only one other contract.

A similar example appeared in [4].

3.2 3-stability

Fleiner defined the following stability concept, for a two-sided market, where the
choice functions of each side over the contracts are F and G:

Definition 3.11. [8] Subset S of E is 3-stable, if there exists subsets A and B of E,
such that F (A) = S = G(B) and A ∪ B = E, A ∩ B = S. Pair (A,B) with this
property is called an 3-stable pair, and S is an 3-stable set.

The explanation of the name 3-stable is that we partition the set E of contracts to
into three parts: S, A \ S and B \ S where S is stable, A \ S is F -dominated by S,
B \ S is G-dominated by S.

In the original marriage model, F and G select the one best partner for the men
and women. It is easy to see that every 3-stable set S is a matching, and it is stable,
since men prefer contracts in S to A \ S, and women prefer S to B \ S.
On the other hand, if S is a stable matching then it is also an 3-stable set with the
pair (A,B), where we define A \ S as the set of contracts that the men prefer less
than the contracts of S and B := S ∪ (E \ A).
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Example 3.12. There are two possible contracts, a and b, and F = Q1, G = Q1:
then only S = ∅ is 3-stable, and it can be achieved with two (A,B) 3-stable pairs,
where A = {a, b}, B = ∅ or A = ∅, B = {a, b}

S
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B
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�
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a b
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q = 1
F

G
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d
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Figure 1

3.3 4-stability

We introduce the notion of 4-stability: it is kind of similar to 3-stability, but while a
double dominated contract e can belong to both to A and B in the 3-stable sometimes,
now we put e in a fourth contract-set. So, while 3-stability is a more natural definition,
4-stability has nicer properties and more useful because it is closely related to score-
stability. Moreover, for path independent choice functions, for any 4-stable set, the
corresponding (A,B) pair is unique.

Definition 3.13. The choice functions of the two sides of the market are F and G.
Subset S of E is 4-stable, if there exists subsets A and B of E, such that F (A) = S =
G(B) and A ∩B = S and DF (A) = E \B,DG(B) = E \ A.
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This concept is called 4-stable because we partition the set E of contracts to into
4 parts: S is stable, A \ S is F -dominated by S, B \ S is G-dominated by S, and the
contracts in E \ (A ∪B) are both F - and G-dominated.

Example 3.14. We consider the same example as for 3-stability: There are two pos-
sible contracts, a and b, and F = Q1, G = Q1. Now there are three 4-stable solutions:
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3.4 Score-stability 11

S = ∅ , where A = {a, b}, B = ∅ or A = ∅, B = {a, b}
S = {a}, A = {a}, B = {a}
S = {b}, A = {b}, B = {b}

Remark 3.15. If F and G are substitutable choice functions, S is 3-stable or 4-stable
then F (S) = S = G(S).

Proof. Since F (A) = S and F (S) ⊆ F (A) = A \ S, F (S) = S. Similarly G(B) = S
implies G(S) = S.

Statement 3.16. If F and G are substitutable and F is path independent, then for
a 4-stable set S there exists an unique (A,B) pair.

3.4 Score-stability

In this part, we describe the stability notion used in the Hungarian college admission
scheme. For this reason we shall call agents colleges and applicants, and application
is a synonym for contract. The mathematical model of the Hungarian college admis-
sions system is close to stable matchings. Our model is a simplified version of the one
that is used in practice. Biró, Kiselgof [9], Azevedo and Leshno [5] also examined the
math behind stable score limits.
We shall generalize the model for loser-free choice functions, in particular for weighed
scoring choice functions that have possible practical applications.

Assume we have n applicants A1, A2, . . . , An and m colleges C1, C2, . . . Cm . Let E
be the set of all contracts. It is convenient to think that E is the set of edges of the
bipartite graph with colour classes {A1, . . . , An} and {C1, . . . , Cm} where each edge
AiCj of the graph corresponds to a contract between applicant Ai and college Cj.
There, every applicant has a strict preference order over the colleges she applies to,
and each college assigns some score s(AiCj) (an integer between 1 and M) to each of
its applicants. Moreover, each college C has a quota q(C) on admissible applicants.
According to the law, no college can accept more applicants than its quota, moreover
if an applicant Ai with a certain score s(AiCj) is not acceptable to some college Cj

then any applicant with the same or lower score has to be unacceptable for Cj.
To determine the admissions after all information is known, each college has to

declare a score limit. Let the score limits for colleges C1, C2, . . . Cm be t1, t2, . . . tm,
respectively. Each applicant will become a student on her most preferred college
where she has high enough score. More precisely, applicant Ai is assigned to college
Cj if s(AiCj) ≥ tj (i.e. score s(AiCj) of Ai at Cj is not less than threshold tj for
Cj) and s(AiCj′n) < tj′ for j′ >i j (i.e. score s(AiCj′) of Ai at Cj′ is less than
the score limit tj′ if Ai likes Cj′ more than Cj). The vector of declared score limits
(t1, t2, . . . , tm) is called a score vector. The stability notion below is defined according
to the requirements of the Hungarian law.

Definition 3.17. Score vector (t1, t2, . . . tm) is valid if no college exceeds its quota
with these score limits.
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3.5 Generalized score-stability 12

Score vector (t1, t2, . . . tm) is critical if for every college Cj either tj = 0 or score vector
(t1, t2, . . . , tj−1, tj−1, tj+1, . . . , tm) would assign more than q(Cj) students to Cj. (That
is, no single college can decrease its score limit without exceeding its quota.)
A score vector s is score-stable if s is valid and critical.

The above college admissions model determines a natural choice function for ap-
plicants and another one for the colleges. So for subset X ⊆ E of contracts Fi(X)
denotes the most preferred contract from X of applicant Ai, and F (X) is the common
choice function of all applicants. So F = F1 + F2 + . . . Fn. Similarly, Gj(X) denotes
the set of contracts that college Cj would choose if it can select freely. More precisely,
let Xj denote the set of contracts with Cj in X, and let Cj declare a score limit tj
such that no more than q(Cj) contracts from Xj has score at least tj, but either tj = 0
or more than q(Cj) contracts has score at least tj − 1. Let Gj(X) be the set of all
contracts in Xj above the score limit tj. Define choice function G : 2E → 2E as the
common choice function of all colleges, G = G1 +G2 + . . . Gm .

It is easy to see that choice function F of the applicants is path independent, but G
for the colleges is not.
For example, G = Q1 is a typical scoring choice function, there are two equally
good contracts:a, b and the quota is 1. But G({a, b}) = ∅ ⊆ {a} ⊆ {a, b} and
G({a}) 6= G({a, b}), so it is not path independent.

3.5 Generalized score-stability

We can generalize the above framework with keeping the main property needed to
ensure the existence of a stable solution. Namely, the loser-free property that allows us
to extend the model in a way that is fairly generalized and has economically interesting
choice functions.

Let F be direct sum of substitutable choice functions of the applicants, and G is a
direct sum of loser-free, substitutable choice functions of the colleges. Every college
Cj has a choice funtion Gj over the contracts involving it, and G = G1 + . . . Gm.

We say a set {Ai1 , Ai2 , . . . Aik} of applicants is feasible for college Cj if Gj(X) = X
for the contract set X = {Ai1Cj, Ai2Cj, . . . AikCj}, otherwise it is infeasible. Each
contract c has a score s(c).

Lemma 3.18. A choice function G : 2E → 2E is loser-free if and only if there exists
a function PG : 2E → NE such that for every set A ⊆ E of contracts PG gives the
score-limit, for which the accepted contracts above the score limit are exactly the set
accepted by G(A).

Proof. If G is loser-free, the set of accepted contracts from A are all above a score
limit, let the maximal score limit they reach be PG(A). On the other way, if we have
a given score limit by PG, no one can be missed out while others with the same score
gets in, so G must be loser-free.

Let P : NE → 2E be a function, which codes the scores of the applicants: P (t) is
the set of contracts above the score limit given by score vector t. P (t) = {AC ∈ E :
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Section 4. Algorithms 13

s(AC) ≥ t(C)} Therefore P (0) = E and P is antitone on the scores: if t1 ≤ t2 then
P (t1) ⊇ P (t2).
Note that P (PG(A)) ∩ A = G(A) for every A ⊆ E.

There exist a score vector T (highest possible score +1 for every college) where
P (T ) = ∅. From contracts above score limit, the students choose F (P (t)) and con-
tract set G(F (P (t))) is acceptable for the colleges. So score vector t is valid if and
only if G(F (P (t))) = F (P (t)).
The score vector t is critical if for any 1 ≤ j ≤ m the new score vector (t1, t2, . . . , tj−1, tj−
1, tj+1, . . . , tm) is not valid for college Cj, or tj = 0. We call t stable, if it is both valid
and critical.

Lemma 3.19. If t is valid but t′ = (t1, t2, . . . , tj−1, tj−1, tj+1, . . . , tm) is not, then the
only college that can get an infeasible set of students at score vector t′ is college Cj.

Proof. The set of offered places increase at college Cj and stay unchanged at other
colleges. For applicant Ai, if she rejected a college Ck earlier (where Ck 6= Cj), she
will also reject Ck when she has more choices, so colleges other than Cj cannot have
too much students.
With score limit t, the set of students going to college Ck is F (P (t))∩E(Ck), denote
it by Z. And with score limit t′ it is Z ′. As we have seen, Z ′ ⊆ Z, and from the
substituability, Gk(Z) = Z implies Gk(Z ′) = Z ′.

Definition 3.20. We call a score vector t Cj-valid, if it is acceptable for college Cj,
i.e. Gj(F (P (t))) = F (P (t)) ∩ E(Cj)).

The following two lemmas help to understand how the set of the valid score vectors
look like:

Lemma 3.21. Let t and t′ be two score vectors, and t is Cj-valid. For college Cj,
score limit t′j ≥ tj, but t′i ≤ ti for every college Ci 6= Cj. Then t′ is also Cj-valid.

Lemma 3.22. Let t1 and t2 be two valid score vectors, and tmin is their pointwise
minimum (tmin

j = min(t1j , t
2
j) for every 1 ≤ j ≤ m). Then tmin is also valid.

4 Algorithms

In this section, we show algorithms to find 3-stable, 4-stable and score-stable alloca-
tions. As we will see, these stable solutions always exist, if F and G are substitutable
(and G is also loser-free in the case of score-stability). Moreover, these algorithms
give us the men-optimal/women-optimal solutions.We show a close connection be-
tween Tarski’s fixed theorem and the Gale-Shapley algorithm.
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4.1 Tarski’s fixed point theorem 14

4.1 Tarski’s fixed point theorem

Recall that a lattice is a partially ordered set L with the property that any two
elements x, y of L have a greatest lower bound x ∧ y and a least upper bound x ∨ y.
A lattice L is complete if any subset X of L has a greatest lower bound

∧
X and a

least upper bound
∨
X. Function f : L→ L′ from lattice L to lattice L′ is monotone

if x ≤ y implies f(x) ≤ f(y) for any elements x, y of L.

Theorem 4.1 (Tarski’s fixed point theorem [10]). Let L be complete lattice, and
f : L→ L be a monotone function on L. Then set Lf = {x ∈ L : f(x) = x)} of fixed
points of f is a nonempty, complete lattice on the restricted partial order.

If lattice L is finite in Theorem 4.1, there is a straightforward algorithm to find the
least and greatest fixed points. Let 0 be the smallest element in lattice L. So 0 ≤ f(0)
and from monotonity 0 ≤ f(0) ≤ f(f(0)) ≤ f(f(f(0))) ≤ . . . . Since the lattice is
finite, there exists an i where f i(0) = f i+1(0). So f i(0) is a fixed point.

Statement 4.2. The above fixed point a = f i(0) is the least of all fixed points of f .

Proof. Let x be an arbitrary fixed point of f . Since f is monotone, 0 ≤ x ⇒ f(0) ≤
f(x) = x and f j(0) ≤ f j(x) = x for every j ≥ 1. We get that a = f i(0) ≤ x.

Similarly, we can start with the greatest element 1. From 1 ≥ f(1) ≥ f(f(1)) ≥
f(f(f(1))) . . . we see that there is a j such that f j(1) = f j+1(1).
This f j(1) is the greatest of all fixed points of f .

4.2 Generalized Gale-Shapley algorithm for 3-stable and 4-
stable sets

For 3-stable sets, we can generalize the Gale-Shapley algorithm to the case where
both choice functions are substitutable but they do not have to be path independent.
It is an special case of the monotone function-iteration that finds a fixed point of a
monotone function. The following algorithm is the same as in [6]:
Let F be the choice function of men/students, and G is the choice function of
women/colleges. In the male-proposing version, let X1 = E, men choose from
all contracts, and propose to Y1 = F (E) = E \ F (E). Women choose G(F (E)),
and reject G(F (E)). In the second step men choose from all contracts except for
the rejected ones: X2 = E \ G(Y1) = E \ G(F (X1)). They choose F (X2). The
women take these contracts and the previously rejected contracts, and choose from
Y2 = F (X2) ∪ G(F (X1) = E \ F (X2). Since G is substitutable, if a contract was
rejected earlier, it will be rejected in this step as well.
Here this algorithm differs from the original Gale-Shapley, since there women choose
only from their current proposals. But if G is path independent, then G(Y2) ⊆
F (X2) ⊆ Y2 implies G(Y2) = G(F (X2)), so putting back already refused proposals to
the choice set does not change the outcome.
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A general step of the algorithm: for a given Xi, let Yi = E \ F (Xi) and let Xi+1 =
E \G(Yi)
Define the following function f :

f(Xi, Yi) = (E \G(Yi), E \ F (E \G(Yi)))

We can define a partial order on pairs: (A′, B′) ≤ (A,B), if A′ ⊆ A and B′ ⊇ B.
Observe that f is monotone for this ordering. The iteration of this monotone function
gives us a fixed pair (Xi, Yi) which corresponds to a 3-stable pair (A,B). If we start
our iteration from pair (X1, Y1) = (E,F (E)) pair, we get the male-optimal machting,
if we start form (X1, Y1) = (∅, ∅), we get the female-optimal one.

There is an alternative algorithm similar to the previous one:
Define function f ′ : 2E × 2E → 2E × 2E by

f ′(A,B) := (E \ (G(B)), E \ (F (A))

If F and G are substitutable then f ′ is monotone for order ≤, since if B decreases,
then G(B) decreases so E \ G(B) increases. Similarly, if A increases then E \ F (A)
decreases.

As before, 3-stable pairs are exactly the fixed points of f ′. We start the iteration
from (A1, B1) = (E, ∅) for the men-optimal, or with (A1, B1) = (∅, E) for the women-
optimal solution.

For 4-stability, we define monotone function f ′′ as follows

f ′′(A,B) := (E \ (DG(B)), E \ (DF (A)))

If F,G are substitutable then DF ,DG are monotone, therefore f ′′ is monotone for
order ≤.
Fixed points of f ′′ are 4-stable pairs (A,B), since A = E\(DG(B)), B = E\(DF (A))).

If we start the iteration of f ′′ from (A1, B1) = (E, ∅) we get a 4-stable pair with
the largest possible A and smallest possible B, so it is men-optimal. Starting pair
(A1, B1) = (∅, E) leads to the women-optimal solution.

4.3 Algorithms for score-stability

In this section, we descripe algorithms for the generalized score-stability, hence also
for score-stability.
1. The score-decreasing algorithm: colleges start from a valid score vector t0
(e.g. tC := (M + 1, . . . ,M + 1)). First, if there is a college Ci that can lower its score
limit without getting too much students , then Ci will decrease its score limit to the
lowest score such that Ci still get a feasible set of students. Here Ci chooses from
free students and students who prefer Ci to their college, so it chooses score limit
PGi

(E \ DF (P (t)). Then we find an other college, and iterate this score-decreasing
step. (In is convenient to check C1 first then C2, then all colleges one-by-one. After Cm
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Section 5. The lattice property 16

we return to C1 again.) The algorithm terminates if no college wants to lower its score
limit any more. As soon as no college can decrease its score limit, the score vector is
stable. Let sC denote the stable score vector we get by running the score-decreasing
algorithm on tC .

Theorem 4.3. If stable score vector t is the output of the score-decreasing algorithm
with input t0, where t0 is valid, then t is stbale, and is t the maximum of all the stable
score vectors that are not greater than t0. Consequently, sC is the maximum of all
stable score vectors. Furthermore, sC is applicant-pessimal.

2. The score-increasing algorithm: colleges start with some critical score vector
t0 (e.g. tA = (0, . . . , 0)) and keep on raising their score limits. If there is a college
Ci that has an infeasible set of students, then it raises the score limit to the lowest
score where it becomes feasible. So, it chooses PGi

(F (P (t)). Then an other college
Cj increases the score limit, and all colleges one-by-one. The algorithm stops if no
college wants to raise its score limit. Let sA the stable score vector the score-increasing
algorithm outputs from input tA.

Theorem 4.4. If score vector t is the output of the score-increasing algorithm with
input t0, where t0 is critical, then t is stable, and it is the minimum of all the stable
score vectors that are not less than t0. Consequently, sA is the minimum of all stable
score vectors. Moreover, sA is applicant-optimal.

Theorem 4.5. The score-decreasing and score-increasing algorithms run in polyno-
mial time, the decreasing terminates in O(m2n) steps, the increasing stops in O(mn)
steps.

5 The lattice property

Tarski’s Theorem implies the following corollary for 3-stability.

Theorem 5.1. [8] If F,G : 2E → 2E are substitutable choice functions, then 3-stable
pairs form a nonempty complete lattice for partial order ≤.

Define function f : 2E × 2E → 2E × 2E by

f(A,B) := (E \ (G(B)), E \ (F (A)) = (E \ (B \G(B)), E \ (A \ F (A))

It is straightforward to see that 3-stable pairs are exactly the fixed points of f . There-
fore, since f is monotone, 3-stable pairs form a lattice.

A similar theorem can be proved for the 4-stable (A,B) pairs:

Theorem 5.2. If F,G : 2E → 2E are substitutable choice functions, then the 4-stable
pairs form a nonempty complete lattice for partial order ≤.

Function
f ′′(A,B) := (E \ (DG(B)), E \ (DF (A)))

is monotone and its fixed points are exactly the 4-stable pairs, so we can use Tarski’s
theorem again.
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5.1 Generalization of Blair’s theorem

In this subsection, we show a lattice property of stable sets (rather than stable pairs).

Definition 5.3. Define a new partial order: for choice function F , let S ′ ≤F S if
F (S ∪ S ′) = S.

Observation 5.4. [3] If F is substitutable and path independent, then ≤F is indeed
a partial order, in particular A ≤F B ≤F C implies A ≤F C.

Blair proved the lattice property of dominating stable sets assuming the path inde-
pendent property of the choice functions [3]. As we will see in Theorem 6.1, if F and
G are both path intependent, the dominating stablility, 3-stablility and 4-stablility
are equivalent, so Blair’s theorem holds for each of these notions.

Theorem 5.5 (Blair). [3] If F,G : 2E → 2E are substitutable, path independent choice
functions then the dominating stable sets form a lattice for partial order ≤F .

We generalize the above lattice property for 4-stability and there is a close connec-
tion between score-stability and 4-stability.
Now, we require path independency on only one side.

Theorem 5.6 (Generalization of Blair’s theorem). If F and G are substitutable choice
functions and F is path independent then:
The 4-stable sets form a lattice for partial order ≤F

If S is a 4-stable set, then there is an unique 4-stable pair (A,B) that corresponds to
S, furthermore S ≤F S

′ if and only if (A,B) ≤ (A′, B′)

If only one of F and G is path independent, dominating stable sets do not form a
lattice, moreover dominating stable sets does not necessarily exist, as we have seen is
subsection 3.1.

Example 5.7. Given one college C1, and two applicant A1, A1, and two contracts:
a = A1C1 and b = A2C1. The college has qouta 1, and both applicants want to go to
C1, so G = Q1, F = Q2. The dominating stable solutions are {a} and {b}, however
a and b are uncomparable since F ({a, b}) = {a, b}. So the dominating stable sets do
not form a lattice.

Remark 5.8. If F and G are substitutable choice functions but none of them is path
independent, then the lattice property does not always hold for 4-stability. It is also
false that for stable set S there is only one corresponding (A,B) pair.

Example 5.9. We have two contracts, a and b. The choice function is Q1 for both
sides. In this situation we have four 4-stable pairs:

A = ∅ B = {a, b} S = ∅
A = {a} B = {a} S = {a}
A = {b} B = {b} S = {b}
A = {a, b} B = ∅ S = ∅

Now ∅ ≤F {a} and ∅ ≤F {b}, but {a} and {b} are uncomparable. So these two sets
do not have a supremum.
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5.2 The lattice of stable score vectors

A graph G is simple if G has neither parallel edges nor loops. So between a given
student and college, only one contract is permitted. In some applications, for example
in the college enrollment system, the underlying graph is simple: one cannot apply
to the same department, in the same year, twice. For the sake of generalizations that
involve for example loser-free choice functions, the underlying graph in our model may
not be simple.

Assume that F and G are substitutable choice functions, and G is also loser-free.
Define the following function f : NE → NE :

f(t) = PG(E \ DF (P (t)))

So we take all contracts above score limit t, this is P (t) and add those contracts that
are not dominated by P (t). Then f(t) is the score limit that the colleges choose for
this set.
If t1 ≤ t2 then P (t1) ⊇ P (t2). Since DF is monotone, E\DF (P (t1))) ⊆ E\DF (P (t2))).
For a greater set PG gives a higher score limit, so PG(E \ DF (P (t1))) ≤ PG(E \
DF (P (t2))). Therefore f is a monotone function, indeed.

Statement 5.10. If the underlying graph G is simple, and choice functions F and
G are substitutable, G is loser-free, then score vector t is stable if and only if t =
PG(E \ DF (P (t)))
If graph G may have parallel edges, then the following properties are true:
If t is stable, then t is fixed point of f .
If t is fixed point of f , then t is valid.

Tarski’s fixed point theorem implies the following corollary:

Theorem 5.11. If graph G is simple, choice functions F and G are substitutable and
G is loser-free, then the score-stable sets form a non-empty lattice.

Moreover, we can achieve a connection with 4-stability for every bipartite graph.

Statement 5.12. If choice functions F and G are substitutable, G is loser-free and
F is path independent, then the following two statements are equivalent:
(i) S = F (P (t)) for some score vector t such that f(t) = t.
(ii) The contract set S is 4-stable.

As a corollary of Statements 5.10 and 5.12, we get the following theorem:

Theorem 5.13. If choice functions F and G are substitutable, G is loser-free and the
applicants’ choice function F is path independent, then every score-stable set is also
4-stable.
Furthermore, if we require that graph G is simple, then score-stability is equivalent
with 4-stability.
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Example 5.14. There is a counterexample for Theorem 5.13 if the underlying graph
is not simple.

a b
0 0

q = 1

a > b

F

G

t
t

Figure 2

There is one college and one student, and the student applies both for maths and
physics, but prefers maths. She achieved zero score on both. The college has a common
quota 1 for these two faculties. If the score limit is 1, the college accepts nobody.
If the score limit is 0, the college accepts both contracts a and b, and the applicant
prefers a, so only a realizes. This is valid and stable. So the only score-stable solution
is t = 0, S = F (P (t)) = {a}.
There are two 4-stable sets: S = ∅ with A = ∅, B = {a, b}
S = {a}, A = {a}, B = {a}
The fixed points of f are the same as 4-stable sets : {a} and ∅.

Stable score vectors form a lattice, even if the graph is not simple, so a stronger
version of Theorem 5.11 is also true:

Theorem 5.15. If choice functions F and G are substitutable and G is loser-free,
then the score-stable sets form a non-empty lattice.

In the Appendix, we prove Theorem 5.15 by taking a pointwise minimum of t1 and
t2 and starting from there, the score-decreasing algorithm terminates at stable score
vector t1 ∧ t2.

Remark 5.16. If we consider L-stable score vectors, they also form a lattice, since
the permissive scoring choice function used in L-stability is also loser-free.

6 Connection between different stability notions

For a given two-sided model with choice functions F and G for each side, we have
defined four kinds of stability:

1. Subset S of E is 3-stable, if there exists subsets A and B of E, such that
F (A) = S = G(B) and A ∪B = E, A ∩B = S.

2. Subset S of E is 4-stable, if there exists subsets A and B of E, such that
F (A) = S = G(B) and A ∩B = S and DF (A) = E \B and DG(B) = E \ A.

3. Subset S of E is dominating stable, if DF (S) ∪ DG(S) = E \ S.
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4. If F is substitutable, G is substitutable and loser-free, we defined generalized
score-stability in subsection 3.5

Theorem 6.1. If F and G are substitutable and path independent, then S is 3-stable
⇔ S is 4-stable ⇔ S is dominating stable.

Theorem 6.2. If F , G are substitutable choice functions, F is path independent, (but
G may not), then every 4-stable set is 3-stable.

Compared to other stability concepts, the 3-, 4- and dominating stability are de-
fined on every substitutable choice functions F , G, but for score stability we need
substitutability on one side and a substitutable, loser-free function on the other side.

As we showed in Theorem 5.13, if choice function F is substitutable, path indepen-
dent and G is substitutable loser-free, then every score-stable set is also 4-stable.

Theorem 6.3. If F is substitutable and path independent, G is substitutable and
loser-free then every score-stable solution is 3-stable.

Theorems 5.13 ,6.1, 6.2, 6.3 are summarized in the figures below.
In the notations, 3 stands for 3-stable, 4 for 4-stable, d for dominating stable and s
for score-stable sets.
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If the graph is simple :
If F,G are path independent, all four properties are equivalent.
If F is path independent, 4-stable ⇔ score-stable
If F,G are not path independent, similarly to the upper picture, only score-stable ⇒
3-stable is true.

Statement 6.4. For all the other directions in Theorems 5.13 ,6.1, 6.2, 6.3 if one
implication “if S is x-stable then it is y-stable” does not appear in the upper diagram,
then there exists a counterexample for it.
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7 Conclusion

We worked with four different stability definitions: dominating stable, 3-stable, 4-
stable, score-stable, from which the first three are rather theoretic, and score-stability
can be applied to the Hungarian college admission system. All of them, except for
dominating stability, can be found with simple algorithms, and have some kind of
lattice property, for the characteristic (A,B) pairs, or for the stable contract-sets
themselves. Moreover, under given conditions, the lattice of the 4-stable and score-
stable sets are the same. We used Tarski’s theorem to prove lattice property, except
for the last case: score-stability with non-simple graphs.
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9. Péter Biró and Sofya Kiselgof: College admissions with stable score-limits. (un-
published working paper)

10. Alfred Tarski: A lattice-theoretical fixpoint theorem and its applications. Pacific
J. of Math, 5:285-310, 1955.

EGRES Technical Report No. 2013-10



Section 8. Appendix 22

8 Appendix

Proof of Lemma 3.5. If F (A) = S, then for every x ∈ A\S, we have S ⊂ (S∪{x}) ⊆
A so by F is path independence, F (S ∪ {x}) = S, so DF (S) ⊇ A \ S. Consequently,
F (A) ∩ DF (S) = A \ S.
If DF (S)∩A = A\S, then F (S∪{x}) = x, for every x ∈ A\S, so from substitutability,
x ∈ F (A). Thus, F (A) ⊇ A \ S, which means F (A) ⊆ S.
By the path independence of F , we have F (A) ⊆ S ⊆ A ⇒ F (A) = F (S) = S

Proof of Lemma 3.6. We have seen that DF is monotone, hence DF (S) ⊆ DF (A).
If x ∈ DF (A), then F (A ∪ {x}) ⊆ A ⊆ (A ∪ {x}), so F (A ∪ {x}) = F (A) = S by the
path independency.
Therefore F (A∪ {x}) ⊆ S ∪ {x} ⊆ A∪ {x}, hence F (S ∪ {x}) = F (A∪ {x}) = S. It
means S dominates any x ∈ DF (A), i.e. DF (A) = DF (S).

The proof of statement 3.16 is included in the proof of Theorem 5.6.

Proof of Lemma 3.21. If Ai is a student of Cj when the score vector is t (i.e. AiCj ∈
F (P (t))), then Ai can leave Cj at t′ if she does not reach t′j or got a better opportunity
at another college.
If student Al does not go to college Cj at the score vector t, (AlCj /∈ F (P (t))), then she
will not go to Cj under score vector t′, because if Al does not reach tj, then she neither
reach the higher limit t′j. If Al reaches tj but chooses better college Ck instead, since
t′k ≤ tk, she will stay in college Ck. Therefore the set of students assigned to Cj with t′

is the subset of the set of studens going to Cj under t. (F (P (t′))∩E(Cj)) ⊆ (F (P (t))∩
E(Cj)) The choice function Gj of college Cj is substitutable, so is F (P (t))∩E(Cj) is
valid then a subset of it is also valid, therefore t′ is Cj-valid.

Proof of Lemma 3.22. Let the set of contracts above score vectors t1 and t2 be P (t1) =
A and P (t2) = B. Then P (tmin) = A∪B. Suppose that t1j = tmin

j for college Cj. Since

A ⊆ A∪B, from substitutability F (A) ⊆ F (A∪B). Considering the set of contracts
of college Cj, E(Cj)∩A = E(Cj)∩ (A∪B), i.e. Cj accepts the same set of contracts
with score vector t1 as with tmin. Therefore E(Cj)∩F (A) ⊇ E(Cj)∩F (A∪B). Since
G is substitutable, if a set is valid, then its subset is also valid. G(E(Cj) ∩ F (A)) =
E(Cj)∩F (A) so G(E(Cj)∩F (A)) = ∅. For a smaller set, G(E(Cj)∩F (A∪B)) = ∅,
so (A ∪B) is also valid for college Cj.
In other words, if we change the score limit from t1 to tmin, college Cj keeps its score
limit, while other colleges may dercease. Applicants may leave Cj, but no new students
will arrive to Cj, so score limit tmin is Cj-valid. We can use the same argument for
every college, therefore tmin is valid.

In the proofs of Theorem 4.3 and Theorem 4.4, we use the alternative versions of the
score-decreasing/ increasing algorithms where in every step a college decreases/increases
its score limit only by one. This modified algorithms also find stable solutions, as
one step of the score decreasing or score increasing can be regarded as several steps
of this modified algorithm. From Lemma 3.21, if score vector t is valid and t′ =
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(t1, . . . tj−1, tj − k . . . tm) is also valid, then for every 1 ≤ k′ ≤ k, t′′ = (t1, . . . tj−1, tj −
k′, . . . tm) is valid. (It is Cj-valid because t′ is valid, and valid for other colleges because
t is valid.)

From the maximal/minimal property of the output solution, we see that the output
of the algorithm does not depend on what order the colleges modify their score limits.
Note that these algorithms may use m(M+1) steps, for example if we start decreasing
from tC := (M + 1, . . . ,M + 1)) but only (0, . . . , 0) is a stable score vector.

Proof of Theorem 4.3. From the algorithm, the fact that no college can decrease its
score limit implies that t is a stable vector.
Suppose that there exist a stable score vector t1 ≤ t0, where t1 6≤ t. So t = (t1, . . . tm)
and t1 = (t11, . . . t

1
m), and t1i > ti for some i. Define the set

T = {x ∈ Nm : xj ≥ t1j ∀j ∈ {1, . . .m}}

The algorithm starts from t0 ∈ T and ends in t /∈ T , so there is a step, when the
score vector leaves T : from score vector w1 = (w1, w2, . . . t

1
k . . . wm) ∈ T we move to

w2 = (w1, w2, . . . t
1
k − 1 . . . wm) /∈ T . Since this step is possible, both w1 and w2 are

valid score vectors. We know that w1 ≥ t1. Using Lemma 3.22, both t1 and w2 are
valid, so their minimum w3 = (t11, t

1
2, . . . t

1
k − 1 . . . t1m) is also valid. Therefore w3 is

stable, and it can be reached from t1 by lowering the score limit of Ck. So t1 is not
critical hence it cannot be stable, a contradiction.

Since every stable score vector are less than or equal to t0 = (M + 1, . . .M + 1), the
biggest of all stable score vectors is sC . Every student is accepted by fewer colleges
than in any other stable admissions, so sC is applicant-pessimal.

tt
t

t t

t�

?�

?�

?�

t0

w1w2

t1w3

t

T

Proof of Theorem 4.4. It follows from the algorithm, that t is valid. Suppose that it
is not stable, i.e. there is a college Cj such that t′ = (t1, t2, . . . , tj−1, tj−1, tj+1, . . . , tm)
is still valid.
If t0j ≤ tj−1, look at the step where college Cj raise its score from tj−1 to tj, moving
from score vector v1 to v2.

Since the score limits in the algorithm always increase, v1 ≤ t and v1j = tj−1 there-
fore v1 ≤ t′. We can use Lemma 3.21: score limit t′ is valid, so v1 is also Cj-valid.
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But then the algorithm would not have increased v1 to v2. A contradiction, so t is
stable.

If t0j = tj, since t0 is critical, the score vector t′0 = (t01, t
0
2, . . . , t

0
j−1, t

0
j−1, t0j+1, . . . , t

0
m)

is not valid for Cj. From t0 ≤ t, we get that t′0 ≤ t′. Using Lemma 3.21 again, if t′

was valid, then t′0 would be Cj-valid. So t′ is not valid, therefore t is indeed stable.

To show that t is minimal suppose that there is a stable score limit t1 such that
t0 ≤ t1 but t � t1, i.e. t1j < tj for some j. Let

T ′ = {x ∈ Nn : xi ≤ t1i ∀i ∈ {1, . . .m}}

Since t /∈ T ′ but t0 ∈ T ′, there is a step when we leave T ′, we move from w1 to w2.
There is a college Ci where w1

i = t1i . For other colleges w1
k ≤ t1k, so by Lemma 3.21,

w1 was Ci-stable. Therefore Ci does not want to increase its score limit.
Therefore sA is the smallest of all stable score vectors, so every student gets accepted
at as many colleges as possible and they choose what is best for them, so sA is
applicant-optimal.t
t
t

t

t

6
-

6

-

6
-

T ′

t1

t

w2

w1

t0

Proof of Theorem 4.5. In this proof, we return to the algorithm-versions where col-
leges increase/lower their score limits as much as they can. We call the set of realized
contracts at some score vector enrollment .
Each of the n students can go to one of the m colleges, or remain unmatched. So
there are at most nm+1 possible enrollments. In the score-decreasing algorithm, the
applicants always change to better. In the score-increasing algorithm, the students’
position get worse. So we cannot return to an earlier enrollment in these algorithms.
If we order all enrollments according to the applicants’ preference order, the longest
chain contains n(m+ 1) enrollments. It goes from “everyone gets the best college” to
“everyone gets the worst college”. In the score-decreasing algorithm, college Ci may
lower its score limit without changing the enrollment, taking the same students as
before. If all m colleges do the same, we get the minimal score vector for that given
enrollment, next time it came to college Ci, it has to change to a different enrollment,
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or stop. So in the algorithm, there can be at most m consecutive steps without chang-
ing the enrollment. So the number of steps is O(m2n).

In the score-increasing algorithm, every step will change the enrollment, hence if
Ci increase its score limit, the set of students going to Ci was infeasible before this
step, and feasible after the step. Thus, the number of steps is O(mn).

Proof of Theorem 5.6. (i) First we show that for any given stable set S there is a
unique 4-stable pair (A,B).
Suppose that there are two different stable pairs for S: (A,B) and (A′, B′).
We can assume that there exists a b for which b ∈ B, but b /∈ B′. Since S ⊆ B′,
it follows that b /∈ S. Moreover b ∈ F (A ∪ {b}) but b /∈ F (A′ ∪ {b}) because
b ∈ F (A ∪ {b})⇔ b /∈ B.
By A′ \ S = F (A′) ⊆ F (A′ ∪ {b}), we get F (A′ ∪ {b}) ⊆ S ⊆ A′ ∪ {b}, hence
F (A′ ∪ {b}) = S.
We know that (A′ ∪ {b}) \ S = F (A′ ∪ {b}) and A \ S = F (A) .
Since F is substitutable, F (A′ ∪ A ∪ {b}) is contains both sets, (A′ ∪ A ∪ {b}) \ S ⊆
F (A′ ∪ A ∪ {b}), so F (A′ ∪ A ∪ {b}) ⊆ S.
From F (A′ ∪ {b}) = S we get F (A ∪ {b}) ⊆ F (A ∪ {b}) ∪ F (A′ ∪ {b}) ⊆ A ∪ {b}, so
F (A ∪ {b}) = F (F (A ∪ {b}) ∪ F (A′ ∪ {b}))
Using that F is path independent, from Theorem 2.8, b ∈ F (A ∪ {b}) = F (F (A ∪
{b}) ∪ F (A′ ∪ {b})) = F (A ∪ {b}) ∪ (A′ ∪ {b})) = F (A′ ∪ A ∪ {b}) ⊆ S. Therefore
b ∈ S, a contradiction.
Let S and S ′ be two different stable sets. Let 4-stable pairs (A,B) and (A′, B′) cor-
respond to stable sets S and S ′, respectively.

(ii) (A,B) ≤ (A′, B′) ⇒ S ≤F S
′.

From the ordering of the 4-stable pairs , S ⊆ A ⊆ A′ and S ′ ⊆ A′, so S ∪ S ′ ⊆ A′.
Since F is path independent, from S ′ = F (A′) ⊆ S ∪S ′ ⊆ A′ we get that F (S ∪S ′) =
S ′.

(iii) S ≤F S
′, ⇒ (A,B) ≤ (A′, B′) .

Suppose that B′ * B. Consequently ∃ b such that b /∈ B, but b ∈ B′. From Lemma
3.6, DF (A) = DF (S) so
b /∈ B ⇒ b ∈ DF (A) = DF (S) ⇒ b /∈ F (S ∪ {b})
b ∈ B′ ⇒ b /∈ DF (A′) = DF (S ′) ⇒ b ∈ F (S ′ ∪ {b})
We know that F (S ∪ S ′) = S ′ therefore F (S ∪ S ′ ∪ {b}) ⊆ S ′ ∪ {b} ⊆ S ∪ S ′ ∪ {b}.
Since F is path independent, F (S∪S ′∪{b}) = F (S ′∪{b}) 3 b, hence b ∈ F (S∪{b}),
a contradiction.
Similarly, from B′ ⊆ B, we get DF (B′) ⊆ DF (B) by the monotonicity of DF and
E \ A′ ⊆ E \ A, hence A′ ⊇ A.

(iv) The stable sets form a lattice.
We have seen that there is an order preserving bijection between the stable sets and
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stable pairs. As stable pairs form a lattice, stable sets do as well.

Proof of Statement 5.10. Let J = {e /∈ P (t) : e ∈ F ({e} ∪ P (t))} be the set of con-
tracts that F prefers to F (P (t)). In other words, J = (E \DF (P (t)))\P (t), therefore
E \ DF (P (t)) = F (P (t)) ∪ J .

Suppose t is a fixed point. Let B = E \DF (P (t)) and we use that P (PG(B))∩B =
G(B). From this, P (t) ∩ (E \ DF (P (t))) = P (PG(E \ DF (P (t)))) ∩ (E \ DF (P (t))) =
G(E \ DF (P (t))).
Since P (t) ∩ (E \ DF (P (t))) = F (P (t)), we get that G(F (P (t)) ∪ J) = F (P (t)), and
since G is substitutable, G(F (P (t))) ⊆ G(F (P (t))∪J) = J . Therefore G(F (P (t))) =
F (P (t)), so t is valid.

To prove that t is critical, assume that college Cj lowers its score limit by one. Let
t′ = (t1, t2, . . . , tj−1, tj − 1, tj+1, . . . , tm). Then at college Cj, the accepted P (t)

increases with some contracts.
Now we use that the graph is simple. If AiCj ∈ P (t), then applicant Ai will also

be accepted under t′. If Ai is not accepted at college Cj with score vector t, but she
has score at least tj − 1 then she will go to Cj if and only if CjAi ∈ J , because she
got only one new chance. Therefore F (P (t′)) ∩ E(Cj) = (F (P (t)) ∪ J) ∩ E(Cj).

Other colleges cannot have new students, so they stay valid.
From F (P (t)) ∪ J the scoring function PGj

for college Cj chooses score limit tj,
therefore it also chooses tj from F (P (t′), so t′ is not valid.

Now assume that t is valid and critical. So G(F (P (t))) = F (P (t)), so G(F (P (t))∪
J) acceps contracts in F (P (t)), (because contracts in J do not reach score limit t).
Therefore PG(E \DF (P (t))) ≤ t.

As before, t′ = (t1, t2, . . . , tj−1, tj − 1, tj+1, . . . , tm). Function P is antitone, so
P (t) ⊆ P (t′). Since DF is monotone, DF (P (t)) ⊆ DF (P (t′)), so E \ DF (P (t)) ⊇

E \ DF (P (t′)) ⊇ F (P (t′)). As t is critical, F (P (t′)) is infeasible for college Cj, so
E \DF (P (t)) too, and we get PGj

(E \DF (P (t))) ≥ tj. This is valid for every college,
therefore PG(E \DF (P (t))) = t.

We did not use that G is simple in the second direction, and in the “valid” part of
the first direction, so these parts remain true for general bipartite graphs.
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Proof of Statement 5.12. (i)⇒ (ii) If t is a fixed point, t = PG(E \ DF (P (t))), then
let B = E \ DF (P (t).
As we have seen in the proof of Statement 5.10, F (P (t)) = P (t) ∩ (E \ DF (P (t)) =
G(E \ DF (P (t))) = G(F (P (t)) ∪ J) so S = G(B).
This gives DG(B) ∩ B = G(B) = J . From the contracts outside B, the set B must
dominate contracts under score limit t, since if colleges do not accept contracts from
J , then they will not accept other contracts with the same or lower scores. (In cannot
happen that for some college Cj all contracts in J has score tj − 2 or less, and some
e /∈ B has score tj − 1, because in that case PGj

would have chosen tj − 1 and t would
not be stable.) Therefore DG(B) ⊇ E \ P (t). So A = E \ DG(B) ⊆ P (t).
Since F is path independent and S = F (P (t)) ⊆ A ⊆ P (t) we get that F (A) = S.
From Lemma 3.6, DF (A) = DF (P (t)) = E \B, so S is indeed 4-stable.

(i)⇐ (ii)
If S is 4-stable, then there exists A,B such that F (A) = S,G(B) = S. Let the score
limit be t = PG(B). We want to know what P (t) is. It is sure that P (t) ∩ B = S
because P (PG(B)) ∩ B = G(B) and since DG(B) = E \ A and DG(B) ⊇ E \ P (t) so
A = E \ DG(B) ⊆ P (t).
Since DF (A) = E \B, substitutability implies dominated contracts will not be chosen
from P (t), since A ⊆ P (t) ⊆ A ∪ (E \ B). So F (P (t)) ⊇ P (t) \ A. Then F (P (t)) ⊆
A ⊆ P (t). From the path independent property S = F (A) = F (P (t)).
Using Lemma 3.6 again DF (P (t)) = DF (A) = E \B, E \ DF (P (t)) = B, and PG(E \
DF (P (t))) = PG(B) = t therefore t is a fixed point.

Proof of Theorem 5.15. We know from Theorem 4.3 and Theorem 4.4 that there exist
a greatest and a least stable score vector. Let t1 and t2 be two arbitrary stable score
vectors. We want to show that they have a join and a meet. Using Lemma 3.22,
tmin = min(t1, t2) is valid. Let’s start the score-decreasing algorithm from tmin, from
the algorithm we get a stable score vector t. From Theorem 4.3, t is the biggest among
all the stable score vectors smaller than or equal to tmin. So t = t1 ∧ t2, because for
every stable vector such that t′ ≤ t1, t2, t′ ≤ tmin, therefore t′ ≤ t.
We finish by showing the existence of t1 ∨ t2. There exists a common upper bound
of t1 and t2, for example sC . Since the lattice is finite, there have to be at least one
least common upper bound. Suppose there exists two least common upper bounds:
a and b. Since t1 is a lower bound of a and b, t1 ≤ a ∧ b, similarly t2 ≤ a ∧ b. So we
found a common upper bound of t1 and t2 smaller than a, a contradiction.

Proof of Theorem 6.1. 3-stable ⇒ dominating
There are A, B such that F (A) = S = G(B). From Lemma 3.5 DF (S) ⊇ A \ S. The
same goes to G(B), so DG(S) ⊇ B \ S. Their union is
DF (S) ∪ DG(S) ⊇ ((A \ S) ∪ (B \ S)) = E \ S.
And S does not dominate itself, so DF (S) ∪ DG(S) = E \ S.

dominating ⇒ 4-stable
We know that DF (S) ∪ DG(S) = E \ S. Let A = E \ DG(S) and B = E \ DF (S).
A ⊆ S ∪ DF (S) so F (A) = S. From Lemma 3.6 DF (A) = DF (S) = E \B. Similarly,
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DG(B) = DG(S) = E \ A. With this (A,B) pair, S is 4-stable.

4-stable ⇒ 3-stable
There exists subsets A and B of E, such that F (A) = S = G(B) and A∩B = S, and
DF (A) = E \B,DG(B) = E \ A.
Let D = E \ (A ∪B) and A′ = A ∪D,B′ = B
Now A′ ∪ B′ = E, A′ ∩ B′ = A ∩ B = S and from Lemma 3.6, DF (S) = DF (A) =
E \ B = (A \ S) ∪D = A′ \ S. From Lemma 3.5, F (A′) = S, G(B′) = G(B) = S, so
with the (A′, B′) pair, S is 3-stable.

Proof of Theorem 6.2. In the third part of the proof of Theorem 6.1, we did not use
that G was path independent.

Proof of Theorem 6.3 . Let S ⊆ E be the enrollment realized from stable score vector
t. Define A as the set of contracts above score vector t. Let B be the union of S and
the set of contracts under score limit t.
From all the accepted contracts above score vector t, the applicants choose contract
set S, so F (S) = S. If colleges choose from contract set B, just like from all contracts,
they would set score limit to t, so G(B) = S. It is easy to see that A∪B = E,A∩B =
S, therefore S is 3-stable.

Proof of Statement 6.4 . In the following figures and in Figures 1 and 2 earlier, the
upper nodes symbolize the colleges, the lower nodes the applicants and the edges
between them are the possible contracts. If we write a > b to a node, that means
the given applicant prefers contract a to b. In all examples, every student gets score
0 everywhere, except in Figure 7, where contract b has score 1, so b is better for the
college.
If a node has only one incident edge, it always chooses that, if it is available.
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The following table describes the choice functions, usually as a direct sum of the
choice functions of inividual colleges/applicants. Notation Q1(a, b) means a college
chooses from equally good contracts a and b and its quota is one.

Figure simple? F path ind? G path ind?
1 no Q1 no Q1 no
2 no a > b yes Q1 no
3 yes (a > c) + (b > d) yes Q1(a, b) +Q2(c, d) no
4 yes a+Q1(b, c) no Q1(a, b) + c no
5 yes a+Q1(b, c, d) no Q1(a, b) + c+ d no
6 yes (a > c) + (b > d) yes Q1(a, b) +Q1(c, d) no
7 no a > b yes b > a yes

The stable sets according to these 7 examples and 4 definitions are the following:
Figure 3-stable 4-stable dominating stable score-stable t fixed
1 ∅ ∅, {a}, {b} {a}, {b} ∅ ∅
2 ∅, {a} ∅, {a} {a}, {b} {a} ∅, {a}
3 {a, d}, {c, d} {a, d} {a, d} {a, d} {a, d}
4 {a}, {c} {a, c} {a, c} {a} {a},
5 ∅, {a} {a} {b}, {a, c}, {a, d} {a} {a}
6 ∅, {a, d} ∅, {a, d} {a, d}, {b, c} ∅, {a, d} ∅, {a, d}
7 {a}, {b} {a}, {b} {a}, {b} {a} {a}, {b}
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