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Abstract

Lehman's theorem on the structure of minimally nonideal clutters is one of
the fundamental results of polyhedral combinatorics. One approach to extend it
has been to give a common generalization with the characterization of minimally
imperfect clutters [11, 4]. We give a new generalization of this kind, which
combines two types of covering inequalities and works well with the natural
de�nition of minors. We also show how to extend the notion of idealness to unit-
increasing set functions, in a way that is compatible with minors and blocking
operations.

1 Introduction

A set family C on a ground set V of size n is called a clutter if no set in C is a subset
of another. Let C↑ denote the uphull of C, that is, {U ⊆ V : ∃C ∈ C : C ⊆ U}. The
blocker b(C) of a clutter C is de�ned as the family of the (inclusionwise) minimal sets
that intersect each member of C. It is easy to check that b(b(C)) = C.
One of the most well-studied objects of polyhedral combinatorics is the covering

polyhedron of a clutter, which we consider in the following bounded version:

P (C) = {x ∈ RV : 0 ≤ x ≤ 1, x(C) ≥ 1 for every C ∈ C},

where x(C) denotes
∑

v∈C xv. The integer points of P (C) correspond to the sets in
b(C)↑. A clutter C is called ideal if the polyhedron P (C) is integer. By a result of
Lehman [5], a clutter is ideal if and only if its blocker is.
Deciding whether a clutter is ideal is hard. However, interesting structural proper-

ties can be proved for clutters which are minimally nonideal (mni) in the sense that
any facet of P de�ned by setting a variable to 0 or 1 is integer. The following theorem
of Lehman [6], which is the basis of these structural results, is considered to be one
of the fundamental results on covering polyhedra.
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Theorem 1.1 (Lehman [6]). Let C be a minimally nonideal clutter nonisomorphic
to a �nite degenerate projective plane. Then P (C) has a unique noninteger vertex,
namely 1

r
1, where r is the minimal size of an edge in C. There are exactly n sets

of size r in C and each element of V is contained in exactly r of them. The blocker
b(C) also has exactly n sets of minimum size, which correspond to the vertices of P (C)
adjacent to the noninteger vertex.

An important consequence of the theorem, observed by Seymour [12], is that the
problem of deciding idealness of a clutter is in co-NP, provided that we have a mem-
bership oracle for C↑. After Lehman's groundbreaking result, there have been several
attempts to better understand the structure of minimally nonideal clutters (see [8] for
enumeration of mni matrices of small dimension, [2] for a survey, and [3, 14] for more
recent developments).
There have been successful e�orts to combine Lehman's theorem with another fun-

damental result, Lovász' co-NP characterization of minimally imperfect clutters [7].
Seb® [11], and Gasparyan, Preissmann and Seb® [4] considered polyhedra de�ned by
both packing and covering constraints, and gave an extension of Lehman's theorem.
An inconvenience of their approach is that the class of polyhedra they consider is
not closed under taking facets de�ned by setting variables to 0 or 1, and there is no
natural way to de�ne a blocker.
In this paper we present two di�erent approaches that address these issues. In the

�rst part of the paper, in Sect. 2, we prove an extension of Lehman's theorem to
another class of polyhedra that includes both packing and covering polyhedra as a
subclass. Let C and D be clutters on the same ground set V . We consider polyhedra
of the form

P (C,D) = {x ∈ RV : 0 ≤ x ≤ 1, x(C) ≥ 1 for every C ∈ C,
x(D) ≥ |D| − 1 for every D ∈ D}. (1)

We will see that facets de�ned by setting a variable to 0 or 1 are also in this class.
If D is empty, then this is the same as P (C). On the other hand, if C is empty, then
1 − P (C,D) is the packing polyhedron of D. Clearly, 1 − P (C,D) is integral if and
only if P (C,D) is integral. Our main result is that if P (C,D) is minimally nonideal,
then it has a unique non-integer vertex, that is simple (i.e. it is on n facets), and
all of its components are the same, except for the case of �nite degenerate projective
planes.
An integer-valued set function f on ground set V is unit-increasing if f(U) ≤

f(U + v) ≤ f(U) + 1 for every U ⊆ V and v /∈ U . In the second part of the paper,
in Sect. 3, we extend the notion of idealness to unit-increasing set functions. To a
clutter C we can associate the unit-increasing function

fC(U) =

{
1 if U ∈ C↑,
0 otherwise.

(2)

We show that it is possible to associate (n + 1)-dimensional polyhedra to unit-
increasing set functions in such a way that the notions of minor, blocker, and idealness
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are natural extensions of these notions for clutters, so the blocker of fC is fb(C), and fC
is ideal if and only if C is ideal. Furthermore, the property that idealness is equivalent
to the idealness of the blocker remains true for any unit-increasing function. For ma-
troids this means that both the rank function (which is submodular) and the co-rank
function (which is supermodular) are ideal.
Another attractive characteristic of this approach is the existence of a �twisting�

operation on unit-increasing set functions that preserves idealness. For example, the
degenerate projective plane on n elements (that can be considered as the exceptional
case in Lehman's theorem) is nothing else but a twisting of the set function corre-
sponding to the exceptional non-Helly clutter in the theorem of Lovász.
One caveat is that in this setting there is no direct analogue of packing polyhedra.

However, we will show that to a clutter D one can associate a set function gD such
that gD is minimally nonideal if and only if D is minimally imperfect.
It seems that Lehman's theorem cannot be directly generalized to this setting, and

this gives rise to several open question that are presented in Sect. 4. We will show
an example of an mni function where the fractional vertex of the polyhedron is not
simple. However, we are unaware of any example where the polyhedron of an mni set
function has more than one non-integer vertex. Note that Lehman's theorem implies
that idealness of clutters (i.e. functions of type fC) is in co-NP if we have a function
evaluation oracle. An interesting open question is whether this is true for arbitrary
unit-increasing set functions.

1.1 Preliminaries on clutters

As several de�nitions in the paper are derived from the same notions used in the
theory of clutters, it is useful to desribe the clutter versions �rst. There are two types
of minor operations for a clutter C on ground set V , corresponding to including or
excluding an element v ∈ V in the blocker:

• the deletion minor is the clutter C\v on ground set V − v with members {C ∈
C : v /∈ C},

• the contraction minor is the clutter C/v on ground set V − v whose members
are the inclusionwise minimal sets in {C − v : C ∈ C}.

A minor of C is a clutter obtained by repeated application of these two operations
� it is easy to see that the order of the operations does not matter. The covering
polyhedron of a minor is the face of P (C) obtained by setting the deleted variables
to 1 and the contracted variables to 0. A clutter is minimally nonideal (or mni for
short) if it is not ideal but all of its minors are ideal.
For an integer t ≥ 2, the clutter Jt = {{1, 2, . . . t}, {0, 1}, {0, 2}, . . . {0, t}} on

ground set {0, 1, . . . t} is called the �nite degenerate projective plane. It is known
that Jt is an mni clutter whose blocker is itself.
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Section 2. Generalization of Lehman's theorem to clutter pairs 4

2 Generalization of Lehman's theorem to clutter pairs

Let C and D be clutters on ground set V of size n. We consider the polyhedron

P (C,D) = {x ∈ RV : x(C) ≥ 1 ∀C ∈ C, x(D) ≥ |D| − 1 ∀D ∈ D, 0 ≤ x ≤ 1}.

Without loss of generality, we can assume that every set in D has size at least 3, and
that |C ∩D| ≤ 1 for every C ∈ C and D ∈ D.
As mentioned in the introduction, we would like minors to correspond to faces

obtained by �xing some variables to 0 or 1. This can be achieved by de�ning minors
of a pair (C,D) the following way:

• The deletion minor for v ∈ V is (C \ v,D \ v), where C \ v = {C ∈ C : v /∈ C}
and D \ v consists of the maximal members of {D − v : D ∈ D}.

• The contraction minor for v ∈ V is (C/v,D/v), where C/v consists of the
minimal members of {C − v : C ∈ C} ∪ {w : ∃D ∈ D : v, w ∈ D}, and
D/v = {D ∈ D : v /∈ D}.

We call a pair (C,D) ideal if P (C,D) is an integer polyhedron. Thus (C, ∅) is ideal
if and only if C is an ideal clutter, and (∅,D) is ideal if and only if D is a perfect
clutter. The pair (C,D) is minimally nonideal if every minor is ideal but (C,D) itself
is not. Equivalently, every non-integer vertex has only non-integral components.
Let (C,D) be a minimally nonideal pair, and let 0 < x∗ < 1 be a non-integral

vertex of P (C,D). We introduce the following notation.

C∗ = {C ∈ C : x∗(C) = 1},
D∗ = {D ∈ D : x∗(D) = |D| − 1},
C∗v = {C ∈ C∗ : v /∈ C},
D∗v = {D ∈ D∗ : v /∈ D}.

Before proving the main theorem of this section, we prove a sequence of propositions
that are analogous to ones used in various proofs of Lehman's theorem (see e.g. [12]).
By a slight abuse of notation, we sometimes identify sets and their characteristic
vectors, so if F is a family of sets, then 〈F〉 denotes the subspace generated by the
characteristic vectors of the members.

Proposition 2.1. For any v ∈ V and any Z ∈ C∗v∪D∗v we have dim〈C∗v∪D∗v〉 ≤ n−|Z|.

Proof. Let C ∈ C∗v , and let x∗−v denote the vector x
∗ restricted to V − v. This vector

is in the integer polyhedron P (C \ v,D\v), so x∗−v is a convex combination
∑
λjXj of

integer vertices. For every u ∈ C we have x∗u > 0, so there exists ju such that u ∈ Xju .
Since x∗(C) = 1, we have Xju ∩ C = {u}. Therefore the vectors {Xju : u ∈ C} are
linearly independent. Since x∗ /∈ 〈Xju : u ∈ C〉, we have dim〈Xju −x∗ : u ∈ C〉 = |C|.
On the other hand, each Xj is tight for the inequalities corresponding to sets in
C∗v ∪ D∗v. This means that (Xju − x∗)(C ′) = 0 for every u ∈ C and every C ′ ∈
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C∗v . Furthermore, (Xju − x∗)(D′) = 0 for every u ∈ C and every D′ ∈ D∗v. Thus
dim〈C∗v ∪ D∗v〉 ≤ n− |C|.
Now let D ∈ D∗v. We have x∗u < 1 for every u ∈ D, so there exists ju such that

u /∈ Xju . Since x∗(D) = |D| − 1 and |Xju ∩ D| ≥ |D| − 1 (the latter is because
D ∈ D \ i), we have Xju ∩D = D− u. Therefore the vectors {Xju : u ∈ D} are a�ne
independent. Since x∗ /∈ aff(Xju : u ∈ D), we have dim〈Xju − x∗ : u ∈ D〉 = |D|.
Here too we have (Xju − x∗)(D′) = 0 for every u ∈ D and every D′ ∈ D∗v, and

(Xju − x∗)(C ′) = 0 for every u ∈ D and every C ′ ∈ C∗v . Thus dim〈C∗v ∪ D∗v〉 ≤
n− |D|.

Proposition 2.2. The size of C∗ ∪D∗ is n, and |Z| = n− |C∗v ∪D∗v| for every v ∈ V
and every Z ∈ C∗v ∪ D∗v. Every vertex of P (C,D) adjacent to x∗ is integer.

Proof. Let B be a base chosen from C∗ ∪ D∗. The size of B is n, and by Proposition
2.1 we have |Bv| ≤ n− |Z| for every Z ∈ C∗v ∪ D∗v and for every v. Let U = {u ∈ V :
∃B ∈ B s.t. u /∈ B}. We can write

n =
∑
B∈B

1 =
∑
B∈B

∑
v∈V \B

1

n− |B|
=
∑
u∈U

∑
B∈Bu

1

n− |B|

≤
∑
u∈U

∑
B∈Bu

1

|Bu|
=
∑
u∈U

1 = |U | ≤ n.

Therefore there is equality throughout, so U = V , and |B| = n− |Bv| for every v and
every B ∈ Bv.
Let H = (V, E) be the hypergraph with hyperedges E = {V \ Z : Z ∈ C∗ ∪
D∗}, and let H ′ = (V, E ′) be the subhypergraph corresponding to B. Let H1 =
(V1, E1), . . . , Hk = (Vk, Ek) denote the components of H ′. By the above, H ′ has no
isolated node, and there are numbers r1, . . . , rk such that component Hj is rj-regular
and rj-uniform. If H 6= H ′, then there is a set B′ ∈ B and a set B′′ ∈ (C∗∪D∗)\B such
that B′′ = B − B′ + B′′ is also a base. Let H ′′ be the corresponding sub-hypergraph.
This must also have regular and uniform components, but since we replaced only one
hyperedge, this is only possible if B′ = B′′, a contradiction. Thus we have H = H ′,
and |E| = n.
We can also show by a similar argument that every vertex of P (C,D) adjacent to x∗

is an integer vertex. Indeed, a non-integer adjacent vertex would satisfy with equality
all but one of the inequalities corresponding to C∗ ∪ D∗. Furthermore, together with
a new tight inequality we would obtain a hypergraph with the same kind of structure
(because what we proved up to now is true for any non-integer vertex). This is
impossible because we cannot have regular and uniform components after replacing a
single hyperedge.

Now we are ready to prove the main theorem of this section.

Theorem 2.3. If the pair (C,D) is mni, then one of C∗ and D∗ is empty, and the other
one is uniform and regular (except for the case C = Jn−1,D = ∅). The polyhedron
P (C,D) has a single non-integer vertex that is simple.

EGRES Technical Report No. 2013-09



Section 2. Generalization of Lehman's theorem to clutter pairs 6

Proof. Let x∗ be a non-integer vertex. As in the proof of Proposition 2.2, H =
(V, E) denotes the hypergraph with hyperedges E = {V \ Z : Z ∈ C∗ ∪ D∗}, and its
components are H1, . . . , Hk, where Hi is ri-uniform and ri-regular. We assume that
r1 ≤ r2 ≤ · · · ≤ rk. The vertex x

∗ is simple because |C∗ ∪D∗| = n by Proposition 2.2.
The proof of the other properties is divided into three cases.
Case 1: D∗ = ∅. It can be seen that

x∗v =
1

(−1 +
∑k

j=1
|Vj |
rj

)rl
if v ∈ Vl,

because this is the unique solution of the equation system given by C∗. If k = 1 or
k ≥ 3 then x∗v ≤ 1

2
for every v, which implies that D is empty. If k = 2, then x∗v ≤ 1

2

for every v unless |V1| = 1. In this case x∗v = r2
n−1 if v = V1 and x∗v = 1

n−1 otherwise,
which implies that x∗(Z) < |Z|− 1 for every set Z of size at least 3. Thus D is empty
again. The statements of the theorem follow from Theorem 1.1.
Case 2: C∗ = ∅. Since |C ∩D| ≤ 1 for every C ∈ C and D ∈ D, C must be empty

in case of k ≥ 3 because every pair of elements is in some D ∈ D∗. This is also true
for k = 2 unless |V1| = 1, when there may be size 2 sets in C. But those can also
be considered as members of D, so we have a minimally imperfect clutter, and the
properties in the theorem follow from [7] and [9] (of course even stronger properties
follow from the Strong Perfect Graph Theorem [1]).
If k = 1, then D∗ is r-regular and r-uniform, so x∗v = r−1

r
for every v ∈ V . In

addition, the vertex x∗ is optimal for the all-1 cost vector because of the regularity of
D∗, and any optimal vertex must satisfy with equality the inequalities corresponding
to sets in D∗. Since D∗ is a base, x∗ is the only such vertex. This proves that there
cannot be another non-integer vertex x′ for which Case 2 holds; on the other hand,
there is no other non-integer vertex for which Case 1 holds either because we have
seen that D is empty in Case 1. Therefore we are done if we prove that Case 3 below
is impossible.
Case 3: C∗ 6= ∅, D∗ 6= ∅. Consider a set D ∈ D∗. If k ≥ 3, then any C ∈ C∗

intersects D in at least 2 elements, which is impossible because |C ∩D| ≤ 1 for every
C ∈ C and D ∈ D. If k = 2, then for the same reason the only possibility is that
|V1| = 1, D∗ = {V2} and C has only sets of size 2. As in Case 2, we can argue that
this must correspond to a minimally imperfect clutter (actually it is not hard to see
that this case is impossible). Therefore we can assume that k = 1, and C∗ ∪ D∗ is
r-regular and r-uniform, where r ≥ 3.
We now prove that it is impossible to have C∗ 6= ∅ and D∗ 6= ∅. Let D ∈ D∗

and let X be the vertex adjacent to x∗ that is not tight for D. This means that
D ⊆ X, and |X| = 1x∗+ 1

r
because X is tight for all other inequalities corresponding

to C∗ ∪ D∗. Thus the fractional part of 1x∗ is r−1
r
. If x∗v >

r−1
r

for some v ∈ V , then
1x∗−v < b1x∗c = |X| − 1, which is impossible because P (C \ v,D \ v) has no integer
vertex Y with |Y | < |X| − 1. Thus x∗v ≤ r−1

r
for every v, which implies that for every

D ∈ D∗ and v ∈ D we have x∗v = r−1
r
.

Suppose that there exist C ∈ C∗ and D ∈ D∗ such that |C ∩ D| = 1, and let v
be the intersection. Since 1x∗−v = b1x∗c, it must be a convex combination of integer
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vertices X1, . . . , Xt of P (C \ v,D \ v) that all satisfy |Xj| = 1x∗−v. This means that
|Xj+v| = |X|, soXj+v satis�es all but one of the inequalities corresponding to C∗∪D∗
with equality, and the slack of the remaining inequality is 1. Consequently, Xj + v is
a vertex adjacent to x∗ in P (C,D) for every j. We can now get a contradiction using
the fact that |C| ≥ 3. Indeed, x∗−v is positive on the vertices of C − v, and each Xj

contains at most 1 such element, so there are at least two sets Xj1 and Xj2 containing
an element of C − v. Thus Xj1 + v and Xj2 + v are not tight for C, hence they are
tight for all other members of C∗ ∪ D∗. But this is impossible because there is only
one integer vertex of P (C,D) that is tight for all of those sets.
The only remaining case is when C ∩ D = ∅ for any C ∈ C∗ and D ∈ D∗. Let

U1 = ∪C∗ and U2 = ∪D∗. Since C∗∪D∗ is a base, C∗ must be a base on U1, thus x
∗|U1

is a vertex of P (C \ U2,D \ U2), contradicting the assumption that this polyhedron is
integer. We obtained that this case is also impossible.

3 Ideal set functions

The aim of this section is to extend the notions of the blocking relation and idealness
from clutters to unit-increasing set functions. We show that several properties of ideal
clutters can be maintained: idealness is preserved for taking minors and blockers. We
also show that new types of minimally nonideal structures emerge. In addition, we
describe a transformation, called twisting of the set function at a subset, that preserves
idealness.
Let V be a �nite ground set, and let f : 2V → Z be an integer-valued unit-increasing

set function. The blocker b(f) : 2V → Z of f is the unit-increasing set function de�ned
by

b(f)(X) = −f(V \X)

for any set X ⊆ V . Obviously, b(b(f)) = f . We de�ne the following two minor
operations on unit-increasing functions for a given v ∈ V :

• the deletion minor is the function on ground set V − v, denoted by f\v, for
which f\v(X) = f(X) for every X ⊆ V − v,

• the contraction minor is the function on ground set V − v, denoted by f/v, for
which f/v(X) = f(X + v) for every X ⊆ V − v.

A function f ′ is a minor of f if it can be obtained from f by deletions and contrac-
tions. It is easy to see that the order of the operations does not a�ect the minor we get,
the minors are unit-increasing functions, and b(f\v) = b(f)/v and b(f/v) = b(f)\v.
We call functions f1 and f2 equivalent if there is a constant c such that f2(X) =

f1(X) + c for every X ⊆ V ; we will use the notation f1 ∼= f2.

3.1 Polyhedra and idealness

We now show that it is possible to associate polyhedra to unit-increasing set functions
in such a way that minors correspond to faces, blockers to integer vertices, and the
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notion of idealness can be de�ned in terms of integrality of polyhedra. The trick is to
move to (n+ 1)-dimensional space. For a function f , let

P (f) = {(y, β) ∈ Rn+1 : 0 ≤ y ≤ 1, y(X)− β ≥ f(X) for every X ⊆ V }.

Proposition 3.1. The following hold for the minors of f :

P (f\v) = {(y, β) ∈ Rn−1+1 : (y, 1, β) ∈ P (f)}, and

P (f/v) = {(y, β) ∈ Rn−1+1 : (y, 0, β) ∈ P (f)},

that is, both P (f\v) and P (f/v) are facets of P (f).

Proof. It is easy to see that for a vector (y, 1, β) ∈ P (f), (y, β) satis�es the inequalities
of P (f\v), since they are present in the system of P (f) too.
If (y, β) ∈ P (f\v) and X ⊆ V − v, then on one hand we have (y, 1)(X) − β =

y(X)−β ≥ f\v(X) = f(X), and on the other hand (y, 1)(X+v)−β = y(X)+1−β ≥
f\v(X) + 1 = f(X) + 1 ≥ f(X + v), since f is unit-increasing. So (y, 1, β) ∈ P (f).
It is easy to see that for a vector (y, 0, β) ∈ P (f), (y, β) satis�es the inequalities of

P (f/v), since y(X)− β = (y, 0)(X + v)− β ≥ f(X + v) = f/v(X).
If (y, β) ∈ P (f/v) and X ⊆ V − v, then on one hand we have (y, 0)(X) − β =

y(X)− β ≥ f/v(X) = f(X + v) ≥ f(X), since f is unit-increasing, and on the other
hand (y, 0)(X + v)− β = y(X)− β ≥ f/v(X) = f(X + v), thus (y, 0, β) ∈ P (f).

The unit-increasing set function f is called ideal if the polyhedron P (f) is integral.
As expected, idealness is preserved under taking minors.

Proposition 3.2. If f is ideal, then any minor of it is also ideal.

Proof. It follows from Proposition 3.1.

This enables us to call a unit-increasing function f minimally nonideal (mni) if it
is not ideal but every minor is ideal. Before showing that this is a direct extension of
the same notion for clutters, we note that we get the same notion of idealness if we
remove the upper bound or both bounds on y in the polyhedron. Let

Q(f) = {(y, β) ∈ Rn+1 : y ≥ 0, y(X)− β ≥ f(X) for every X ⊆ V },
R(f) = {(y, β) ∈ Rn+1 : y(X)− β ≥ f(X) for every X ⊆ V }.

Proposition 3.3. If f is unit-increasing, then P (f) is integral ⇔ Q(f) is integral ⇔
R(f) is integral.

Proof. See the proof of Theorem 3.6 in the Appendix.

Recall that to a clutter C we associate the set function (2). It is easy to check
that this works well with the minor operations: for any v ∈ V , fC\v = fC\v and
fC/v = fC/v. Likewise, one can check that the blocker b(fC) is equivalent the set
function corresponding to the blocker of C (they di�er by 1).

Proposition 3.4. A clutter C is ideal if and only if fC is ideal.
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3.2 Blockers and idealness 9

Proof. It is easy to see that

Q(fC) = {(y, β) ∈ Rn+1 : y ≥ 0, y(X)− β ≥ fC(X) ∀X ⊆ V } =

= {(y, β) ∈ Rn+1 : y ≥ 0, β ≤ 0, y(X)− β ≥ 1 ∀X ∈ C}.

So the face of Q(fC) in the β = 0 hyperplane is the covering polyhedron of C, thus
if fC is ideal then C is ideal too.
To see the other direction, note that in the above description all inequalities but

β ≤ 0 are incident to the vector (0,−1). Therefore Q(fC) is the intersection of a cone
pointed at (0,−1) and the halfspace {(y, β) : β ≤ 0}. It follows that if C is ideal
then fC is also ideal.

Corollary 3.5. A clutter C is mni if and only if fC is mni.

We note that Lehman's Theorem 1.1 has the consequence that if C is mni, then
the polyhedron P (fC) has a unique fractional vertex and it is simple (here a vertex is
simple if it lies on n+ 1 facets).

3.2 Blockers and idealness

As in Sect. 2, we will abuse notation by identifying sets and their characteristic vectors.
For a unit-increasing set function f , let us de�ne the following �nite set of vectors in
Rn+1:

S(f) = {(X, f(X)) : X ⊆ V }.

We denote the set S(f)− cone{(0,−1)} by S↓(f). We note that the idealness of f is
equivalent to P (f) = conv{S↓(b(f))}.

Theorem 3.6. For a unit-increasing set function, the following are equivalent:

(i) f is ideal, that is, P (f) = conv{S↓(b(f))}

(ii) b(f) is ideal, that is, P (b(f)) = conv{S↓(f)}

(iii) R(f) is an integer polyhedron

(iv) R(b(f)) is an integer polyhedron

(v) Q(f) is an integer polyhedron

(vi) Q(b(f)) is an integer polyhedron

Proof. See the Appendix, Sect. 5.1

As an example, we show that for a matroidM = (V, r), both its rank function r and
its co-rank function q are ideal functions. It is known that these are unit-increasing
functions, and the rank function is submodular, while q is supermodular.

Proposition 3.7. Both the rank function r and the corank function q of a matroid
are ideal functions.
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Proof. First we prove that q is ideal. It is enough to show that the polyhedron

R(q) = {(y, β) ∈ Rn+1 : y(X)− β ≥ q(X) ∀X ⊆ V }

is integer. Since q is supermodular, a standard uncrossing proof gives that this system
is TDI, hence the polyhedron is integral.
The blocker of r is b(r)(X) = −r(V −X) = q(X)− r(V ), which is equivalent to q,

thus b(r) is ideal, and r is also ideal by Theorem 3.6.

3.3 Twisting

In this section we introduce the twisting operation that preserves indealness. Let f
be a unit-increasing set function on ground set V , and let U be a subset of V . The
twisting of f at U is the set function fU on ground set V de�ned by

fU(X) = f(X∆U) + |X ∩ U |.

It is easy to see that fU is a unit-increasing set function. The interaction with
minors is the following.

Proposition 3.8. For a set U ⊆ V and an element v ∈ V the following hold.

(i)

(f\v)U−v ∼=

{
fU/v if v ∈ U,
fU\v if v /∈ U,

(ii)

(f/v)U−v ∼=

{
fU\v if v ∈ U,
fU/v if v /∈ U.

Proof. See Sect. 5.2 in the Appendix.

Proposition 3.9. Every twisting of an ideal set function is also ideal.

Proof. See Appendix, Sect. 5.2.

Corollary 3.10. Every twisting of an mni set function is also mni.

Proof. This follows from Propositions 3.8 and 3.9.

As an example, consider the following set function on ground set V of size n:

θn(X) =


0 if X = ∅,
n− 2 if X = V,

|X| − 1 otherwise.

This set fuction is equivalent to a twisting of the function corresponding to the
degenerate projective plane:

θn ∼= f
V \{0}
Jn−1

.
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3.4 Further mni functions

It is a natural question whether the idealness introduced in this section generalizes
the notion of idealness of clutter pairs used in Sect. 2. The answer is no; in fact, it
does not even generalize perfectness of clutters. It would be natural to associate to a
clutter D the unit-increasing set function

gD(X) = max{0,max{|X ∩D| − 1 : D ∈ D}}. (3)

The problem is that P (gD) is not necessarily integral if D is the set of inclusionwise
maximal cliques of a perfect graph. Also, the minors of gD do not necessarily belong
to this class.
In this light, it is somewhat surprising that the following is true. An interesting

question is whether one can prove it without using the Strong Perfect Graph Theorem.

Theorem 3.11. The function gD is minimally nonideal if and only if D is minimally
imperfect.

Proof. If gD is ideal, then D is perfect, because the packing polyhedron of D is the
same as the facet of P (gD) given by β = 0. Another observation is that if D is
perfect, then gD cannot be minimally non-ideal. Indeed, The point (1, 1) is not in
P (gD), but satis�es with equality all facet-de�ning inequalities of P (gD) except for
β ≤ 0 and y ≥ 0. This means that any all-fractional vertex of P (gD) must satisfy
β = 0. However, the face β = 0 is the same as the packing polyhedron of D, so it has
only integer vertices.
These observations together imply that if gD is minimally non-ideal, then D is

minimally imperfect. To prove the other direction, we resort to the characterization
of Lovász and the Strong Perfect Graph Theorem. According to these, D is minimally
imperfect if and only if it is the non-Helly clutter (consisting of the complements
of singletons), or the clutter of inclusionwise maximal cliques of an odd hole or odd
antihole.
The function associated to the non-Helly clutter is θn, which is mni. If D is the

odd hole clutter, then gD = fD, so it is mni because the clutter is mni. The proof
that the function associated to an odd antihole is mni is contained in Sect. 5.3 of the
Appendix.

We present one more mni function that shows the di�culty of extending Lehman's
theorem. So far all mni functions we have seen satis�ed the property that P (f) has a
unique non-integer vertex that is simple. The following mni set function f on ground
set {1, 2, 3, 4, 5} is an example where the unique fractional vertex of P (f) is not simple.
The properties were checked using the software Polymake.

f(X) =



0 if X = ∅,
1 if |X| = 1 or X ∈ {{1, 2}, {2, 3}, {3, 4}{4, 5}},
2 if |X| = 3 or X ∈ {{1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 5}}

or X ∈ {{1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 5}},
3 if X ∈ {{1, 2, 3, 4}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}}.
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4 Open questions

There are several questions about ideal unit-increasing functions that we think may
lead to better insights into the structure of 0-1 polyhedra, in particular concerning
classes larger than packing and covering polyhedra.

• We are not aware of an example of an mni function that has more than one
non-integer vertex, so one is tempted to conjecture that the non-integer vertex
is always unique. In addition, in all known examples there is a value λ such
that every component of the unique non-integer vertex (except for the last one)
is either λ or 1− λ.

• Can one de�ne a class of functions that contains all functions of type fC and gC,
is closed under taking minors, blockers, and twisting, and has the property that
any minimally non-ideal member of the class has a unique fractional vertex that
is simple?

• In a model where functions are given by an evaluation oracle, is it in co-NP to
decide if a unit-increasing function is ideal?
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5 Appendix

5.1 Proof of Theorem 3.6

First we prove some basic properties of the polyhedra P (f), Q(f), and R(f).

Proposition 5.1. If f is a unit-increasing set function, then Q(f) = P (f) + Rn
+.

Proof. The Q(f) ⊇ P (f) + Rn
+ inclusion is easy, since the describing matrix of Q(f)

has nonnegative coe�cients in the �rst n variables.
For the Q(f) ⊆ P (f) + Rn

+ inclusion, let (y, β) ∈ Q(f). We want to show that
there is a (y′, β) ∈ P (f) for which y′ ≤ y. Let y′i = min(yi, 1). Then y′ ≤ y and
0 ≤ y′ ≤ 1 hold, so it remains to show that y′(X) − β ≥ f(X) for each X ⊆ V . We
have y′(X) = |X ∩ {i : yi > 1}|+ y(X ∩ {i : yi ≤ 1}) ≥ |X ∩ {i : yi > 1}|+ f(X ∩ {i :
yi ≤ 1}) + β ≥ f(X) + β, since f is unit-increasing.

Let C be the cone generated by {ei : i ∈ [n]} ∪ {−ei − en+1 : i ∈ [n]}. We call a
set X tight with respect to f and a vector (y, β) if y(X)− β = f(X).

Proposition 5.2. Every vertex (y∗, β∗) of R(f) satis�es 0 ≤ y∗ ≤ 1, and the charac-
teristic cone of R(f) is C, hence R(f) = P (f) + C.

Proof. First let us show that the characteristic cone is C. It is easy to see that all
the vectors ei and −ei − en+1 are in the characteristic cone of R(f). If a vector (z, γ)
is in the characteristic cone of R(f), then for every X ⊆ V , z(X)− γ ≥ 0 holds. For
X = {i : zi < 0} we have (z, γ) =

∑
i∈X −zi(−ei − en+1) + (z′, γ′), where z′ ≥ 0 and

γ′ ≤ 0, and it is easy to see that (z′, γ′) ∈ C.
Now let (y∗, β∗) be a vertex, and suppose that y∗v < 0. Then every tight set

X contains v, because otherwise the inequality for X + v would be violated since
f(X + v) ≥ f(X). Now, if every tight set X contains v, then (y∗, β∗) + ε(χv, 1) is
in R(f) for some positive ε. This contradicts the fact that (y∗, β∗) is a vertex and
(−χv,−1) is an extreme direction.
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Now suppose that y∗v > 1 for a vertex (y∗, β∗). Then no tight set contains v, since
otherwise the inequality for X−v would be violated: y∗(X−v)−β < y∗(X)−1−β =
f(X)−1 ≤ f(X−v), a contradiction. This implies that for some positive ε, the vector
(y∗, β∗) − ε(χv, 0) is in R(f), which contradicts the fact that (y∗, β∗) is a vertex and
ev is an extreme direction.

Corollary 5.3. If f is a unit-increasing set function, then R(f) = Q(f) + C.

Proof. It follows from Propositions 5.1 and 5.2 and that Rn
+ ⊂ C.

For a polyhedron P , let vert(P ) denote the set of its vertices.

Corollary 5.4. For a unit-increasing function f it is always true that vert(P (f)) ⊇
vert(Q(f)) ⊇ vert(R(f)).

In the proof of Theorem 3.6 we will use an operation B on polyhedra in Rn+1, which
is similar to taking the blocker of a polyhedron, it di�ers only in the last coordinate.
For a polyhedron P ⊆ Rn+1, let us de�ne B(P ) as follows:

B(P ) = {(y, β) ∈ Rn+1 : xTy ≥ α + β for every (x, α) ∈ P}.

Note that B(P ) is indeed a polyhedron, since using standard polyhedral techniques
one can prove that if P = conv{S}+ cone{T} for �nite vector sets S and T in Rn+1,
then

B(P ) = {(y, β) ∈ Rn+1 : sT[n]y ≥ sn+1 + β ∀s ∈ S and tT[n]y ≥ tn+1 ∀t ∈ T}. (4)

Suppose that the polyhedron P ⊂ Rn+1 has the following properties:

(a) ∃ᾱ : (0, ᾱ) ∈ P

(b) P is bounded from above in the last coordinate

(c) (0,−1) is in the characteristic cone of P

Proposition 5.5. If P satis�es properties (a)-(c) then so does B(P ).

Proof. To see property (a), we can observe that if P = conv{S}+cone{T}, then from
(4) we get that for β̄ = min(−sn+1 : s ∈ S), (0, β̄) ∈ P . For property (b) we can take
an ᾱ such that (0, ᾱ) ∈ P which implies that β ≤ 0Ty − ᾱ = −ᾱ. For property (c)
we need that xT0 ≥ −1 which is obvious, and that B(P ) is nonempty which follows
from (a).

Lemma 5.6. If P satis�es properties (a)-(c) then B(B(P )) = P .

Proof. For every (x, α) ∈ P and (y, β) ∈ B(P ) we have xTy ≥ α + β which shows
that P ⊆ B(B(P )).
Suppose that there is a vector (x∗, α∗) ∈ B(B(P )) which is not in P . Then there

is a vector (z, γ) and a number ξ such that x∗Tz + α∗γ < ξ, but for every (x, α) ∈ P ,
xTz + αγ ≥ ξ. From (c) it follows that γ ≤ 0.
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Case 1: γ = 0. We show that there is an ε > 0 such that x∗Tz + α∗(−ε) <
xTz+α(−ε) for each (x, α) ∈ P . Because of (b) we know that there is an a ∈ R such

that α ≤ a for every (x, α) ∈ P . We can assume that a > α∗. If ε < ξ−x∗Tz
a−α∗ , then for

every (x, α) ∈ P , ε(α−α∗) ≤ ε(a−α∗) < ξ− x∗Tz ≤ xTz− x∗Tz. Since xTz+α(−ε)
attains its minimum on P , we have an instance of Case 2.
Case 2: γ < 0. We can assume that γ = −1, since we can scale the inequalities

with a positive multiplier. So we have x∗Tz − α∗ < ξ, and for each (x, α) ∈ P ,
xTz − α ≥ ξ. That means the vector (z, ξ) ∈ B(P ) but for this vector (x∗, α∗)
does not ful�l the required inequality to be in the blocker of B(P ), which contradicts
(x∗, α∗) ∈ B(B(P )).

Notice that for a unit-increasing function f , the polyhedron P (f) satis�es properties
(a)-(c).

Proposition 5.7. B(P (f)) = conv{S(f)}+ C and B(R(f)) = conv{S↓(f)}.

Proof. First we prove that B(conv{S(f)} + C) = P (f), by Lemma 5.6 this implies
the �rst equation. Using (4), we have

B(conv{S(f)}+ C) = { (y, β) ∈ Rn+1 : y(X) ≥ f(X) + β ∀X ⊆ V,

yi ≥ 0 ∀i ∈ [n], −yi ≥ −1 ∀i ∈ [n] },

which is equal to P (f).
Now let us prove that B(conv{S↓(f)}) = R(f), which implies the second equation.

Using (4), we have

B(conv{S↓(f)}) = { (y, β) ∈ Rn+1 : y(X) ≥ f(X) + β ∀X ⊆ V },

which is R(f).

Proof of Theorem 3.6. Using Propositions 5.2 and 5.7 and Lemma 5.6 we have

P (f) = conv{S↓(b(f))} +C
=⇒ R(f) = conv{S↓(b(f))}+ C

B(.)
=⇒

B(.)
=⇒ conv{S↓(f)} = P (b(f))

+C
=⇒ conv{S↓(f)}+ C = R(b(f)),

which shows the equivalence of (i)-(iv). Corollary 5.4 implies that if P (f) is integral
then so is Q(f), and if Q(f) is integral then so is R(f), which together with the above
equivalences imply the equivalence of (v) (and also (vi)) and the other statements.

5.2 Proofs about twisting

Proof of Proposition 3.9. Suppose that v ∈ U and take a set X ⊆ V − v. Then

(f\v)U−v(X) = f\v(X∆(U − v)) + |X ∩ (U − v)| =
= f((X + v)∆U) + |(X + v) ∩ U | − 1 =

= fU(X + v)− 1 = fU/v(X)− 1, and
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(f/v)U−v(X) = f/v(X∆(U − v)) + |X ∩ (U − v)| =
= f(X∆U) + |X ∩ U | = fU(X) = fU\v(X).

The other cases are similar.

Proof of Proposition 3.9. Let f be an ideal set function on V , and U be a subset of
V . Consider the following (|V |+ 1)× (|V |+ 1) matrix:

MU =



−1
−1

. . . 0
−1

1
0 1

. . .

1
−1 −1 . . . −1 0 0 . . . 0 1



U

It is easy to check that M−1
U = MU , so MU is unimodular. We claim that

R(f) = MUR(fU) + (U, |U |).

Indeed, if we denote by A the describing matrix of R(f) (i.e. the matrix whith rows
(X,−1)T), then by (X,−1)TM−1

U = (X∆U,−1)T, we have

MUR(fU) + (U, |U |) = {MU(y, β) : A(y, β) ≥ fU}+ (U, |U |) =

= {(z, γ) : AM−1
U (z, γ) ≥ fU + AM−1

U (U, |U |)} =

= {(z, γ) : (X∆U,−1)T(z, γ) ≥ fU(X) + (X∆U,−1)T(U, |U |) ∀X ⊆ V } =

= {(z, γ) : z(X∆U)− γ ≥ f(X∆U) + |X ∩ U |+ |U \X| − |U | ∀X ⊆ V } =

= {(z, γ) : z(Y )− γ ≥ f(Y ) ∀Y ⊆ V } = R(f).

Hence we also have R(fU) = M−1
U (R(f)− (U, |U |)) = MUR(f) + (U, 0). Therefore

R(f) is integer if and only if R(fU) is integer.

5.3 Proof that odd antihole functions are mni

Theorem 5.8. If D is the clutter of inclusionwise maximal cliques of an odd antihole,
then gD (as de�ned in (3)) is minimally nonideal.

The polyhedron P (gD) can be written as:

P (gD) = {(y, β) ∈ Rn+1 : 0 ≤ y ≤ 1, β ≤ 0, y(K)− β ≥ |K| − 1 ∀ clique K}.

It will be more convenient to consider a transformed polyhedron for the complement
graph and packing type constraints. For a graph G = (V,E), let

P (G) = {(x, t) ∈ R|V |+1 : 0 ≤ x ≤ 1, t ≥ 0, x(S) ≤ 1 + t for every stable set S}.

Clearly P (G) is integer if and only if gD is ideal for the clutter D of inclusionwise
maximal stable sets of G. Thus the following proposition implies Theorem 5.8.
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Proposition 5.9. If G is a path, then P (G) is an integral polyhedron. If G is an odd
cycle, then P (G) has a unique non-integral vertex.

Proof. We use induction on |V | and we consider both cases simultaneously. Let (x∗, t∗)
be a non-integer vertex of P (G).
First we claim that supp(x∗) = V . Suppose indirectly that x∗(v) = 0 for some

v ∈ V . If G is a path, then let G1 and G2 be the two paths of G − v, and let
xi = x∗|V (Gi) (for i = 1, 2). Let t1 and t2 be minimal such that (xi, ti) ∈ P (Gi).
Then t1 + t2 + 1 ≤ t∗, since there are stable sets S1 and S2 which are tight, so
t∗ + 1 ≥ x∗(S1 ∪ S2) = x1(s1) + x2(S2) = t1 + t2 + 2.
By induction, (x1, t1) and (x2, t2) can be written as convex combination of integer

points in P (G1) and P (G2), respectively: (x1, t1) =
∑
λi(ai, bi), (x2, t2) =

∑
µi(ci, di).

Then the convex combination
∑

i,j λiµj(ai, 0, cj, bi + dj + 1) (where the 0 component
corresponds to v) produces (x∗, t1 + t2 + 1), and it is easy to see that every vector
used in the combination is in P (G). This and t∗ ≥ t1 + t2 + 1 implies that (x∗, t∗) can
not be a vertex.
In the case that G is a cycle, the proof is a similar reduction to the path case.
Next, suppose that x∗ has an interval of consecutive ones, with odd length (and the

neighboring values are smaller than 1). Let u and v be the neighboring nodes. Then
every tight set S contains every other node in the interval (1st, 3rd etc.), and does not
contain u or v (because otherwise we could obtain a stable set S ′ with x∗(S ′) > x∗(S)
by moving more elements of S to the interval). But then (x∗, t∗)± ε(χu − χv) would
be still in the polyhedron P (G), which contradicts that (x∗, t∗) is a vertex. In the
case that G is a path and the interval of ones is at the beginning, we get a similar
contradiction.
Now consider the case that (x∗, t∗) is such that every consecutive interval of ones is

of even length. Let I denote the set of nodes in V where x∗ is one and let 2k be its
cardinality. We write (x∗, t∗) as the following convex combination for some λ close to
1:

(x∗, t∗) = (1− λ)(χI , k − 1) + λ

(
max(χI ,

x∗

λ
),
t∗ − (1− λ)(k − 1)

λ

)
.

The vector (χI , k− 1) is in P (G), because of the evenness property of I. Let (x′, t′)
denote the second vector, about which we want to show that it is in P (G) for λ close
enough to 1. The nonnegativity constraints and the x′ ≤ 1 constraint hold around 1.
Let S be an arbitrary stable set. If |S ∩ I| < k, then there is another stable set S ′

for which x′(S ′) > x′(S), so we can assume that |S ∩ I| = k. Then

x′(S) = k +
x∗(S \ I)

λ
= k +

x∗(S)− k
λ

≤ k +
1 + t∗ − k

λ
= 1 +

t∗ − (1− λ)(k − 1)

λ
,

which proves that (x′, t′) ∈ P (G).
We remain with the case when x∗ has only non-integer values. In this case, every

node v has to be in a tight set. The vector (0,−1) satis�es all of these tight inequalities
with equality too, except for t ≥ 0. Thus t∗ = 0, and x∗ is a vertex of QSTAB(G).
If G is a path, then QSTAB(G) is integer, while for odd circuits it has a unique
non-integer vertex. This concludes the proof.
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