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An extension of Lehman's theorem and ideal set

functions

Tamás Király? and Júlia Pap??

Abstract

Lehman's theorem on the structure of minimally nonideal clutters is a fun-
damental result in polyhedral combinatorics. One approach to extending it has
been to give a common generalization with the characterization of minimally
imperfect clutters [15, 8]. We give a new generalization of this kind, which com-
bines two types of covering inequalities and works well with the natural de�nition
of minors. We also show how to extend the notion of idealness to unit-increasing
set functions, in a way that is compatible with minors and blocking operations.

1 Introduction

A set family C on a ground set V of size n is called a clutter if no set in C is a
subset of another. We will refer to elements of V simply as elements, while elements
of C will be referred to as members of C. Let C↑ denote the uphull of C, that is,
C↑ = {U ⊆ V : U ⊇ C for some C ∈ C}. The blocker b(C) of a clutter C is de�ned as
the family of the (inclusionwise) minimal sets that intersect each member of C. It is
easy to check that b(b(C)) = C, see e.g. [3, Theorem 1.3].
One of the most well-studied objects of polyhedral combinatorics is the covering

polyhedron of a clutter, which we consider in the following bounded version:

P (C) = {x ∈ RV : 0 ≤ x ≤ 1, x(C) ≥ 1 for every C ∈ C},

where x(C) denotes
∑

v∈C xv. The integer points of P (C) correspond to the sets in
b(C)↑. A clutter C is called ideal if the polyhedron P (C) is integer. By a result of
Lehman [9], a clutter is ideal if and only if its blocker is.
Deciding whether a clutter is ideal is hard (see e.g. [6], where it is shown to include

the co-NP-complete problem of recognizing quasi-bipartite graphs). However, inter-
esting structural properties can be proved for clutters which are minimally nonideal
(mni) in the sense that any facet of P de�ned by setting a variable to 0 or 1 is integer.
A simple in�nite family of mni clutters is the family of �nite degenerate projective
planes, de�ned as Jt = {{1, 2, . . . t}, {0, 1}, {0, 2}, . . . {0, t}} on ground set {0, 1, . . . t},
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where t ≥ 2. It is easy to check that the blocker of Jt is itself. The following theorem
of Lehman [9, 10], which shows that all other mni clutters have a regular structure,
is considered to be one of the fundamental results on covering polyhedra.

Theorem 1.1 (Lehman [9, 10]). Let C be a minimally nonideal clutter nonisomorphic
to a �nite degenerate projective plane. Then P (C) has a unique noninteger vertex,
namely 1

r
1, where r is the minimum size of an edge in C. There are exactly n sets

of size r in C and each element of V is contained in exactly r of them. The blocker
b(C) also has exactly n sets of minimum size, which correspond to the vertices of P (C)
adjacent to the noninteger vertex.

An important consequence of the theorem, observed by Seymour [16], is that the
problem of deciding idealness of a clutter is in co-NP, provided that we have a mem-
bership oracle for C↑. After Lehman's groundbreaking result, there have been several
attempts to better understand the structure of minimally nonideal clutters (see [12]
for an enumeration of mni matrices of small dimension, [5] for a characterization of
mni circulants, [3] for a survey, and [4, 18] for more recent developments).
There have been successful e�orts to combine Lehman's theorem with another

fundamental result, the co-NP characterization of minimally imperfect clutters by
Lovász and Padberg [11, 13]. A clutter D is perfect if the packing polyhedron
{x ∈ RV : 0 ≤ x ≤ 1, x(D) ≤ 1 for every D ∈ D} is integral. It is minimally
imperfect if it is not perfect, but any face of the polyhedron obtained by setting some
variable to 0 is integral. Note that it is unnecessary to consider faces obtained by
setting a variable to 1, because if the face xv = 0 is integral, then so is the face
xv = 1.

Theorem 1.2 (Lovász [11], Padberg [13]). If a clutter D is minimally imperfect, then
it either consists of all (n − 1)-element subsets of V (the non-Helly clutter), or it
consists of the maximal cliques of a minimally imperfect graph. In both cases, D has
n maximum size members, and they form a regular hypergraph.

Of course, we can claim much stronger properties for D using the Strong Perfect
Graph Theorem of Chudnovsky, Robertson, Seymour, and Thomas [2].

Theorem 1.3 (Strong Perfect Graph Theorem [2]). A graph is perfect if and only if
it contains no odd hole (an induced subgraph isomorphic to an odd cycle of length at
least 5) and no odd antihole (an induced subgraph isomorphic to the complement of
an odd cycle of length at least 5).

It follows that if D is minimally imperfect, then it is either a non-Helly clutter, or a
clutter formed by the inclusionwise maximal cliques of an odd cycle of length at least
5 or of the complement of an odd cycle of length at least 5.
Seb® [15], and Gasparyan, Preissmann and Seb® [8] considered polyhedra de�ned

by both packing and covering constraints, and gave an extension of Lehman's theorem
that includes Theorem 1.2. An inconvenience in their approach is that the class of
polyhedra they consider is not closed under taking facets de�ned by setting variables
to 0 or 1, and there is no natural way to de�ne a blocker.
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In this paper we present two di�erent approaches that address these issues. In the
�rst part of the paper, in Section 2, we prove an extension of Lehman's theorem to
another class of polyhedra that includes both packing and covering polyhedra as a
subclass. Let C and D be clutters on the same ground set V . We consider polyhedra
of the form

P (C,D) = {x ∈ RV : 0 ≤ x ≤ 1, x(C) ≥ 1 for every C ∈ C,
x(D) ≥ |D| − 1 for every D ∈ D}.

If D is empty, then this is the same as P (C). On the other hand, if C is empty, then
{x ∈ RV : 1− x ∈ P (C,D)} is the packing polyhedron of D. Clearly, this polyhedron
is integral if and only if P (C,D) is integral. We will see that faces obtained by setting
some variables to 0 or 1 are also polyhedra in this class, de�ned by appropriate pairs
of clutters (these pairs will be called the minors of the pair (C,D)). Our main result
is that if P (C,D) is non-integral but the faces considered above are all integral, then
one of the following holds: a) D is empty and C is a minimally nonideal clutter, b) C
is empty and D is a minimally imperfect clutter, or c) D has only members of size 2,
and C ∪ D is an odd cycle or a degenerate projective plane.
As a corollary, we derive a new characterization of integrality of a polytope associ-

ated with the vertex cover problem in hypergraphs. Let H = (V, E) be a hypergraph,
and let GH be the graph consisting of the hyperedges of size two in H. Lehman's the-
orem is a characterization of the integrality of the fractional vertex cover polyhedron
for H. A weakness of this LP relaxation is that the polyhedron is automatically non-
integer if GH contains a triangle. To �x this, let us consider the polyhedron obtained
by adding the clique inequalities of GH :

P = {x ∈ RV : 0 ≤ x ≤ 1, x(e) ≥ 1 for every e ∈ E ,
x(K) ≥ |K| − 1 for every clique K in GH .}

We give a Lehman-type characterization of the integrality of P . This implies that
integrality is in co-NP even if the hypergraph is given implicitly by an oracle that
outputs whether a given set X ⊆ V induces a hyperedge or not.
An integer-valued set function f on ground set V is unit-increasing if f(U) ≤

f(U + v) ≤ f(U) + 1 for every U ⊆ V and v /∈ U 1. In the second part of the paper,
in Section 3, we extend the notion of idealness to unit-increasing set functions. To a
clutter C we can associate the unit-increasing function

fC(U) =

{
1 if U ∈ C↑,
0 otherwise.

(1)

We show that it is possible to associate (n + 1)-dimensional polyhedra to unit-
increasing set functions in such a way that the notions of minor, blocker, and idealness
are natural extensions of these notions for clutters, so the blocker of fC is fb(C), and fC
is ideal if and only if C is ideal. Furthermore, the property that idealness is equivalent

1Throughout the paper, we use U+v and U−v as shorthand for U ∪{v} and U \{v}, respectively.
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to the idealness of the blocker remains true for any unit-increasing function. For ma-
troids this means that both the rank function (which is submodular) and the co-rank
function (which is supermodular) are ideal.
Another attractive characteristic of this approach is the existence of a �twisting�

operation on unit-increasing set functions that preserves idealness. For example, the
degenerate projective plane on n elements (that can be considered as the exceptional
case in Lehman's theorem) is a twisting of the set function corresponding to the
exceptional non-Helly clutter in the theorem of Lovász.
One caveat is that this approach does not o�er a direct generalization of packing

polyhedra. However, we will show that to a clutter D one can associate a set function
gD such that gD is minimally nonideal if and only if D is minimally imperfect.
It seems that Lehman's theorem cannot be fully extended to this setting, and

this gives rise to several open question that are presented in Section 4. We show
an example of an mni function where the fractional vertex of the polyhedron is not
simple. However, we are unaware of any example where the polyhedron of an mni set
function has more than one non-integer vertex. Note that Lehman's theorem implies
that idealness of clutters (i.e. functions of type fC) is in co-NP if we have a function
evaluation oracle. An interesting open question is whether this is true for arbitrary
unit-increasing set functions.

1.1 Preliminaries on clutters

As several de�nitions in the paper are derived from the same notions used in the
theory of clutters, it is useful to describe the clutter versions �rst. There are two
types of minor operations for a clutter C on ground set V , corresponding to including
or excluding an element v ∈ V in the blocker:

• the deletion minor is the clutter C\v on ground set V − v with members {C ∈
C : v /∈ C},

• the contraction minor is the clutter C/v on ground set V − v whose members
are the inclusionwise minimal sets in {C − v : C ∈ C}.

A minor of C is a clutter obtained by repeated application of these two operations.
It can be seen that the order of the operations does not matter. For disjoint subsets
U,W ⊆ V , the minor obtained by deleting the elements of U and contracting the
elements of V is denoted by (C \U)/W . It is easy to see that the covering polyhedron
of this minor is the (perhaps empty) face of P (C) obtained by setting xv = 1 for
every v ∈ U and xv = 0 for every v ∈ W (more precisely, the covering polyhedron
is obtained from this face by projecting out the variables in U ∪ W ). A clutter is
minimally nonideal (or mni for short) if it is not ideal but all of its minors are ideal.
Minimally imperfect clutters are not de�ned through these minor operations. In-

stead, one can say that a clutter D is minimally imperfect if its packing polyhedron
{x ∈ RV : 0 ≤ x ≤ 1, x(D) ≤ 1 for every D ∈ D} is integral, but for any v ∈ V
the packing polyhedron of the clutter formed by the inclusionwise maximal sets in
{D − v : D ∈ D} is not integral.
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2 Generalization of Lehman's theorem to pairs of

clutters

Let C and D be clutters on ground set V of size n. We consider the polyhedron

P (C,D) = {x ∈ RV : 0 ≤ x ≤ 1, x(C) ≥ 1 ∀C ∈ C, x(D) ≥ |D| − 1 ∀D ∈ D}.

As mentioned in the introduction, we would like minors to correspond to faces
obtained by �xing some variables to 0 or 1. This can be achieved by de�ning minors
of a pair (C,D) the following way.

• The deletion minor for v ∈ V is a pair (C \ v,D \ v) on ground set V − v,
where C \ v = {C ∈ C : v /∈ C} and D \ v consists of the inclusionwise maximal
members of {D − v : D ∈ D}.

• The contraction minor for v ∈ V is a pair (C/v,D/v) on ground set V −v, where
C/v consists of the inclusionwise minimal members of {C − v : C ∈ C} ∪ {{w} :
∃D ∈ D : v, w ∈ D}, and D/v = {D ∈ D : v /∈ D}.

Deletion corresponds to setting xv = 1, while contraction is obtained by setting xv = 0.
To see the latter, observe that if v ∈ D for some D ∈ D and we set xv = 0, then the
value of x must be 1 on all other elements in D in order to satisfy x(D) ≥ |D| − 1.
We call a pair (C,D) ideal if P (C,D) is an integer polyhedron. Thus (C, ∅) is ideal

if and only if C is an ideal clutter, and (∅,D) is ideal if and only if D is a perfect
clutter. The pair (C,D) is minimally nonideal if every minor is ideal but (C,D) itself
is not. By the correspondence between minors and faces of P (C,D), this means that
every non-integer vertex has only non-integral components.
We may assume that D contains no singletons, because these give redundant con-

ditions. If D ∈ D has size 2, then the condition it de�nes is x(D) ≥ 1, the same
as if it was in C. Therefore we can assume that D has no members of size 2. If C
contains a singleton {v}, then xv = 1 for any x ∈ P (C,D), so (C,D) is not mni. If
|C ∩D| ≥ 2 for some C ∈ C and D ∈ D, then the condition x(C) ≥ 1 is redundant
because x(C ∩D) ≥ 1 is implied by x(D) ≥ |D| − 1 and x ≤ 1. We can also assume
n ≥ 3, since there are no mni clutters on two elements. To summarize, the following
can be assumed when mni pairs are concerned.

n ≥ 3, |C| ≥ 2 ∀C ∈ C, |D| ≥ 3 ∀D ∈ D, and |C ∩D| ≤ 1 ∀C ∈ C ∀D ∈ D. (2)

Let (C,D) be a minimally nonideal pair that satis�es (2), and let 0 < x∗ < 1 be a
non-integral vertex of P (C,D). We introduce the following notation.

C∗ = {C ∈ C : x∗(C) = 1}, (3)

D∗ = {D ∈ D : x∗(D) = |D| − 1}, (4)

C∗v = {C ∈ C∗ : v /∈ C} ∀v ∈ V, (5)

D∗v = {D ∈ D∗ : v /∈ D} ∀v ∈ V. (6)

(7)
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Before proving the main theorem of this section, we prove a sequence of propositions
that are analogous to ones used in various proofs of Lehman's theorem (see e.g. [16]).
By a slight abuse of notation, we sometimes identify a set X ⊆ V and its characteristic
vector χX ∈ {0, 1}V , so if F is a family of sets, then 〈F〉 denotes the subspace of RV

generated by the characteristic vectors of the members. Unless otherwise stated, a
characteristic vector χX is an n-dimensional vector.

Proposition 2.1. If (C,D) is mni and x∗ is a non-integral vertex of P (C,D), then
for any v ∈ V and any Z ∈ C∗v ∪ D∗v we have dim〈C∗v ∪ D∗v〉 ≤ n− |Z|.

Proof. Fix a node v ∈ V . Let x∗−v denote the vector x∗ restricted to V −v. This vector
is in the integer polyhedron P (C \ v,D\ v), so x∗−v is a convex combination

∑t
j=1 λjz

j

of integer vertices of P (C \ v,D \ v), where λj > 0 for every j. Let Xj ⊆ V − v be the
subset corresponding to zj.
Consider a set C ∈ C∗v . For every u ∈ C we have x∗u > 0, so there exists ju such

that u ∈ Xju . Since x∗(C) = 1, we have Xju ∩ C = {u}. Therefore the vectors
{χXju

: u ∈ C} are linearly independent. Moreover, x∗ /∈ 〈χXju
: u ∈ C〉, since x∗v > 0

and Xj ⊆ V − v for every j. Thus dim〈χXju
− x∗ : u ∈ C〉 = |C|.

On the other hand, each Xj is tight for the inequalities corresponding to sets in
C∗v ∪ D∗v. This means that (χXju

− x∗)(C ′) = 0 for every u ∈ C and every C ′ ∈
C∗v . Furthermore, (χXju

− x∗)(D′) = 0 for every u ∈ C and every D′ ∈ D∗v. Thus
dim〈C∗v ∪ D∗v〉 ≤ n− |C|.
Now let D ∈ D∗v. We have x∗u < 1 for every u ∈ D, so there exists ju such that

u /∈ Xju . Since x∗(D) = |D| − 1 and |Xju ∩ D| ≥ |D| − 1 (the latter is because
D ∈ D\v), we have Xju ∩D = D−u. Therefore the vectors {χXju

: u ∈ D} are a�ne
independent. Moreover, x∗ /∈ aff{χXju

: u ∈ D}, because x∗v > 0 and Xj ⊆ V − v for
every j. Thus dim〈χXju

− x∗ : u ∈ D〉 = |D|.
Here too we have (χXju

− x∗)(D′) = 0 for every u ∈ D and every D′ ∈ D∗v, and
(χXju

− x∗)(C ′) = 0 for every u ∈ D and every C ′ ∈ C∗v . Thus dim〈C∗v ∪ D∗v〉 ≤
n− |D|.

Proposition 2.2. If (C,D) is mni and x∗ is a non-integral vertex of P (C,D), then
the size of C∗∪D∗ is n, and |Z| = n−|C∗v∪D∗v| for every v ∈ V and every Z ∈ C∗v∪D∗v.
Also, every vertex of P (C,D) adjacent to x∗ is integral.

Proof. Let B be a base chosen from C∗ ∪ D∗, and for v ∈ V let Bv denote {B ∈ B :
v /∈ B}. The size of B is n, and by Proposition 2.1 we have |Bv| ≤ n − |Z| for every
Z ∈ C∗v ∪ D∗v and for every v. Let U = {u ∈ V : ∃B ∈ B s.t. u /∈ B}. We can write

n =
∑
B∈B

1 =
∑
B∈B

∑
v∈V \B

1

n− |B|
=
∑
u∈U

∑
B∈Bu

1

n− |B|

≤
∑
u∈U

∑
B∈Bu

1

|Bu|
=
∑
u∈U

1 = |U | ≤ n.

Therefore there is equality throughout, so U = V , and |B| = n− |Bv| for every v and
every B ∈ Bv.
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Let H = (V, E) be the hypergraph with hyperedges E = {V \ Z : Z ∈ C∗ ∪
D∗}, and let H ′ = (V, E ′) be the subhypergraph corresponding to B. Let H1 =
(V1, E1), . . . , Hk = (Vk, Ek) denote the components of H ′. By the above, H ′ has no
isolated node, and there are numbers r1, . . . , rk such that component Hj is rj-regular
and rj-uniform. If H 6= H ′, then there is a set B′ ∈ B and a set B′′ ∈ (C∗∪D∗)\B such
that B′′ = B − B′ + B′′ is also a base. Let H ′′ be the corresponding sub-hypergraph.
This must also have regular and uniform components, but since we replaced only one
hyperedge, this is only possible if B′ = B′′, a contradiction. Thus we have H = H ′,
and |E| = n.
We can also show by a similar argument that every vertex of P (C,D) adjacent to x∗

is an integer vertex. Indeed, a non-integer adjacent vertex would satisfy with equality
all but one of the inequalities corresponding to C∗ ∪ D∗. Furthermore, together with
a new tight inequality we would obtain a hypergraph with the same kind of structure
(because what we proved up to now is true for any non-integer vertex). This is
impossible because we cannot have regular and uniform components after replacing a
single hyperedge.

Now we are ready to prove the main theorem of this section.

Theorem 2.3. If (C,D) is an mni pair that satis�es (2), then either D is empty
and C is a minimally nonideal clutter, or C is empty and D is a minimally imperfect
clutter.

Proof. Let 0 < x∗ < 1 be a non-integer vertex of P (C,D) and let C∗ and D∗ be
de�ned as in (3) and (4). As in the proof of Proposition 2.2, H = (V, E) denotes
the hypergraph with hyperedges E = {V \ Z : Z ∈ C∗ ∪ D∗}, and its components are
H1, . . . , Hk, where Hi is ri-uniform and ri-regular. We assume that r1 ≤ r2 ≤ · · · ≤ rk.
The vertex x∗ is simple because |C∗ ∪ D∗| = n by Proposition 2.2. The proof of the
theorem is divided into three cases.
Case 1: D∗ = ∅. It can be seen that

x∗v =
1

(−1 +
∑k

j=1
|Vj |
rj

)rl
if v ∈ Vl,

because this is the unique solution of the equation system given by C∗. If k = 1 or
k ≥ 3, then x∗v ≤ 1

2
for every v, which implies that D is empty. If k = 2, then x∗v ≤ 1

2

for every v unless |V1| = 1. In this case x∗v = r2
n−1

if v = V1 and x∗v = 1
n−1

otherwise,
which implies that x∗(Z) < |Z|− 1 for every set Z of size at least 3. Thus D is empty
again, and therefore C is a minimally nonideal clutter.
Case 2: C∗ = ∅. Since |C ∩ D| ≤ 1 for every C ∈ C and D ∈ D, C must be

empty in case of k ≥ 3 because every pair of elements is in some D ∈ D∗. Thus D is
minimally imperfect. If k = 2, then all members of C have size 2. In this case C ∪ D
is a minimally imperfect clutter; however, by Theorem 1.3, a minimally imperfect
clutter does not contain members of size 2 unless it is an odd cycle, which contradicts
the assumption that members of D have size at least 3.
If k = 1, then D∗ is r-regular and r-uniform, so x∗v = r−1

r
for every v ∈ V . If

D ∈ D \ D∗, then x∗(D) > |D| − 1, which implies that |D| < r. Thus D∗ consists
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precisely of the maximum size elements of D, and x∗ is the only non-integer vertex
for which Case 2 holds. Also, there is no other non-integer vertex for which Case 1
holds either, because we have seen that D is empty in Case 1.
We claim that D is minimally imperfect. First, D is not perfect, because 1−x∗ is a

non-integer vertex of the polyhedron {x ∈ RV : 0 ≤ x ≤ 1, x(D) ≤ 1 for every D ∈
D}. Suppose that D is not minimally imperfect; then there is a set U ⊆ V such that
the inclusionwise maximal members of D \ U = {D \ U : D ∈ D} form a minimally
imperfect clutter. By Theorem 1.2, the polyhedron {x ∈ RV \U : 0 ≤ x ≤ 1, x(Z) ≤
1 for every Z ∈ D \ U} has a non-integer vertex x′ whose components are at most 1

2
.

This means that 1− x′ is a vertex of P (C \U,D \U), because every member of C \U
has size at least 2. This contradicts the assumption that (C,D) is minimally nonideal,
so we obtained that D is minimally imperfect.
Now we prove that C = ∅. By Theorem 1.3, D is either a non-Helly clutter or a

clutter formed by the inclusionwise maximal cliques of an odd antihole. In the former
case, any two elements are in a member of D, so C is empty because of (2). In the
latter case, C can only have members of size 2 (the edges of the complement of the
odd antihole), because all other sets have two common elements with at least one
member of D. Thus C ∪D is a minimally imperfect clutter, which means that C = ∅.
We proved the theorem for the cases when C∗ or D∗ is empty. Therefore we are

done if we prove that Case 3 below is impossible.
Case 3: C∗ 6= ∅, D∗ 6= ∅. Consider a set D ∈ D∗. If k ≥ 3, then any C ∈ C∗

intersects D in at least 2 elements, which is impossible because |C ∩D| ≤ 1 for every
C ∈ C and D ∈ D by (2). If k = 2, then for the same reason the only possibility is
that |V1| = 1, D∗ = {V2} and C has only sets of size 2. As in Case 2, we can argue
that this must correspond to a minimally imperfect clutter. Therefore we can assume
that k = 1, and C∗ ∪ D∗ is r-regular and r-uniform, where r ≥ 3.
We now prove that it is impossible to have C∗ 6= ∅ and D∗ 6= ∅. Let D ∈ D∗

and let χX be the vertex adjacent to x∗ that is not tight for D. Thus D ⊆ X and
X is tight for all other inequalities corresponding to C∗ ∪ D∗. Let M be the matrix
whose rows are the characteristic vectors of C∗ ∪D∗, with the last row being χD, and
let en denote the n-th unit vector. Then MχX = Mx∗ + en and 1TM = r1T , so
|X| = 1

r
1TMχX = 1

r
1T (Mx∗ + en) = 1Tx∗ + 1

r
. Thus the fractional part of 1Tx∗

is r−1
r
. If x∗v >

r−1
r

for some v ∈ V , then 1Tx∗−v < b1Tx∗c = |X| − 1. In this case
P (C \ v,D \ v) has an integer vertex χY with |Y | < |X| − 1. The vector χY + χv is in
P (C,D) and there is a member of C∗ ∪ D∗ for which it is not tight, so

|X| > |Y + v| = 1

r
1TM(χY + χv) ≥ 1Tx∗ +

1

r
= |X|,

a contradiction. We obtained that x∗v ≤ r−1
r

for every v, which implies that for every
D ∈ D∗ and v ∈ D we have x∗v = r−1

r
.

Suppose that there exist C ∈ C∗ and D ∈ D∗ such that |C ∩D| = 1, and let v be
the intersection. Since 1Tx∗−v = b1Tx∗c, x∗−v must be a convex combination of integer
vertices z1, . . . , zt of P (C \ v,D \ v) that all satisfy 1T zj = 1Tx∗−v. Let Xj ⊆ V − v
be the set corresponding to zj. As |Xj + v| = |X|, Xj + v satis�es all but one of the
inequalities corresponding to C∗ ∪ D∗ with equality, and the slack of the remaining
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Section 2. Generalization of Lehman's theorem to pairs of clutters 9

inequality is 1. Consequently, Xj + v is a vertex adjacent to x∗ in P (C,D) for every
j. We can now get a contradiction using the fact that |C| ≥ 3. Indeed, x∗−v is positive
on the elements of C − v, and each Xj contains at most 1 such element because
|C ∩ (Xj + v)| ≤ 2, so there are at least two sets Xj1 and Xj2 each containing an
element of C − v. Thus Xj1 + v and Xj2 + v are not tight for C, hence they are tight
for all other members of C∗ ∪ D∗. But this is impossible because there is only one
integer vertex of P (C,D) that is tight for all of those sets.
The only remaining case is when C ∩D = ∅ for any C ∈ C∗ and D ∈ D∗. Let U be

the union of the members of C∗. Since C∗∪D∗ is a base, C∗ must be a base on U . The
vector x∗|U is in P (C\(V \U),D\(V \U)), and it satis�es the inequalities corresponding
to C∗ with equality, so it is a non-integer vertex of P (C \ (V \ U),D \ (V \ U)). But
this contradicts the assumption that the polyhedron is integer, so this case is also
impossible.

We now prove that with the appropriate oracles it is in co-NP to decide whether a
pair (C,D) is ideal.

Theorem 2.4. We assume that, given a set Z, we have an oracle that outputs whether
C contains a subset of Z, and another oracle that outputs whether D contains a su-
perset of Z. With these oracles, it is in co-NP to decide if a pair (C,D) is ideal.

Proof. One can check by O(n2) oracle calls whether the characteristic vector of a set
X is in the polyhedron P (C,D). Furthermore, it is easy to see that oracles for any
given minor of (C,D) can be obtained using the oracles for (C,D). Thus it is enough
to certify non-idealness for an mni pair (C,D).
If we are in Case 1 of Theorem 2.3, then the emptiness of D can be checked by the

oracle, and a certi�cate for non-idealness of C can be given as in [16]. In Case 2, we
know that D∗ is r-regular and r-uniform for some r, and that the vertices adjacent to
x∗ are integral. The certi�cate for non-idealness is D∗ and the set of vertices adjacent
to x∗. Since the latter are integral, we can check using the oracles that they are
indeed in the polyhedron; we can also check that the members of D∗ are indeed in
D. Although we cannot check that x∗ itself is in the polyhedron, we can be sure that
the simplex formed by x∗ and the adjacent vertices contains at least one non-integer
vertex of P (C,D), so the pair is nonideal.

The following property of nonideal pairs can also be derived from Theorem 2.3.

Corollary 2.5. If (C,D) is a nonideal pair, then C is a nonideal clutter or D is an
imperfect clutter.

Proof. If (C,D) is nonideal, then it has an mni minor, obtained by deleting a set U
and contracting a set W . In the contraction minor, some singletons are added to C;
however, an mni minor does not contain singletons, so all these singletons are in U .
This means that the minor is (C ′,D′), where C ′ consists of the inclusionwise minimal
members of {C \ W : C ∈ C, C ∩ U = ∅}, while D′ consists of the inclusionwise
maximal members of {D \ (U ∪W ) : D ∈ D}. Similarly to the proof of Theorem 2.4,
we can see that if Case 1 holds in Theorem 2.3, then C ′ is mni, thus C is nonideal. If
Case 2 holds, then D′ is minimally imperfect, so D is imperfect too.
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2.1 Vertex cover in hypergraphs

Using Theorem 2.3, we can prove a new result on the vertex cover problem in hyper-
graphs. We give a characterization of the integrality of the fractional vertex cover poly-
hedron strengthened by clique inequalities for the edges of size two. Let H = (V, E)
be a hypergraph, and let GH be the graph consisting of the hyperedges of size two in
H. Let

P = {x ∈ RV : 0 ≤ x ≤ 1, x(e) ≥ 1 for every e ∈ E ,
x(K) ≥ |K| − 1 for every clique K in GH .} (8)

A minor of H is obtained by deletion of a node set U1 and contraction of a node set
U2: we remove all hyperedges incident to U1, and remove the nodes of U2 from all
remaining hyperedges. We assume that U2 does not induce any hyperedge. A minor
is called triangle-free if U1 covers every triangle of GH , and it is mni if the clutter
formed by the inclusionwise minimal hyperedges is mni.

Theorem 2.6. The polyhedron P is integer if and only if H has no triangle-free mni
minor and GH is perfect.

Proof. The proof of necessity is straightforward: �rst, if GH contains an odd hole or
an odd antihole, then the corresponding non-integer vertex of the fractional vertex
cover polyhedron of GH is a vertex of P . Second, if H ′ is a triangle-free mni minor
and C ′ is the clutter of inclusionwise minimal hyperedges, then the non-integer vertex
of P (C ′), supplemented by 1 on U1 and 0 on U2, is a vertex of P .
To prove su�ciency, let C be the clutter formed by the inclusionwise minimal ele-

ments of E , and let D be the clutter formed by the inclusionwise maximal cliques of
GH of size at least 3. It is easy to see that P is integer if and only if P (C,D) is inte-
ger. Suppose that the pair (C,D) has a minimally nonideal minor (C ′,D′), obtained
by deleting U1 and contracting U2. In order to satisfy the assumptions of Theorem
2.3, we remove the two-element sets from D′ (these are also present in C ′), and remove
all elements from C ′ that intersect some member of D′ in more than one element. Let
(C0,D0) denote the resulting mni pair; by Theorem 2.3, one of the following two cases
holds.
Case 1: D0 is empty, and C0 is an mni clutter. The emptiness of D0 means that

U1 covers all triangles of GH , therefore we have a triangle-free mni minor of H.
Case 2: C0 is empty and D0 is a minimally imperfect clutter. Let U3 = V \(U1∪U2),

and let G = GH [U3], i.e. the graph induced by U3. As C0 cannot contain a singleton,
every edge of GH is either induced by U1∪U3 or goes between U1 and U2. This means
that D0 consists of the cliques of G of size at least 3, so G is an odd antihole.

By Theorem 2.4, we obtain the following corollary.

Corollary 2.7. Let the hypergraph H = (V, E) be given implicitly by an oracle that
outputs whether a given set X ⊆ V induces a hyperedge or not. Then it is in co-NP
to decide if the polyhedron P de�ned in (8) is integral.
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3 Ideal set functions

Unit-increasing set functions are ubiquitous in combinatorics; well-known examples
include matroid rank functions, clique number and chromatic number of an induced
subgraph, etc. The aim of this section is to extend the notions of the blocking relation
and idealness from clutters to unit-increasing set functions. We show that several
properties of ideal clutters can be maintained: idealness is preserved under taking
minors and blockers. In addition, we describe a transformation, called twisting of
the set function at a subset, that preserves idealness. In Lehman's theorem, the
degenerate projective planes are the exceptional, irregular structures. We show that
although they are irregular, they have a twisting that has a regular structure; this
gives hope for a possible generalization of Lehman's theorem where no exceptional
case is needed.
Let V be a ground set of size n, and let f : 2V → Z be an integer-valued

unit-increasing set function. We de�ne the following two minor operations on unit-
increasing functions for a given v ∈ V :

• the deletion minor is the function on ground set V − v, denoted by f\v, given
by f\v(X) = f(X) for every X ⊆ V − v,

• the contraction minor is the function on ground set V − v, denoted by f/v,
given by f/v(X) = f(X + v) for every X ⊆ V − v.

A function f ′ is a minor of f if it can be obtained from f by deletions and contrac-
tions. It is easy to see that the order of the operations does not a�ect the minor we
get, and the minors are unit-increasing functions.
The blocker b(f) : 2V → Z of a unit-increasing set function f is the set function

de�ned by
b(f)(X) = −f(V \X)

for any set X ⊆ V .

Proposition 3.1. The blocker b(f) has the following properties.

(i) b(f) is unit-increasing,

(ii) b(b(f)) = f ,

(iii) b(f\v) = b(f)/v,

(iv) b(f/v) = b(f)\v.

Proof. (i) f is unit-increasing, so −f(V \X) ≤ −f(V \ (X + v)) ≤ −f(V \X) + 1.
(ii) b(b(f)) = −(−f(V \ (V \ X))) = f(X). (iii) If X ⊆ V − v, then b(f\v)(X) =
−f((V − v) \X) = b(f)(X + v) = b(f)/v(X). (iv) If X ⊆ V − v, then b(f/v)(X) =
−f(((V − v) \X) + v) = b(f)(X) = b(f)\v(X).

We call functions f1 and f2 equivalent if there is a constant c such that f2(X) =
f1(X) + c for every X ⊆ V ; we will use the notation f1

∼= f2.

EGRES Technical Report No. 2013-09



3.1 Polyhedra and idealness 12

3.1 Polyhedra and idealness

In this section we show that it is possible to associate polyhedra to unit-increasing set
functions in such a way that minors correspond to faces, blockers to integer vertices,
and the notion of idealness can be de�ned in terms of integrality of polyhedra. The
trick is to move to an (n+ 1)-dimensional space. For a function f , let

P (f) = {(y, β) ∈ Rn+1 : 0 ≤ y ≤ 1, y(X)− β ≥ f(X) for every X ⊆ V }.

Proposition 3.2. The following hold for the minors of f :

P (f\v) = {(y, β) ∈ Rn−1+1 : (y, 1, β) ∈ P (f)}, and

P (f/v) = {(y, β) ∈ Rn−1+1 : (y, 0, β) ∈ P (f)},

in particular, both P (f\v) and P (f/v) are facets of P (f).

Proof. It is easy to see that for a vector (y, 1, β) ∈ P (f), (y, β) satis�es the inequalities
of P (f\v), since they are present in the system of P (f) too.
If (y, β) ∈ P (f\v) and X ⊆ V − v, then on one hand we have (y, 1)(X) − β =

y(X)−β ≥ f\v(X) = f(X), and on the other hand (y, 1)(X+v)−β = y(X)+1−β ≥
f\v(X) + 1 = f(X) + 1 ≥ f(X + v), since f is unit-increasing. So (y, 1, β) ∈ P (f).
It is easy to see that for a vector (y, 0, β) ∈ P (f), (y, β) satis�es the inequalities of

P (f/v), since y(X)− β = (y, 0)(X + v)− β ≥ f(X + v) = f/v(X).
If (y, β) ∈ P (f/v) and X ⊆ V − v, then on one hand we have (y, 0)(X) − β =

y(X)− β ≥ f/v(X) = f(X + v) ≥ f(X), since f is unit-increasing, and on the other
hand (y, 0)(X + v)− β = y(X)− β ≥ f/v(X) = f(X + v), thus (y, 0, β) ∈ P (f).

A unit-increasing set function f is called ideal if the polyhedron P (f) is integral.
As expected, idealness is preserved under taking minors.

Proposition 3.3. If f is ideal, then any minor of it is also ideal.

Proof. It follows from Proposition 3.2.

This enables us to call a unit-increasing function f minimally nonideal (mni) if it
is not ideal but every minor is ideal. Before showing that this is a direct extension of
the same notion for clutters, we prove that we get the same notion of idealness if we
remove the upper bound or both bounds on y in the polyhedron. Let

Q(f) = {(y, β) ∈ Rn+1 : y ≥ 0, y(X)− β ≥ f(X) for every X ⊆ V },
R(f) = {(y, β) ∈ Rn+1 : y(X)− β ≥ f(X) for every X ⊆ V }.

Let C be the cone generated by {ei : i ∈ [n]} ∪ {−ei − en+1 : i ∈ [n]}. We call a
set X tight with respect to f and a vector (y, β) if y(X)− β = f(X).

Lemma 3.4. If f is a unit-increasing set function, then Q(f) = P (f) + Rn
+, the

characteristic cone of R(f) is C, and R(f) = P (f) + C = Q(f) + C.
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Proof. The Q(f) ⊇ P (f) +Rn
+ inclusion is easy, since the matrix describing Q(f) has

nonnegative coe�cients in the �rst n variables.
For the Q(f) ⊆ P (f) + Rn

+ inclusion, let (y, β) ∈ Q(f). We want to show that
there is a (y′, β) ∈ P (f) for which y′ ≤ y. Let y′i = min(yi, 1). Then y′ ≤ y and
0 ≤ y′ ≤ 1 hold, so it remains to show that y′(X) − β ≥ f(X) for each X ⊆ V . We
have y′(X) = |X ∩ {i : yi > 1}|+ y(X ∩ {i : yi ≤ 1}) ≥ |X ∩ {i : yi > 1}|+ f(X ∩ {i :
yi ≤ 1}) + β ≥ f(X) + β, since f is unit-increasing.
Next we show that the characteristic cone of R(f) is C. It is easy to see that all

the vectors ei and −ei − en+1 are in the characteristic cone of R(f). If a vector (z, γ)
is in the characteristic cone of R(f), then for every X ⊆ V , z(X)− γ ≥ 0 holds. For
X = {i : zi < 0} we have (z, γ) =

∑
i∈X −zi(−ei − en+1) + (z′, γ′), where z′ ≥ 0 and

γ′ ≤ 0, and it is easy to see that (z′, γ′) ∈ C.
The next step is to show that every vertex (y∗, β∗) of R(f) satis�es 0 ≤ y∗ ≤ 1.

Suppose that y∗v < 0. Then every tight set X contains v, because otherwise the
inequality for X+v would be violated since f(X+v) ≥ f(X). Now, if every tight set
X contains v, then (y∗, β∗)+ε(χv, 1) is inR(f) for some positive ε. This contradicts the
fact that (y∗, β∗) is a vertex and (−χv,−1) is an extreme direction. Now suppose that
y∗v > 1 for a vertex (y∗, β∗). Then no tight set contains v, since otherwise the inequality
for X − v would be violated: y∗(X − v)− β < y∗(X)− 1− β = f(X)− 1 ≤ f(X − v),
a contradiction. This implies that for some positive ε, the vector (y∗, β∗) − ε(χv, 0)
is in R(f), which contradicts the fact that (y∗, β∗) is a vertex and ev is an extreme
direction.
We obtained that every vertex of R(f) is in P (f), thus R(f) = P (f) + C. As

Rn
+ ⊆ C, this implies R(f) = Q(f) + C.

For a polyhedron P , let vert(P ) denote the set of its vertices.

Corollary 3.5. vert(P (f)) ⊇ vert(Q(f)) ⊇ vert(R(f)) for any unit-increasing func-
tion f .

The corollary implies that if f is ideal, that Q(f) and R(f) are integral. In the next
section, we will prove the reverse statement (Theorem 3.8). To give some preliminary
intuition on why this equivalence is useful, we show how it can be used to show that
a clutter is ideal if and only if its set function is.
Recall that to a clutter C we associate the set function fC de�ned in (1). It is easy

to check that this works well with the minor operations: for any v ∈ V , fC\v = fC\v
and fC/v = fC/v. Likewise, one can check that the blocker b(fC) is equivalent to the
set function corresponding to the blocker of C (they di�er by 1).

Proposition 3.6. A clutter C is ideal if and only if fC is ideal.

Proof. It is easy to see that

Q(fC) = {(y, β) ∈ Rn+1 : y ≥ 0, y(X)− β ≥ fC(X) ∀X ⊆ V } =

= {(y, β) ∈ Rn+1 : y ≥ 0, β ≤ 0, y(C)− β ≥ 1 ∀C ∈ C}, (9)
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where β ≤ 0 is implied by the inequality y(∅) − β ≥ fC(∅). It follows that the face
of Q(fC) in the hyperplane β = 0 is the polyhedron Q(C) = {y ∈ Rn : y ≥ 0, y(C) ≥
1 ∀C ∈ C}, which is integral if and only if C is an ideal clutter.
To see the other direction, note that in (9) all inequalities but β ≤ 0 are satis�ed

at equality by the vector (0,−1). Therefore all vertices of Q(fC) apart from (0,−1)
are in the hyperplane β = 0, so they correspond to the vertices of Q(C). It follows
that if C is ideal, then Q(fC) is integral, so fC is ideal by Theorem 3.8.

Corollary 3.7. A clutter C is mni if and only if fC is mni.

We note that Lehman's Theorem 1.1 has the consequence that if C is mni, then
the polyhedron P (fC) has a unique fractional vertex and it is simple (here a vertex is
simple if it lies on n+ 1 facets). Indeed, if x∗ is the unique fractional vertex of P (C),
then (x∗, 0) is the unique fractional vertex of P (fC), and it lies on the facet β ≤ 0 in
addition to the facets determined by the minimum size members of C.

3.2 Blockers and idealness

For a unit-increasing set function f , let us de�ne the following �nite set of vectors in
Rn+1:

S(f) = {(χX , f(X)) : X ⊆ V }.

We denote the set S(f) − cone{(0,−1)} by S↓(f). We note that the idealness of f
is equivalent to P (f) = conv{S↓(b(f))}. Indeed, a vector (χY , β) ∈ {0, 1}n × Z is in
P (f) if and only if β ≤ |X ∩ Y | − f(X) for every X ⊆ V . As f is unit-increasing,
the minimum of |X ∩ Y | − f(X) is b(f)(Y ), attained at X = V \ Y . Thus the integer
vectors in P (f) are the vectors of the form (χY , β) where β ≤ b(f)(Y ).

Theorem 3.8. For a unit-increasing set function f , the following are equivalent:

(i) f is ideal, that is, P (f) = conv{S↓(b(f))}

(ii) b(f) is ideal, that is, P (b(f)) = conv{S↓(f)}

(iii) R(f) is an integer polyhedron

(iv) R(b(f)) is an integer polyhedron

(v) Q(f) is an integer polyhedron

(vi) Q(b(f)) is an integer polyhedron

Proof. In the proof we will use an operation B on polyhedra in Rn+1, which is similar
to taking the blocker of a polyhedron, it di�ers only in the last coordinate. For a
polyhedron P ⊆ Rn+1, let us de�ne B(P ) as follows:

B(P ) = {(y, β) ∈ Rn+1 : xTy ≥ α + β for every (x, α) ∈ P}.
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Note that B(P ) is indeed a polyhedron, since using standard polyhedral techniques
one can prove that if P = conv{S}+ cone{T} for �nite vector sets S and T in Rn+1,
then

B(P ) = {(y, β) ∈ Rn+1 : sT[n]y ≥ sn+1 + β ∀s ∈ S and tT[n]y ≥ tn+1 ∀t ∈ T}. (10)

Suppose that the polyhedron P ⊂ Rn+1 has the following properties:

(a) ∃ᾱ : (0, ᾱ) ∈ P

(b) P is bounded from above in the last coordinate

(c) (0,−1) is in the characteristic cone of P

Proposition 3.9. If P satis�es properties (a)-(c) then so does B(P ).

Proof. To see property (a), we can observe that if P = conv{S}+cone{T}, then from
(10) we get that for β̄ = min(−sn+1 : s ∈ S), (0, β̄) ∈ P . For property (b) we can take
an ᾱ such that (0, ᾱ) ∈ P which implies that β ≤ 0Ty − ᾱ = −ᾱ. For property (c)
we need that xT0 ≥ −1 which is obvious, and that B(P ) is nonempty which follows
from (a).

Lemma 3.10. If P satis�es properties (a)-(c) then B(B(P )) = P .

Proof. For every (x, α) ∈ P and (y, β) ∈ B(P ) we have xTy ≥ α + β which shows
that P ⊆ B(B(P )).
Suppose that there is a vector (x∗, α∗) ∈ B(B(P )) which is not in P . Then there

is a vector (z, γ) and a number ξ such that x∗Tz + α∗γ < ξ, but for every (x, α) ∈ P ,
xTz + αγ ≥ ξ. From (c) it follows that γ ≤ 0.
Case 1: γ = 0. We show that there is an ε > 0 such that x∗Tz + α∗(−ε) <

xTz+α(−ε) for each (x, α) ∈ P . Because of (b) we know that there is an a ∈ R such

that α ≤ a for every (x, α) ∈ P . We can assume that a > α∗. If ε < ξ−x∗Tz
a−α∗ , then for

every (x, α) ∈ P , ε(α−α∗) ≤ ε(a−α∗) < ξ− x∗Tz ≤ xTz− x∗Tz. Since xTz+α(−ε)
attains its minimum on P , we have an instance of Case 2.
Case 2: γ < 0. We can assume that γ = −1, since we can scale the inequalities

with a positive multiplier. So we have x∗Tz − α∗ < ξ, and for each (x, α) ∈ P ,
xTz − α ≥ ξ. That means the vector (z, ξ) ∈ B(P ) but for this vector (x∗, α∗)
does not ful�l the required inequality to be in the blocker of B(P ), which contradicts
(x∗, α∗) ∈ B(B(P )).

Notice that for a unit-increasing function f , the polyhedron P (f) satis�es properties
(a)-(c).

Proposition 3.11. B(P (f)) = conv{S(f)}+ C and B(R(f)) = conv{S↓(f)}.
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Proof. First we prove that B(conv{S(f)} + C) = P (f), by Lemma 3.10 this implies
the �rst equation. Using (10), we have

B(conv{S(f)}+ C) = { (y, β) ∈ Rn+1 : y(X) ≥ f(X) + β ∀X ⊆ V,

yi ≥ 0 ∀i ∈ [n], −yi ≥ −1 ∀i ∈ [n] },

which is equal to P (f).
Now let us prove that B(conv{S↓(f)}) = R(f), which implies the second equation.

Using (10), we have

B(conv{S↓(f)}) = { (y, β) ∈ Rn+1 : y(X) ≥ f(X) + β ∀X ⊆ V },

which is R(f).

Now we are ready to prove Theorem 3.8. Using Proposition 3.11 and Lemmas 3.4
and 3.10 we have

P (f) = conv{S↓(b(f))} +C
=⇒ R(f) = conv{S↓(b(f))}+ C

B(.)
=⇒

B(.)
=⇒ conv{S↓(f)} = P (b(f))

+C
=⇒ conv{S↓(f)}+ C = R(b(f)),

which shows the equivalence of (i)-(iv). Corollary 3.5 implies that if P (f) is integral
then so is Q(f), and if Q(f) is integral then so is R(f), which together with the above
equivalences imply the equivalence of (v) (and also (vi)) and the other statements.

As an example, we show that the rank function and the co-rank function of a
matroid are both ideal functions. This result can also be derived from the theory of
bi-submodular polyhedra, see e.g. [1, Theorem 4.5]. We use the fact that the rank
function is is submodular, while the co-rank function is supermodular.

Proposition 3.12. Let M = (V, r) be a matroid with rank function r, and let q be
its co-rank function. Then (i) function q is equivalent to the blocker of r; (ii) both r
and q are ideal functions.

Proof. First we prove that q is ideal. By Theorem 3.8, it is enough to show that the
polyhedron

R(q) = {(y, β) ∈ Rn+1 : y(X)− β ≥ q(X) ∀X ⊆ V }
is integer. Since q is supermodular, a standard dual uncrossing proof (see e.g. [7, proof
of Theorem 16.1.3]) gives that this system is TDI, hence the polyhedron is integral.
The blocker of r is b(r)(X) = −r(V −X) = q(X)− r(V ), which is equivalent to q,

thus b(r) is ideal, and r is also ideal by Theorem 3.8.

3.3 Twisting

In this section we introduce the twisting operation that preserves idealness. Let f
be a unit-increasing set function on ground set V , and let U be a subset of V . The
twisting of f at U is the set function fU on ground set V de�ned by

fU(X) = f(X∆U) + |X ∩ U |.
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It is easy to see that fU is a unit-increasing set function. Note that fU(∅) = f(U),
and fU(U) = f(∅) + |U |. The behaviour with respect to minors is the following.

Proposition 3.13. For a set U ⊆ V and an element v ∈ V the following hold.

(i)

(f\v)U−v ∼=

{
fU/v if v ∈ U,
fU\v if v /∈ U,

(ii)

(f/v)U−v ∼=

{
fU\v if v ∈ U,
fU/v if v /∈ U.

Proof. Suppose that v ∈ U and take a set X ⊆ V − v. Then

(f\v)U−v(X) = f\v(X∆(U − v)) + |X ∩ (U − v)| =
= f((X + v)∆U) + |(X + v) ∩ U | − 1 =

= fU(X + v)− 1 = fU/v(X)− 1, and

(f/v)U−v(X) = f/v(X∆(U − v)) + |X ∩ (U − v)| =
= f(X∆U) + |X ∩ U | = fU(X) = fU\v(X).

The other cases are similar.

Proposition 3.14. Every twisting of an ideal set function is also ideal.

Proof. Let f be an ideal set function on V , and let U be a subset of V . Consider the
following (|V |+ 1)× (|V |+ 1) matrix:

MU =



−1
−1

. . . 0
−1

1
0 1

. . .

1
−1 −1 . . . −1 0 0 . . . 0 1



U

It is easy to check that M−1
U = MU , so MU is unimodular. We claim that

R(f) = MUR(fU) + (χU , |U |).
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Indeed, if we denote by A the describing matrix of R(f) (i.e. the matrix with rows
(χX ,−1)T), then by (χX ,−1)TM−1

U = (χX∆U ,−1)T, we have

MUR(fU) + (χU , |U |) = {MU(y, β) : A(y, β) ≥ fU}+ (χU , |U |) =

= {(z, γ) : AM−1
U (z, γ) ≥ fU + AM−1

U (χU , |U |)} =

= {(z, γ) : (χX∆U ,−1)T(z, γ) ≥ fU(X) + (χX∆U ,−1)T(χU , |U |) ∀X ⊆ V } =

= {(z, γ) : z(X∆U)− γ ≥ f(X∆U) + |X ∩ U |+ |U \X| − |U | ∀X ⊆ V } =

= {(z, γ) : z(Y )− γ ≥ f(Y ) ∀Y ⊆ V } = R(f).

Hence we also have R(fU) = M−1
U (R(f)−(χU , |U |)) = MUR(f)+(χU , 0). Therefore

R(f) is integer if and only if R(fU) is integer.

Corollary 3.15. Every twisting of an mni set function is also mni.

Proof. This follows from Propositions 3.13 and 3.14.

As an example, consider the following set function on ground set V of size n:

θn(X) =


0 if X = ∅,
n− 2 if X = V,

|X| − 1 otherwise.

This set function is equivalent to a twisting of the function corresponding to the
degenerate projective plane:

θn ∼= f
V \{0}
Jn−1

.

3.4 Further mni functions

It is a natural question whether the idealness introduced in this section generalizes
the notion of idealness of clutter pairs de�ned in Section 2. The answer is no; in fact,
it does not even generalize perfectness of clutters. It would be natural to associate to
a clutter D the unit-increasing set function

gD(X) = max{0,max{|X ∩D| − 1 : D ∈ D}}. (11)

The problem is that P (gD) is not necessarily integral if D is the set of inclusionwise
maximal cliques of a perfect graph. To see this, consider the perfect graph G obtained
from a K5 on node set v1, . . . , v5 by adding nodes u1, . . . , u5 and the following edges:
uivi, uivi+1 (i = 1, . . . , 4), u5v5, u5v1. Let D be the clutter of the inclusionwise maximal
cliques of G; thus D has one member of size 5 and 5 members of size 3. Let y be
the vector de�ned by y(ui) = 0 and y(vi) = 2

3
(i = 1, . . . , 5). The vector (y,−2

3
) is in

P (gD), and all maximal cliques are tight with respect to it. It is easy to check that
(y,−2

3
) is the only vector with this property that also satis�es y(ui) = 0 (i = 1, . . . , 5),

so it is a vertex of P (gD).
In this light, it is somewhat surprising that the following is true. An interesting

question is whether one can prove it without using the Strong Perfect Graph Theorem.
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Theorem 3.16. The function gD is minimally nonideal if and only if D is minimally
imperfect.

Proof. If gD is ideal, then D is perfect, because the facet of P (gD) given by β = 0 is the
same as the inversion through 1

2
1 of the packing polyhedron of D. Another observation

is that if D is perfect, then gD is not minimally nonideal. Suppose otherwise; the point
(1, 1) is not in P (gD), but satis�es with equality all facet-de�ning inequalities of P (gD)
except for β ≤ 0 and y ≥ 0. This means that any all-fractional vertex of P (gD) must
satisfy β = 0. However, the face β = 0 is the inversion through 1

2
1 of the packing

polyhedron of D, so it has only integer vertices, a contradiction.
These observations together imply that if gD is minimally nonideal, then D is min-

imally imperfect. To prove the other direction, we resort to Theorems 1.2 and 1.3.
According to these, D is minimally imperfect if and only if it is the non-Helly clutter
(consisting of the complements of singletons), or the clutter of inclusionwise maximal
cliques of an odd hole or odd antihole.
The function associated to the non-Helly clutter is θn, which is mni by Corollary

3.15, because it is a twisting of the function of the mni clutter Jn−1. If D is the odd
hole clutter, then gD = fD, so it is mni because the clutter is mni. The following
lemma completes the proof of the theorem.

Lemma 3.17. If D is the clutter of inclusionwise maximal cliques of an odd antihole,
then gD (as de�ned in (11)) is minimally nonideal.

The polyhedron P (gD) can be written as:

P (gD) = {(y, β) ∈ Rn+1 : 0 ≤ y ≤ 1, β ≤ 0, y(K)− β ≥ |K| − 1 ∀ clique K}.

It will be more convenient to consider a transformed polyhedron for the complement
graph and packing type constraints. For a graph G = (V,E), let

P (G) = {(x, t) ∈ R|V |+1 : 0 ≤ x ≤ 1, t ≥ 0, x(S) ≤ 1 + t for every stable set S}.

Clearly P (G) is integer if and only if gD is ideal for the clutter D of inclusionwise
maximal stable sets of G. Thus the following proposition implies Lemma 3.17.

Proposition 3.18. If G is a path, then P (G) is an integral polyhedron. If G is an
odd cycle, then P (G) has a unique non-integral vertex.

Proof. We use induction on |V | and we consider both cases simultaneously. Let (x∗, t∗)
be a non-integer vertex of P (G).
First we claim that supp(x∗) = V . Suppose indirectly that x∗(v) = 0 for some

v ∈ V . If G is a path, then let G1 and G2 be the two paths of G − v, and let
xi = x∗|V (Gi) (for i = 1, 2). Let t1 and t2 be minimal such that (xi, ti) ∈ P (Gi).
Then t1 + t2 + 1 ≤ t∗, since there are stable sets S1 and S2 which are tight, so
t∗ + 1 ≥ x∗(S1 ∪ S2) = x1(s1) + x2(S2) = t1 + t2 + 2.
By induction, (x1, t1) and (x2, t2) can be written as convex combination of integer

points in P (G1) and P (G2), respectively: (x1, t1) =
∑
λi(ai, bi), (x2, t2) =

∑
µi(ci, di).

Then the convex combination
∑

i,j λiµj(ai, 0, cj, bi + dj + 1) (where the 0 component
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corresponds to v) produces (x∗, t1 + t2 +1), and it is easy to see that every vector used
in the combination is in P (G). This and t∗ ≥ t1 + t2 + 1 implies that (x∗, t∗) cannot
be a vertex.
In the case that G is a cycle, the proof is a similar reduction to the path case.
Next, suppose that x∗ has an interval of consecutive ones, with odd length (and the

neighboring values are smaller than 1). Let u and v be the neighboring nodes. Then
every tight set S contains every other node in the interval (1st, 3rd etc.), and does not
contain u or v (because otherwise we could obtain a stable set S ′ with x∗(S ′) > x∗(S)
by moving more elements of S to the interval). But then (x∗, t∗)± ε(χu − χv) would
be still in the polyhedron P (G), which contradicts that (x∗, t∗) is a vertex. In the
case that G is a path and the interval of ones is at the beginning, we get a similar
contradiction.
Now consider the case that (x∗, t∗) is such that every consecutive interval of ones is

of even length. Let I denote the set of nodes in V where x∗ is one and let 2k be its
cardinality. We write (x∗, t∗) as the following convex combination for some λ close to
1:

(x∗, t∗) = (1− λ)(χI , k − 1) + λ

(
max(χI ,

x∗

λ
),
t∗ − (1− λ)(k − 1)

λ

)
.

The vector (χI , k− 1) is in P (G), because of the evenness property of I. Let (x′, t′)
denote the second vector, about which we want to show that it is in P (G) for λ close
enough to 1. The nonnegativity constraints and the x′ ≤ 1 constraint hold around 1.
Let S be an arbitrary stable set. If |S ∩ I| < k, then there is another stable set S ′

for which x′(S ′) > x′(S), so we can assume that |S ∩ I| = k. Then

x′(S) = k +
x∗(S \ I)

λ
= k +

x∗(S)− k
λ

≤ k +
1 + t∗ − k

λ
= 1 +

t∗ − (1− λ)(k − 1)

λ
,

which proves that (x′, t′) ∈ P (G).
We remain with the case when x∗ has only non-integer values. In this case, every

node v has to be in a tight set. The vector (0,−1) satis�es all of these tight inequalities
with equality too, except for t ≥ 0. Thus t∗ = 0, and x∗ is a vertex of QSTAB(G).
If G is a path, then QSTAB(G) is integer, while for odd circuits it has a unique
non-integer vertex. This concludes the proof.

We present one more mni function that shows the di�culty of extending Lehman's
theorem. So far all mni functions we have seen satis�ed the property that P (f) has a
unique non-integer vertex that is simple. The following mni set function f on ground
set {1, 2, 3, 4, 5} is an example where the unique fractional vertex of P (f) is not simple.
The properties were checked using the software Polymake.

f(X) =



0 if X = ∅,
1 if |X| = 1 or X ∈ {{1, 2}, {2, 3}, {3, 4}{4, 5}},
2 if |X| = 3 or X ∈ {{1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 5}}

or X ∈ {{1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 5}},
3 if X ∈ {{1, 2, 3, 4}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}}.
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4 Open questions

There are several questions about ideal unit-increasing functions that we think may
lead to a better understanding of the structure of 0-1 polyhedra. As Lehman's theorem
turned out to be useful for proving su�cient conditions for integrality of various
covering polyhedra, we hope that answers to these questions may help to prove similar
results for problems beyond standard packing and covering.

• We are not aware of an example of an mni function that has more than one
non-integer vertex, so one is tempted to conjecture that the non-integer vertex
is always unique. In addition, in all known examples there is a value λ such
that every component of the unique non-integer vertex (except for the last one)
is either λ or 1− λ.

• Can one de�ne a class of functions that contains all functions of type fC and gC,
is closed under taking minors, blockers, and twisting, and has the property that
any minimally nonideal member of the class has a unique fractional vertex that
is simple?

• In a model where functions are given by an evaluation oracle, is it in co-NP to
decide if a unit-increasing function is ideal?
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