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The Generalized Terminal Backup Problem

Attila Bernáth? and Yusuke Kobayashi??

Abstract

We consider the following network design problem, that we call the Gen-
eralized Terminal Backup Problem. Given a graph (or a hypergraph)
G0 = (V,E0), a set of (at least 2) terminals T ⊆ V and a requirement r(t) for
every t ∈ T , find a multigraph G = (V,E) such that λG0+G(t, T − t) ≥ r(t) for
any t ∈ T . In the minimum cost version the objective is to find G minimizing
the total cost c(E) =

∑
uv∈E c(uv), given also costs c(uv) ≥ 0 for every pair

u, v ∈ V . In the degree-specified version the question is to decide whether
such a G exists, satisfying that the number of edges is a prescribed value g(v)
at each node v ∈ V . The Terminal Backup Problem solved in [1] is the
special case where G0 is the empty graph and r(t) = 1 for every terminal t ∈ T .
We solve the Generalized Terminal Backup Problem in the following two cases.

1. In the first case we start with the minimum cost version for c ≡ 1, which
helps solving the degree-specified version by a splitting-off theorem. This
splitting-off theorem in turn provides the solution for the minimum cost
version in the case when c is node-induced, that is c(uv) = w(u) +w(v)
for some node weights w : V → R+. The algorithm for this case is
polynomial.

2. In the second solved case we turn to the general minimum cost version,
and we are able to solve it when G0 is the empty graph. This includes the
Terminal Backup Problem [1] (r ≡ 1) and the Maximum-Weight
b-matching Problem (T = V ). The solution depends on an interesting
new variant of a theorem of Lovász and Cherkassky, and on the solution
of the so-called Simplex Matching problem [1]. Our algorithm is poly-
nomial in |V | and max{r(t) : t ∈ T}.

1 Introduction

Edge-connectivity augmentation problems usually mean the following: find a
graph satisfying certain edge-connectivity requirement, and any number of parallel
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Section 1. Introduction 2

edges is allowed between any pair of the nodes. The objective function is usually to
minimize the number of edges in the graph found, while the edge-connectivity require-
ments can vary from problem to problem. The classical result of edge-connectivity
augmentation is the theorem of Watanabe and Nakamura [23], who determined the
minimum number of edges of a graph G = (V,E) which gives a k-edge-connected
graph when added to the input graph G0 = (V,E0). This was generalized by Bang-
Jensen and Jackson [3] who solved the same problem in the case when G0 can even be a
hypergraph. Another generalization is the local edge-connectivity augmentation
problem solved by Frank [7], which is the following. Given a graph G0 = (V,E0)
and requirement r(u, v) ∈ Z+ for every pair of nodes u, v ∈ V , find the minimum
number of edges of a multigraph G satisfying λG0+G(u, v) ≥ r(u, v) for every pair
u, v ∈ V . Here, the edge-connectivity between u and v is denoted by λ(u, v) (see
Section 2.1 for definition). Note that the same problem becomes NP-complete, if
G0 can be a hypergraph [14]. Ishii and Hagiwara [11] solved the so-called node-to-
area edge-connectivity augmentation problem which is the following. Given
a graph G0 = (V,E0), a collection of subsets W of V (called areas) and a function
r : W → Z+, find a graph G = (V,E) with smallest possible number of edges such
that λG0+G(x,W ) ≥ r(W ) for any W ∈ W and x ∈ V . It is shown in [18] that this
problem is NP-complete, however, the authors of [11] have given a polynomial algo-
rithm solving it if r(W ) ≥ 2 for every W ∈ W (see also [10]). More generalizations,
abstract versions and related results were given by [4, 5, 13, 21], good surveys can be
found in [9, 22].

Weighted versions of edge-connectivity augmentation problems are often called sur-
vivable network design problems. Here we want to find a minimum-cost subgraph
of a given supply graph so that the edge-connectivity requirements are satisfied. Par-
allel copies of the edges might or might not be allowed. These problems are usually
NP-hard already in very simple cases, as an example consider the minimum-cost 2-
edge-connected subgraph problem. In the Steiner Tree Problem we want to find a
minimum cost set of edges that connects every pair of a set of terminals (clearly, the
optimum solution can be chosen to be a tree). In its generalization, the Generalized
Steiner Network Problem we have a requirement r(u, v) for every pair of nodes u, v ∈ V
and the question is to find a minimum cost graph G so that λG(u, v) ≥ r(u, v) for
every pair u, v ∈ V . Jain [12] has given a framework of 2-approximation algorithms
that includes many different survivable network design problems (for example, the
Generalized Steiner Network Problem). A polynomially solvable survivable network
design problem is the Terminal Backup Problem, defined as follows. Given a set
of terminals T ⊆ V and costs c(uv) ≥ 0 for every pair u, v ∈ V , find a minimum cost
set of edges in which every terminal is connected to some other terminal. Clearly, the
optimum solution of this problem can always be chosen to be a forest. The Terminal
Backup Problem was introduced and solved in [1]. Note the similarity of this problem
with the Steiner Tree Problem: here we want that every terminal is connected to
some other terminal, while the Steiner Tree Problem requires that every terminal is
connected to all other terminals.

In this paper we consider the following uncapacitated network design problem,
which generalizes the Terminal Backup Problem.
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Section 1. Introduction 3

Problem 1. (Generalized Terminal Backup Problem, Problem GTBP) Given a
graph (or a hypergraph) G0 = (V,E0), a set of (at least 2) terminals T ⊆ V , and a
requirement r(t) for every t ∈ T , find a multigraph G = (V,E) such that λG0+G(t, T −
t) ≥ r(t) for any t ∈ T .

Note that G0 can be a hypergraph, but G has to be a graph here, in which we can
include any number of parallel edges between any pair of nodes.

In the minimum cost version of Problem 1 (Problem MC-GTBP) we want to
minimize the total cost c(E) =

∑
uv∈E c(uv) of the solution found, given also costs

c(uv) ≥ 0 for every pair u, v ∈ V . In the degree-specified version of Problem 1
(Problem DS-GTBP) we want to decide whether such a graph G exists, satisfying
that the number of edges is a prescribed value g(v) at each node v ∈ V .

In this paper we solve the following special cases of Problem GTBP.

1. An edge-connectivity augmentation type problem: here we start with
the minimum cost version for c ≡ 1, which helps solving the degree-specified
version by a splitting-off theorem. This splitting-off theorem in turn provides
the solution for the minimum cost version in the case when c is node-induced.
Here, the cost function c is said to be node-induced if there exists a weight
function w : V → R+ such that c(uv) = w(u) + w(v) for every pair u, v ∈ V .

2. A survivable network design problem: we turn to the general minimum cost
version, and we are able to solve it when G0 is the empty graph. The solution
depends on Lemma 4, a variant of Theorem 1, which is of independent interest.
The second ingredient of the solution is the algorithm given by Anshelevich and
Karagiozova [1] for the problem called simplex matching problem.

Problem GTBP is a new network design problem. It includes the Terminal Backup
Problem [1] (by letting G0 to be an empty graph and r ≡ 1) and the Maximum-
Weight b-matching Problem (T = V ), but it seems that this particular problem was
not considered before, we have not found this type of question in the literature. A
special case of this problem (the degree-specified version) was raised by András Frank
(private communication). The following, somewhat related theorem of Lovász and
Cherkassky can be considered as a motivation for our problem.

Theorem 1 (Lovász [15] and Cherkassky [6]). Let G = (V,E) be an undirected graph
and T ⊆ V a set of terminals so that the degree of v is even for every v ∈ V − T .
Then there is a set F of edge-disjoint paths such that each path has its endnodes in
T and for each element t ∈ T , the paths in F ending at t form a maximum set of
edge-disjoint (t, T − t)-paths.

We give an interesting variant of this theorem (see Lemma 4). Theorem 1 was
generalized in many directions, for example Mader [16] determined the maximum
number of edge-disjoint T -paths in a graph G in which the degree of v is not necessarily
even for every v ∈ V −T (where a path is called a T -path if both its endnodes are in
T , see also [20, Corollary 73.2b]). We could not see our Lemma 4 as an easy corollary
of these results.

EGRES Technical Report No. 2013-07



Section 2. Preliminaries 4

The paper is organized as follows. In Section 2 we give the necessary definitions and
results. In Section 3 we solve the edge-connectivity augmentation problem by first
solving the minimum cardinality case in subsection 3.1, and the proving the splitting-
off theorem and exploring its consequences in subsection 3.2. In Section 4 we solve
the survivable network design problem: in subsection 4.1 we give the algorithm, and
in subsection 4.2 we prove the main ingredient of our solution, Lemma 4. We close
the paper with some concluding remarks in Section 5.

2 Preliminaries

2.1 Hypergraphs and edge-connectivity

For general graph theoretic notations we will follow [8]. For subsets X, Y of a ground
set V let X − Y = {v ∈ X : v /∈ Y }; sometimes we will also use X + Y to mean
X∪Y . A hypergraph is a pair H = (V, E) where V is some finite set of nodes and E is
a multiset of subsets of V . The members of E are called hyperedges, a hyperedge of
size at most 2 is called a graph edge (or simply edge), and a hyperedge of size 1 is
called a loop. A graph is a special hypergraph containing only edges. If H and G are
hypergraphs on the same node set V then H +G is the hypergraph on node set V in
which the multiplicity of a hyperedge is the sum of its multiplicities in H and in G. For
a hypergraph H = (V, E) and a set X ⊆ V we say that a hyperedge e ∈ E enters X if
neither e∩X nor e∩ (V −X) is empty, and we define dH(X) = |{e ∈ E : e enters X}|.
If a set contains only one element v then we will write v instead of {v}; thus dH(v)
means dH({v}), etc.

A path between nodes s and t of a hypergraph H is an alternating sequence of
distinct nodes and hyperedges (s = v0, e1, v1, e2, . . . , ek, vk = t), such that vi−1, vi ∈ ei
for all i between 1 and k. For a path P = (v0, e1, v1, e2, . . . , ek, vk), its subsequence
(vi, ei+1, vi+1, ei+2, . . . , ej, vj) between vi and vj (0 ≤ i < j ≤ k) is called a subpath of
P and denoted by P [vi, vj]. For sets S, T ⊆ V of nodes in a hypergraph H = (V, E),
the edge-connectivity λH(S, T ) between S and T in H is defined as the maximum
number of pairwise hyperedge-disjoint paths, where each path has one endnode in S,
and the other in T (where we understand λH(S, T ) =∞ if S ∩ T 6= ∅). The following
theorem of Menger shows that this value coincides with the size of a minimum S-T
cut.

Theorem 2 (Menger’s Theorem [17]). Let H = (V, E) be a hypergraph, and S, T ⊆ V .
Then

λH(S, T ) = min{dH(X) : T ⊆ X ⊆ V − S}.

2.2 Skew-supermodular functions

We say that a graph G covers a set function p if dG(X) ≥ p(X) holds for every
X ⊆ V . In our proof of the first result, we regard the problem as a covering problem
of a skew-supermodular set function. In this subsection, we describe some notations
and properties of skew-supermodular functions.
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2.3 The splitting-off operation 5

A set function p : 2V → Z ∪ {−∞} is called skew-supermodular if at least one
of the following two inequalities holds for every X, Y ⊆ V :

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ), (∩∪)

p(X) + p(Y ) ≤ p(X − Y ) + p(Y −X). (−)

A set function is symmetric if p(X) = p(V −X) for every X ⊆ V . For a hypergraph
H, we can easily see that p = −dH is symmetric and satisfies both (∩∪) and (−)
for any X, Y ⊆ V . Let the symmetrized ps of a set function p be defined with the
formula ps(X) = max(p(X), p(V −X)) for every X ⊆ V . We can see that a graph G
covers p if and only if it covers ps. We can also see the following claim.

Claim 2.1 ([5]). The symmetrized of a skew-supermodular function is (symmetric
and) skew supermodular.

For a function g : V → R or a vector g ∈ RV , we denote g(X) =
∑

v∈X g(v) for
X ⊆ V . For a set function p : 2V → Z ∪ {−∞} we introduce the polyhedron

C(p) = {x ∈ RV : x(Z) ≥ p(Z) ∀Z ⊆ V, x ≥ 0}.

This polyhedron will be used to characterize the feasibility of the degree-specified
version of Problem GTBP (see Theorem 5). An important property of C(p) is the
following.

Theorem 3 ([2]). If p : 2V → Z∪{−∞} is a skew supermodular function with p(∅) ≤
0 then C(p) is an integer polyhedron (namely an integer contrapolymatroid).

A subpartition of V is a family of disjoint subsets of V . We say that an x ∈ C(p)
is minimal if we cannot decrease x(v) at any v without violating some condition in the
definition of C(p). The properties of contrapolymatroids relevant for us are formulated
in the following corollary of Theorem 3. See details about contrapolymatroids in [20].

Corollary 1. If p is as in Theorem 3 then we have the following.

• max{
∑

X∈X p(X) : X is a subpartition of V } = min{1 · x : x ∈ C(p)}.

• Any minimal m ∈ C(p) achieves m(V ) = min{1 · x : x ∈ C(p)}.

• Given any w : V → R+, an (integer) optimal solution of min{w · x : x ∈ C(p)}
can be found in polynomial time (with a simple greedy algorithm), assuming that
we can test membership in C(p).

2.3 The splitting-off operation

Let p : 2V → Z ∪ {−∞} be a symmetric, skew-supermodular function that satisfies
p(∅) ≤ 0 and let m : V → Z be a nonnegative function satisfying m(X) ≥ p(X)
for any X ⊆ V (i.e. an integer element of C(p)). We would like to decide whether
there is a graph (or possibly hypergraph) G covering p that satisfies dG(v) = m(v)
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Section 3. Solution of the edge-connectivity augmentation problem 6

for every v ∈ V . Let u, v ∈ V be two nodes with m(u),m(v) > 0. The operation
splitting-off (at u and v) is the following: we substitute m and p with m′ and
p′ where m′(x) = m(x) if x ∈ V − {u, v} and m′(x) = m(x) − 1 if x ∈ {u, v} and
p′ = p− d(V,{(uv)}) (where (V, {(uv)}) is a graph having only one edge: note that p′ is
symmetric and skew-supermodular). If m′(X) ≥ p′(X) holds for any X ⊆ V , then we
say that the splitting off is admissible. A set X is dangerous if m(X)− p(X) ≤ 1.
The following claim is well known.

Claim 2.2 (see e.g. [5]). The splitting off at u and v is admissible if and only if there
is no dangerous set containing both u and v.

We will use the following lemma.

Lemma 1 ([5, 19]). Let p : 2V → Z ∪ {−∞} be a symmetric skew-supermodular
function and m ∈ C(p)∩ZV . If max{p(X) : X ⊆ V } > 1, then there is an admissible
splitting-off.

3 Solution of the edge-connectivity augmentation

problem

In this section we solve the following variants of Problem GTBP. We start with the
minimum cardinality version, in which the number of edges |E| of G is to be min-
imized (that is, the minimum cost version with cost function c ≡ 1). Then we prove
a splitting-off theorem that solves the degree-specified version. Unlike other edge-
connectivity augmentation problems, here the minimum cardinality version of the
problem is easier than the degree-specified version, and it helps proving the splitting-
off theorem. The splitting-off theorem gives rise to the solution of the minimum cost
version for node-induced cost function (that is, we find a graph G minimizing∑

v∈V w(v)dG(v)), given some node-weights w(v) ≥ 0 for every v ∈ V ).
Consider Problem GTBP above. To simplify the discussion, let T = {t1, t2, . . . , tk}

and let ri = r(ti) for every i. For any terminal ti let di = min{dG0(X) : X∩T = {ti}}.
By Menger’s theorem di = λG0(ti, T − ti). Let furthermore Xi be an inclusionwise
minimal subset with Xi ∩ T = {ti} and dG0(Xi) = di.

Lemma 2. For different indices i 6= j we have Yi ∩ Xj = ∅, where Yi is a set with
Yi ∩ T = {ti} and dG0(Yi) = di. Consequently, X1, X2, . . . , Xk is a subpartition of V .

Proof. Assume Yi ∩Xj 6= ∅. Since

di + dj = dG0(Yi) + dG0(Xj)

≥ dG0(Yi −Xj) + dG0(Xj − Yi) ≥ di + dj,

we have dG0(Xj − Yi) = dj, which contradicts the minimality of Xj.

Let us define a set function R : 2V → Z ∪ {−∞} by

R(X) =

{
ri if X ∩ T = {ti},
−∞ otherwise.
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3.1 Solution of the minimum cardinality version 7

It is clear that a graph G is feasible for Problem GTBP if and only if dG(X) ≥
R(X)− dG0(X) holds for every subset X ⊆ V (i.e., G covers R− dG0).

Claim 3.1. The function R is skew-supermodular (and then so is the function R −
dG0).

Proof. Let X, Y ⊆ V . We can assume that R(X) and R(Y ) are both finite, otherwise
there is nothing to prove. If X ∩ T = Y ∩ T then (∩∪) holds for R (with equality),
otherwise (−) holds for R (again, with equality). The skew-supermodularity of R
implies the skew-supermodularity of R− dG0 .

Let Rs(X) = max{R(X), R(V − X)} for any X ⊆ V (the symmetrized of R):
it is a symmetric and skew supermodular function by Claim 2.1. Let finally p(X) =
Rs(X) − dG0(X) for any X ⊆ V , which is symmetric and skew-supermodular. Note
that G covers R− dG0 if and only if G covers p.

Membership oracle for C(p). In order to turn our proofs into polynomial algo-
rithms, we describe a membership oracle for C(p), where p = Rs − dG0 . This oracle
is needed in Corollary 1, and in our Splitting-off Theorem 5; note that this implies a
membership oracle for C(p− dG) for any graph G, since we can add G to G0. Given
some x : V → Z+, we want to decide whether x ∈ C(p) or not. This is done as
follows. Add a new node s to G0 and an edge with multiplicity x(v) between s and
every v ∈ V . Denote the resulting hypergraph by H. We claim that x ∈ C(p) if and
only if λH(t, T − t) ≥ r(t) holds for every t ∈ T , which can be checked with maximum
flow computations. We prove this claim. If x /∈ C(p) then x(Z) < Rs(Z) − dG0(Z)
for some Z ⊆ V . By the definition of the function R, there exists some t ∈ T so that
Z ∩ T = {t} or Z ∩ T = T − {t}: for this t we have λH(t, T − t) < r(t). On the other
hand, if λH(t, T − t) < r(t) for some t ∈ T then dH(Z) < r(t) for some set Z ⊆ V + s
separating t and T − t. We can assume that s /∈ Z and then for this set we have
x(Z) < p(Z).

3.1 Solution of the minimum cardinality version

Let us introduce r′i = max{ri− di, 0} for every i = 1, 2, . . . , k. Assume without loss of
generality that r′1 ≥ r′2 ≥ · · · ≥ r′k. Note that r′i = max{R(Xi)− dG0(Xi), 0} for every
i and r′1 = max{R(X)− dG0(X) : X ⊆ V } = max{p(X) : X ⊆ V } (by assuming that
r′1 > 0).

Theorem 4. The minimum number of edges of a graph G that satisfies the require-

ments of Problem GTBP is equal to γ = max{r′1, d
∑

i r
′
i

2
e}.

Proof. It is clear from Lemma 2 that max{r′1, d
∑

i r
′
i

2
e} is a lower bound. On the other

hand, let us find an arbitrary loopless graph G on nodeset T such that dG(ti) ≥ r′i
for every i and |E(G)| = γ. Such a graph exists and satisfies our requirements, since
λG(ti, T − ti) ≥ r′i for every i.

Corollary 2. max{d1
2

∑
X∈X p(X)e : X is a subpartition of V } = γ.
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3.2 The splitting-off theorem and its consequences 8

Proof. It is clear that d1
2

∑
X∈X p(X)e is a lower bound of γ. The other direction

follows from Lemma 2 and Theorem 4: if γ = r′1 then take X = {X1, V − X1},
otherwise take X = {Xi : r′i > 0}.

3.2 The splitting-off theorem and its consequences

Next we solve the degree-specified version of Problem GTBP. If a specified degree of
some vertex is too large compared to other degrees (i.e., g(v) > g(V − v) for some
v ∈ V ), then we need to care about loops. For a node v ∈ V in a graph G = (V,E) let
d+G(v) be dG(v) plus 2 times the number of loops at v, which is a standard definition
of the degree of v in a graph with loops. Recall that p : 2V → Z ∪ {−∞} is defined
by p(X) = Rs(X)− dG0(X) for X ⊆ V .

Theorem 5. Given values g(v) ∈ Z+ for every node v ∈ V , there exists a graph G
with d+G(v) = g(v) at every v ∈ V satisfying the requirements of Problem GTBP if
and only if g(V ) is even and g(Z) ≥ p(Z) holds for every Z ⊆ V .

Proof. To prove necessity of the conditions, assume that such a graph G exists. Sum-
ming d+G(v) = g(v) for every v ∈ Z gives that g(Z) ≥ dG(Z), therefore the condition
g(Z) ≥ p(Z) is necessary for any Z. Similarly, summing d+G(v) = g(v) for every v ∈ V
gives g(V ) = 2|E(G)|, therefore g(V ) has to be even.

To prove sufficiency, let us assume that m : V → Z+ is such that m(v) ≤ g(v)
for every v ∈ V , m(Z) ≥ p(Z) holds for any Z ⊆ V , but we cannot decrease any
m(v) without violating this condition (such an m can be found greedily, starting from
m = g). By Corollary 2 and Corollary 1, we know that m(V ) is either 2γ or 2γ−1: in
the latter case let us increase m(v) by one for an arbitrary v with m(v) ≤ g(v)− 1. If
we show that there exists a graph G satisfying dG(v) = m(v) for every v, that satisfies
the requirements of Problem GTBP, then the theorem is proved (because we can add
more edges, possibly loops, to achieve that d+G(v) = g(v) at every v ∈ V : note however
that we can avoid loops unless g(v) > g(V − v) for some node v ∈ V ). In order to
prove this we only need to show that an admissible splitting-off exists: that is, we
can find nodes x, y such that m(x) > 0,m(y) > 0 and any set X containing x, y has
m(X) ≥ p(X) + 2 (and then the proof is ready by induction).

If r′1 = max{p(Z) : Z ⊆ V } > 1 then there exists an admissible splitting-off by
Lemma 1. So we can assume that r′1 = 1. We can also assume that m(V ) ≥ 4,
implying r′2 = r′3 = 1, otherwise there trivially exists an admissible splitting-off.
Choose an arbitrary x ∈ X1 and y ∈ X2 with m(x) > 0,m(y) > 0 (such nodes
exist, since m(Xi) ≥ p(Xi) for i = 1, 2), and assume that the splitting-off at x
and y is not admissible. This means that there exists a set X containing x, y with
m(X) ≤ p(X) + 1. Since m(X) ≥ 2, this means that p(X) = 1 and m(X) = 2,
implying that X3 − X 6= ∅. Since the role of t1 and t2 is symmetric here, we can
assume that either X ∩ T = {t1} or T − X = {t1}. In both cases dG0(X) = d1
must hold. In the first case X ∩X2 6= ∅, contradicting Lemma 2. In the second case
dG0(V −X) = d1 and (V −X) ∩X3 6= ∅ contradicts Lemma 2.

Using Corollary 1 and our splitting-off Theorem 5 above we obtain the solution of
the node-weighted version of Problem GTBP.
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Section 4. Solution of the survivable network design problem 9

Theorem 6. Given Problem GTBP and node weights w(v) for every node v ∈ V , we
can find a solution G minimizing

∑
v∈V w(v)dG(v) in polynomial time.

Proof. By Corollary 1, we can find a vector g : V → Z+ minimizing
∑

v∈V w(v)g(v).
If g(V ) is odd then increase g(v) by one for the node v that has smallest weight. The
theorem is proved by our splitting-off Theorem 5.

We mention the following related result. In our problem setting (Problem 1) we
insist that G has to be a graph. If we allow hyperedges in G then we arrive at a
different problem, but it is not clear how to choose the objective function. A natural
candidate is to minimize the total size of G (where the total size of a hypergraph is
the sum of the sizes of its hyperedges: note that this is twice the number of edges, if
the hypergraph is in fact a graph). A more general version would consider a node-
induced cost function, as in Theorem 6: given node weights w(v) for every node
v ∈ V , and the cost of choosing a hyperedge is the sum of the weights of the nodes
contained in that hyperedge. This general problem is solved by Szigeti in [21], as it is
contained in the framework of covering a skew-supermodular function by hyperedges.

4 Solution of the survivable network design prob-

lem

In this section we solve minimum cost version of Problem GTBP in the special case
when G0 is the empty graph. Let us formulate this problem separately.

Problem 2. What is the minimum cost of a multigraph G = (V,E) such that λG(t, T−
t) ≥ r(t) for any t ∈ T , given a terminal set T ⊆ V (|T | ≥ 2), a requirement r(t) ∈ Z+

for every t ∈ T , and a cost c(uv) ≥ 0 for every pair u, v ∈ V .

We observe that Problem 2 is polynomially solvable if T = V , because now the
question is to find a smallest cost graph G = (V,E) so that the degree dG(v) of each
node v is at least r(v). This is a minimum-cost b-edge cover problem [20, Section
21.7] (which is equivalent to the maximum-weight b-matching problem with a simple
reduction).

We also note that the special case r ≡ 1 of Problem 2 is known as the Terminal
Backup Problem, and is shown to be polynomially solvable in [1]. It seems that the
methods of [1] also apply to the case when G0 is not an empty graph (and r(t) = 1
for every t ∈ T ), but the details need to be clarified.

The algorithm for the Terminal Backup Problem in [1] is based on a polynomial-
time algorithm for the simplex matching problem. In an instance of the simplex
matching problem, we are given a hypergraph H = (V, E) that has hyperedges of sizes
2 and 3 with edge costs γ(e), and the objective is to find a perfect matching of H with
minimum total cost. Since this problem is NP-hard in general, we consider instances
with the simplex condition, which states that for any hyperedge {u1, u2, u3} ∈ E of
size 3, {u1, u2}, {u2, u3}, {u3, u1} ∈ E and

γ({u1, u2}) + γ({u2, u3}) + γ({u3, u1}) ≤ 2γ({u1, u2, u3}).
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The main theorem in [1] is as follows.

Theorem 7 (Anshelevich and Karagiozova [1]). There is a polynomial-time algorithm
for the simplex matching problem with the simplex condition.

4.1 Algorithm

We will give an algorithm for the general case of Problem 2. In order to solve this
problem, we investigate the structure of the optimal solution. For a given instance of
Problem 2, define a family E =

(
T
2

)
∪
(
T
3

)
⊆ 2T , where

(
T
2

)
= {{t1, t2} | t1, t2 ∈ T, t1 6=

t2}, and
(
T
3

)
= {{t1, t2, t3} | t1, t2, t3 ∈ T, t1 6= t2 6= t3 6= t1}, and let γ : E → R+

be the cost function such that γ({t1, t2}) is the minimum cost of a t1-t2 path (with
respect to the cost function c) and γ({t1, t2, t3}) is the minimum cost of a Steiner tree
spanning t1, t2 and t3 (with respect to the cost function c).

Consider the following problem.

Problem 3. Suppose E and γ are defined as above. Find a minimum cost multi-
hypergraph H = (T,F) such that F is a multiset of E and dH(t) ≥ r(t) for any
t ∈ T .

We can show the following lemma, whose proof is given in Section 4.2.

Lemma 3. The optimal value of Problem 3 is equal to the the optimal value of Problem
2.

Furthermore, the optimal solutions correspond to each other, i.e., an optimal solu-
tion of Problem 2 can be decomposed into paths and Steiner trees with three leafs.

Note that the corresponding result is given in [24] for the special case r ≡ 1. Based
on this lemma showing the correspondence between Problem 2 and Problem 3, we
propose the following algorithm for Problem 2.

Algorithm for Problem 2

Step 1 Construct the family E =
(
T
2

)
∪
(
T
3

)
and compute the cost γ(e) for each e ∈ E

defined as above.

Step 2 Let R := maxt∈T{r(t)}. Construct a simplex matching instance consisting of
hypergraph (T+, E+ ∪ E0) and costs as follows.

Step 2-1. The ground set is T+ = {t(1), t(2), . . . , t(R+2) : t ∈ T}, that is we
introduce R + 2 copies of each node of T .

Step 2-2 The hyperedges in E+ and their costs are the following. For each

{t1, t2} ∈ E , add edges {t(i)1 , t
(j)
2 } with cost γ({t1, t2}) for all i, j ∈ {1, . . . , R+

2}. Similarly, for each {t1, t2, t3} ∈ E , add edges {t(i)1 , t
(j)
2 , t

(k)
3 } with cost

γ({t1, t2, t3}) for all i, j, k ∈ {1, . . . , R + 2}.
Step 2-3 The hyperedges in E0 and their costs are the following. For each

t ∈ T , add edges {t(i), t(j)} with cost 0 for r(t) + 1 ≤ i < j ≤ R + 2, and
add edges {t(i), t(j), t(k)} with cost 0 for r(t) + 1 ≤ i < j < k ≤ R + 2.
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Step 3 Solve the obtained simplex matching instance using Theorem 7. Then, from
the optimal solution of the simplex matching problem, we can construct a solu-
tion of Problem 3 by ignoring the hyperedges in E0 and contracting t(1), . . . , t(R+2)

to a single vertex for each t ∈ T .

Step 4 Output a solution G = (V,E) of Problem 2 that consists of paths and Steiner
trees corresponding to the solution of Problem 3 .

Before proving the correctness of this algorithm, we give a small claim on the
optimal solutions of Problem 3.

Claim 4.1. Problem 3 always has an optimal solution H = (T,F ′) such that dH(t) ∈
{r(t), r(t) + 1, . . . , R} for any t ∈ T , where R := maxt∈T{r(t)}.

Proof. Assume that H is an optimum solution and dH(t) > R for some t ∈ T . We
replace H with another optimum solution H ′ having dH′(t) < dH(t), and then the
proof is ready by induction.

Assume first that a hyperedge {t, t′, t′′} is in F ′: replace it with the edge {t′, t′′}
(i.e. decrease the multiplicity of {t, t′, t′′} and increase that of {t′, t′′} to get H ′). It is
easy to see that H ′ is feasible, and since γ({t, t′, t′′}) ≥ γ({t′, t′′}), H ′ is also optimal.

If there exist 2 edges {t, t′}, {t, t′′} ∈ F ′ for which t′ 6= t′′ then replace them with
{t, t′, t′′} to get H ′. It is again clear that the new solution is feasible, and γ({t, t′}) +
γ({t, t′′}) ≥ γ({t, t′, t′′}) shows that it is also optimal.

If none of the above can be applied then t is incident with more then R copies of
an edge {t, t′} for some t′ ∈ T − t. In this case simply delete a copy of this edge:
since dH(t′) ≥ R + 1, the obtained hypergraph H ′ is still feasible, and thus it is also
optimal.

Our main result is stated as follows.

Theorem 8. Our algorithm solves Problem 2 in polynomial time in |V | and R =
maxt∈T{r(t)}.

Proof. First, an easy but important observation is that a minimum cost Steiner tree
spanning t1, t2 and t3 consists of (at most) three paths each connecting a hub vertex
v ∈ V and each ti. This shows that the simplex condition holds when we apply
Theorem 7 in Step 3. Furthermore, based on this observation, in Step 1, γ({t1, t2, t3})
can be computed in polynomial time by guessing the hub vertex v and using a shortest
path algorithm.

Next, we show the optimality of the output. Without the set of hyperedges E0 added
in Step 2-3 in our algorithm, Step 3 would find a minimum cost multihypergraph
H = (T,F) such that F is a multiset of E and dH(t) = R + 2 for any t ∈ T .
By using edges in E0, we can cover k vertices in t(r(t)+1), t(r(t)+2), . . . , t(R+2), where
k can be 0, 2, 3, 4, . . . , R + 2 − r(t) (note that we cannot cover exactly one vertex
with a zero cost hyperedge). Therefore, in Step 3 of our algorithm, we obtain a
minimum cost multihypergraph H = (T,F) such that F is a multiset of E and dH(t) ∈
{r(t), r(t) + 1, . . . , R} for any t ∈ T , which is an optimal solution of Problem 3 by
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the above argument and Claim 4.1. Therefore, by Lemma 3, we obtain an optimal
solution of Problem 2 in Step 4.

Finally, we note that since we introduced R+2 vertices for each vertex u ∈ T in Step
2-1, the running time of our algorithm is polynomial in |V | and R = maxt∈T{r(t)}.

We remark that using R + 2 copies of each node t ∈ T in Step 2-1 of our algo-
rithm was only needed because we wanted to use the Simplex Matching Algorithm of
Anshelevich and Karagiozova [1] as a black box. We believe that the Simplex Match-
ing Algorithm of [1] can be modified to solve directly Problem 3, which would imply
an algorithm for our Problem 2 whose running time is not pseudo-polynomial but
polynomial.

4.2 Proof of Lemma 3

In this section, we give a proof of Lemma 3. To show this lemma, it suffices to prove
the following lemma, which can be seen as a variant of Theorem 1.

Lemma 4. Suppose we have a multigraph G = (V,E) with a set of (at least two)
terminals T ⊆ V . Then there is a set F of mutually edge-disjoint trees in G, so that
each tree has at most 3 leafs, all these leafs are in T and for each element t ∈ T ,
λG(t, T − t) trees in F are incident to t.

Proof. Define r(t) := λG(t, T − t) for each t ∈ T . We use induction on
∑

t∈T r(t).
We take one terminal t0 ∈ T . By Menger’s theorem, we have r(t0) edge-disjoint

paths P1, . . . , Pr(t0) from t0 to T − t0. Let P1 = (v0 = t0, e1, v1, e2, v2, . . . , vl−1, el, vl ∈
T − t0). For i = 1, 2, . . . , l, we define Gi := G − {e1, . . . ei}. Let i ∈ {1, 2, . . . , l} be
the integer satisfying the following condition:

• λGi−1
(t, T − t) = r(t) for each t ∈ T − t0 and

• λGi
(t, T − t) = r(t)− 1 for some t ∈ T − t0,

where G0 := G. Since λGl
(vl, T − vl) ≤ r(vl)− 1, such an integer i must exist.

In the graph Gi, for each t ∈ T , let Xt ⊆ V be the minimum vertex set such
that t ∈ Xt ⊆ V − (T − t) and dGi

(Xt) = λGi
(t, T − t). By the minimality of

Xt (and standard uncrossing techniques, see Lemma 2), we can see that Xt’s are
mutually disjoint. Let X0 := V \

⋃
t∈T Xt. By the choice of i, we may assume that

λGi
(t′, T − t′) = r(t′)− 1 for some t′ ∈ T − t0. Since ei connects Xt′ and V −Xt′ , we

consider the following two cases.

Case 1: ei connects Xt′ and Xt0 ∪X0.
By Menger’s theorem, in Gi−1, we can take edge-disjoint paths Q1, . . . , Qr(t′) from

t′ to T − t′. Since each path contains exactly one edge connecting Xt′ and V −Xt′ in
Gi−1, without loss of generality, we may assume that Q1 contains ei. By concatenating
the subpath of Q1 between t′ and ei and the subpath (v0, e1, v1, e2, . . . , vi−1) of P1, we
obtain a path P from t0 and t′, that is, P := P1[t0, vi−1] + Q1[t

′, vi−1]. (Note that if
vi−1 ∈ Xt′ and vi 6∈ Xt′ , then P does not contain ei.)
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Let E(P ) be the set of edges in P , and let G′ be a new graph obtained from
G−E(P )−{ei} by shrinking Xt′ to a single vertex (and the shrunk vertex is regarded
as the terminal t′). Then,

• it is clear that λG′(t, T − t) = r(t) for each t ∈ T − t0 − t′,

• λG′(t0, T − t0) = r(t0)− 1 by the existence of P2, . . . , Pr(t0), and

• λG′(t′, T − t′) = r(t′)− 1 by the existence of Q2, . . . , Qr(t′).

Note that Q2, . . . , Qr(t′) do not share an edge with P1[t0, vi−1], since they are paths in
Gi−1. By induction hypothesis, G′ contains a set F ′ of trees of the required form, and
F ′ can be extended in G−E(P ) by using subpaths of Q2, . . . , Qr(t′). Therefore, these
objects together with P form a desired set of trees in G.

Case 2: ei connects Xt′ and Xt′′ for some t′′ ∈ T − t0 − t′.
By Menger’s theorem, in Gi−1, we can take edge-disjoint paths Q1, . . . , Qr(t′) from

t′ to T − t′. Since each path contains exactly one edge connecting Xt′ and V − Xt′

in Gi−1 without loss of generality, we may assume that Q1 contains ei. Similarly, we
take edge-disjoint paths R1, . . . , Rr(t′′) from t′′ to T − t′′ in Gi−1 and we may assume
that R1 contains ei.

By concatenating the subpath of Q1 between t′ and ei, the subpath of R1 between
t′′ and ei, and the subpath (v0, e1, v1, e2, . . . , vi−1) of P1, we obtain a tree P connecting
t0, t

′, and t′′, that is, P := P1[t0, vi−1] + Q1[t
′, vi−1] + R1[t

′′, vi−1]. (Note that even if
vi−1 ∈ Xt′ and vi 6∈ Xt′ , the subpath R1[t

′′, vi−1] must contain ei.)
Let E(P ) be the set of edges in P , and let G′ be a new graph obtained from

G − E(P ) by shrinking Xt′ and Xt′′ to single vertices (and the shrunk vertices are
regarded as the terminals t′ and t′′). Then,

• it is clear that λG′(t, T − t) = r(t) for each t ∈ T − t0 − t′ − t′′,

• λG′(t0, T − t0) = r(t0)− 1 by the existence of P2, . . . , Pr(t0),

• λG′(t′, T − t′) = r(t′)− 1 by the existence of Q2, . . . , Qr(t′), and

• λG′(t′′, T − t′′) = r(t′′)− 1 by the existence of R2, . . . , Rr(t′′).

Note that Q2, . . . , Qr(t′), R2, . . . , Rr(t′′) do not share an edge with P1[t0, vi−1], since
they are paths in Gi−1. By induction hypothesis, G′ contains a set F ′ of trees, and F ′

can be extended in G − E(P ) by using subpaths of Q2, . . . , Qr(t′) and R2, . . . , Rr(t′′).
Therefore, these objects together with P form a desired set of trees in G.

5 Concluding remarks

Note that in Problem GTBP we allow an arbitrary number of parallel copies of any
edge in G, therefore our problem is an uncapacitated network design problem.
A natural capacitated extension of our problem would be the following (we only
formulate the minimum cost version here).
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Problem 4. In the minimum cost version of Problem 1, find a graph G = (V,E) also
satisfying that the number of parallel copies of an edge e ∈ E is at most some capacity
cap(e) ∈ Z+, that is given in advance.

This problem can also be seen as a minimum cost subgraph problem by intro-
ducing a supply graph with edge-multiplicities cap(uv) for every u, v ∈ V . Note that
Problem 1 is the special case of this problem by setting cap(uv) = max{r(t) : t ∈ T}
for every pair u, v ∈ V . We could not extend our results to Problem 4. The prob-
lem is open even if G0 is the empty graph. Note that Jain’s framework implies a
2-approximation algorithm for this problem in the case when the capacities do not
exceed some fixed constant (that is not part of the input).
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