
Egerváry Research Group
on Combinatorial Optimization

Technical reportS

TR-2013-07. Published by the Egerváry Research Group, Pázmány P. sétány 1/C,
H�1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587�4451.

The Generalized Terminal Backup

Problem

Attila Bernáth, Yusuke Kobayashi, and

Tatsuya Matsuoka

December 2013
Revised June 2014



EGRES Technical Report No. 2013-07 1

The Generalized Terminal Backup Problem

Attila Bernáth?, Yusuke Kobayashi??, and Tatsuya Matsuoka? ? ?

Abstract

We consider the following network design problem, that we call the Gen-
eralized Terminal Backup Problem: given a graph (or a hypergraph)
G0 = (V,E0), a set of (at least 2) terminals T ⊆ V and a requirement r(t)
for every t ∈ T , �nd a multigraph G = (V,E) such that λG0+G(t, T − t) ≥ r(t)
for any t ∈ T . In theminimum cost version the objective is to �nd G minimiz-
ing the total cost c(E) =

∑
uv∈E c(uv), given also costs c(uv) ≥ 0 for every pair

u, v ∈ V . In the degree-speci�ed version the question is to decide whether
such a G exists, satisfying that the number of edges is a prescribed value m(v)
at each node v ∈ V . The Terminal Backup Problem solved in [1] is the
special case where G0 is the empty graph and r(t) = 1 for every terminal t ∈ T .
We solve the Generalized Terminal Backup Problem in the following two cases.

In the �rst case we solve the degree-speci�ed version by a splitting-o� theo-
rem. This splitting-o� theorem in turn provides the solution for the minimum
cost version in the case when c is node-induced, that is c(uv) = w(u) + w(v)
for some node weights w : V → R+.

In the second solved case we turn to the general minimum cost version, and
we are able to solve it when G0 is the empty graph. This includes the Termi-
nal Backup Problem [1] (r ≡ 1) and the Maximum-Weight b-matching
Problem (T = V ). The solution depends on an interesting new variant of a
theorem of Lovász and Cherkassky, and on the solution of the so-called Simplex
Matching problem [1].

Our algorithms run in strongly polynomial time for both problems.

1 Introduction

Edge-connectivity augmentation problems usually mean the following: �nd a
graph satisfying certain edge-connectivity requirement, and any number of parallel
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edges is allowed between any pair of the nodes. The objective function is usually to
minimize the number of edges in the graph found, while the edge-connectivity require-
ments can vary from problem to problem. The classical result of edge-connectivity
augmentation is the theorem of Watanabe and Nakamura [25], who determined the
minimum number of edges of a graph G = (V,E) which gives a k-edge-connected
graph when added to the input graph G0 = (V,E0). This was generalized by Bang-
Jensen and Jackson [3] who solved the same problem in the case when G0 can even be a
hypergraph. Another generalization is the local edge-connectivity augmentation
problem solved by Frank [8], which is the following. Given a graph G0 = (V,E0)
and requirement r(u, v) ∈ Z+ for every pair of nodes u, v ∈ V , �nd the minimum
number of edges of a multigraph G satisfying λG0+G(u, v) ≥ r(u, v) for every pair
u, v ∈ V . Here, the edge-connectivity between u and v is denoted by λ(u, v) (see
Section 2.1 for de�nition). Note that the same problem becomes NP-complete, if
G0 can be a hypergraph [15]. Ishii and Hagiwara [12] solved the so-called node-to-
area edge-connectivity augmentation problem which is the following. Given
a graph G0 = (V,E0), a collection of subsets W of V (called areas) and a function
r : W → Z+, �nd a graph G = (V,E) with smallest possible number of edges such
that λG0+G(x,W ) ≥ r(W ) for any W ∈ W and x ∈ V . It is shown in [19] that this
problem is NP-complete, however, the authors of [12] have given a polynomial algo-
rithm solving it if r(W ) ≥ 2 for every W ∈ W (see also [11]). More generalizations,
abstract versions and related results were given by [4, 5, 14, 23], good surveys can be
found in [10, 24].
Weighted versions of edge-connectivity augmentation problems are often called sur-

vivable network design problems. Here we want to �nd a minimum-cost subgraph
of a given supply graph so that the edge-connectivity requirements are satis�ed. Par-
allel copies of the edges might or might not be allowed. These problems are usually
NP-hard already in very simple cases, as an example consider the minimum-cost 2-
edge-connected subgraph problem. In the Steiner Tree Problem we want to �nd a
minimum cost set of edges that connects every pair of a set of terminals (clearly, the
optimum solution can be chosen to be a tree). In its generalization, the Generalized
Steiner Network Problem we have a requirement r(u, v) for every pair of nodes u, v ∈ V
and the question is to �nd a minimum cost graph G so that λG(u, v) ≥ r(u, v) for
every pair u, v ∈ V . Jain [13] has given a framework of 2-approximation algorithms
that includes many di�erent survivable network design problems (for example, the
Generalized Steiner Network Problem). A polynomially solvable survivable network
design problem is the Terminal Backup Problem, de�ned as follows. Given a set
of terminals T ⊆ V and costs c(uv) ≥ 0 for every pair u, v ∈ V , �nd a minimum cost
set of edges in which every terminal is connected to some other terminal. Clearly, the
optimum solution of this problem can always be chosen to be a forest. The Terminal
Backup Problem was introduced and solved in [1]. Note the similarity of this problem
with the Steiner Tree Problem: here we want that every terminal is connected to
some other terminal, while the Steiner Tree Problem requires that every terminal is
connected to all other terminals.
In this paper we consider the following uncapacitated network design problem,

which generalizes the Terminal Backup Problem.
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Problem 1 (Generalized Terminal Backup Problem, Problem GTBP). Given a
graph (or a hypergraph) G0 = (V,E0), a set of (at least 2) terminals T ⊆ V , and a
requirement r(t) for every t ∈ T , �nd a multigraph G = (V,E) such that λG0+G(t, T −
t) ≥ r(t) for any t ∈ T .

Note that G0 can be a hypergraph, but G has to be a graph here, in which we can
include any number of parallel edges between any pair of nodes.
In the minimum cost version of Problem 1 (Problem MC-GTBP) we want to

minimize the total cost c(E) =
∑

uv∈E c(uv) of the solution found, given also costs
c(uv) ≥ 0 for every pair u, v ∈ V . In the degree-speci�ed version of Problem 1
(Problem DS-GTBP) we want to decide whether such a graph G exists, satisfying
that the number of edges is a prescribed value m(v) at each node v ∈ V .
In this paper we solve the following special cases of Problem GTBP.

1. An edge-connectivity augmentation type problem: we start with the
minimum cost version for c ≡ 1 and solve the degree-speci�ed version by a
splitting-o� theorem. This splitting-o� theorem in turn provides the solution
for the minimum cost version in the case when c is node-induced. Here, the
cost function c is said to be node-induced if there exists a weight function
w : V → R+ such that c(uv) = w(u) + w(v) for every pair u, v ∈ V .

2. A survivable network design problem: we turn to the general minimum cost
version, and we are able to solve it when G0 is the empty graph. The solution
depends on Lemma 24, a variant of Theorem 2, which is of independent interest.
The second ingredient of the solution is the algorithm given by Anshelevich and
Karagiozova [1] for the problem called Simplex Matching Problem.

Problem GTBP is a new network design problem. It includes the Terminal Backup
Problem [1] (by letting G0 to be an empty graph and r ≡ 1) and the Maximum-
Weight b-matching Problem (T = V ), but it seems that this particular problem was
not considered before, we have not found this type of question in the literature. A
special case of this problem (the degree-speci�ed version) was raised by András Frank
(private communication). The following, somewhat related theorem of Lovász and
Cherkassky can be considered as a motivation for our problem.

Theorem 2 (Lovász [16] and Cherkassky [7]). Let G = (V,E) be an undirected graph
and T ⊆ V a set of terminals so that the degree of v is even for every v ∈ V − T .
Then there is a set F of edge-disjoint paths such that each path has its endnodes in
T and for each element t ∈ T , the paths in F ending at t form a maximum set of
edge-disjoint (t, T − t)-paths.

We give an interesting variant of this theorem (see Lemma 24). Theorem 2 was
generalized in many directions, for example Mader [17] determined the maximum
number of edge-disjoint T -paths in a graphG in which the degree of v is not necessarily
even for every v ∈ V −T (where a path is called a T -path if both its endnodes are in
T , see also [22, Corollary 73.2b]). We could not see our Lemma 24 as an easy corollary
of these results.
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The paper is organized as follows. In Section 2 we give the necessary de�nitions
and results. In Section 3 we solve the edge-connectivity augmentation problem by
�rst solving the minimum cardinality case in subsection 3.1, and then proving the
splitting-o� theorem and exploring its consequences in subsection 3.3. In Section 4
we solve the survivable network design problem: in subsection 4.1 we prove the main
ingredient of our solution, Lemma 24, and reduce the problem to a generalization of
the simplex matching problem, in subsection 4.2 we give a pesudo-polynomial time
algorithm, and in subsection 4.3 we improve the running time to strongly polynomial.
We close the paper with some concluding remarks in Section 5.

2 Preliminaries

2.1 Hypergraphs and edge-connectivity

For general graph theoretic notations we will follow [9]. For subsets X, Y of a ground
set V let X − Y = {v ∈ X : v /∈ Y }; sometimes we will also use X + Y to mean
X∪Y . A hypergraph (or sometimesmultihypergraph) is a pair H = (V, E) where
V is some �nite set of nodes and E is a multiset of subsets of V . The members of E
are called hyperedges and the multiplicity of a hyperedge is represented as a binary
number. A hyperedge of size at most 2 is called a graph edge (or simply edge), and
a hyperedge of size 1 is called a loop. A graph is a special hypergraph containing
only edges (the termmultigraph is used as a synonym of the term graph). A simple
hypergraph is a hypergraph in which every hyperedge has multiplicity 1. If H and G
are hypergraphs on the same node set V then H+G is the hypergraph on node set V
in which the multiplicity of a hyperedge is the sum of its multiplicities in H and in G.
For a hypergraph H = (V, E) and a set X ⊆ V we say that a hyperedge e ∈ E enters X
if neither e∩X nor e∩(V −X) is empty, and we de�ne dH(X) = |{e ∈ E : e enters X}|.
If a set contains only one element v then we will write v instead of {v}; thus dH(v)
means dH({v}), etc.
A path between nodes s and t of a hypergraph H is an alternating sequence of

distinct nodes and hyperedges (s = v0, e1, v1, e2, . . . , ek, vk = t), such that vi−1, vi ∈ ei
for all i between 1 and k. For sets S, T ⊆ V of nodes in a hypergraph H = (V, E),
the edge-connectivity λH(S, T ) between S and T in H is de�ned as the maximum
number of pairwise hyperedge-disjoint paths, where each path has one endnode in S,
and the other in T (where we understand λH(S, T ) =∞ if S ∩ T 6= ∅). The following
theorem of Menger shows that this value coincides with the size of a minimum S-T
cut.

Theorem 3 (Menger's Theorem for hypergraphs [18]). Let H = (V, E) be a hyper-
graph, and S, T ⊆ V . Then

λH(S, T ) = min{dH(X) : T ⊆ X ⊆ V − S}.
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2.2 Skew-supermodular functions 5

2.2 Skew-supermodular functions

A function p : 2V → R ∪ {−∞} is called a set function. We say that a graph G
covers a set function p if dG(X) ≥ p(X) holds for every X ⊆ V . Problem GTBP
can be formulated as the problem of covering a skew-supermodular set function by a
graph, as will be shown in Section 3. In this subsection, we describe some notations
and properties of skew-supermodular functions.
A set function p : 2V → Z ∪ {−∞} is called skew-supermodular if at least one

of the following two inequalities holds for every X, Y ⊆ V :

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ), (∩∪)
p(X) + p(Y ) ≤ p(X − Y ) + p(Y −X). (−)

A set function is symmetric if p(X) = p(V −X) for every X ⊆ V . For a hypergraph
H, we can easily see that p = −dH is symmetric and satis�es both (∩∪) and (−)
for any X, Y ⊆ V . Let the symmetrized ps of a set function p be de�ned with the
formula ps(X) = max(p(X), p(V −X)) for every X ⊆ V . We can see that a graph G
covers p if and only if it covers ps. We can also see the following claim.

Claim 4 ([5]). The symmetrized of a skew-supermodular function is (symmetric and)
skew supermodular.

For a function m : V → R (or a vector m ∈ RV ), we denote m(X) =
∑

v∈X m(v)
for X ⊆ V . For a set function p : 2V → Z ∪ {−∞} we introduce the polyhedron

C(p) = {x ∈ RV : x(Z) ≥ p(Z) for every Z ⊆ V, x ≥ 0}.

This polyhedron will be used to characterize the feasibility of the degree-speci�ed
version of Problem GTBP (see Section 3.3). An important property of C(p) is the
following.

Theorem 5 ([2]). If p : 2V → Z∪{−∞} is a skew supermodular function with p(∅) ≤
0 then C(p) is an integer polyhedron (namely an integer contrapolymatroid).

A subpartition of V is a family of disjoint subsets of V . We say that an x ∈ C(p)
isminimal if we cannot decrease x(v) at any v without violating some condition in the
de�nition of C(p). The properties of contrapolymatroids relevant for us are formulated
in the following corollary of Theorem 5. See details about contrapolymatroids in [22].

Corollary 6. If p is as in Theorem 5 then we have the following.

• max{
∑

X∈X p(X) : X is a subpartition of V } = min{1 · x : x ∈ C(p)}.

• Any minimal m ∈ C(p) achieves m(V ) = min{1 · x : x ∈ C(p)}.

• Given any w : V → R+, an (integer) optimal solution of min{w · x : x ∈ C(p)}
can be found in polynomial time (with a simple greedy algorithm), assuming that
we can test membership in C(p).
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2.3 The splitting-o� operation

Let p : 2V → Z ∪ {−∞} be a symmetric, skew-supermodular function that satis�es
p(∅) ≤ 0 and let m : V → Z be a nonnegative function satisfying m(X) ≥ p(X) for
any X ⊆ V (i.e. an integer element of C(p)). We would like to decide whether there
is a graph G covering p that satis�es dG(v) = m(v) for every v ∈ V . Let u, v ∈ V
be two nodes with m(u),m(v) > 0. The operation splitting-o� (at u and v) is the
following: we substitute m and p with m′ and p′ where m′(x) = m(x) if x ∈ V −{u, v}
andm′(x) = m(x)−1 if x ∈ {u, v} and p′ = p−d(V,{(uv)}) (where (V, {(uv)}) is a graph
having only one edge: note that p′ is symmetric and skew-supermodular). One can
observe that this is indeed the usual notion of splitting-o�: if we introduce a graph
H = (V + s, E) with a new node s, every edge of E incident to s and m(v) parallel
edges between s and v for any v ∈ V , then we are back at the well-known (undirected)
splitting-o� operation (as introduced in Section 8.1 of [9]). If m′(X) ≥ p′(X) holds for
any X ⊆ V , then we say that the splitting o� is (p,m)-admissible. A set X is called
(p,m)-tight, if m(X) = p(X), and it is called (p,m)-dangerous if m(X)−p(X) ≤ 1.
We will only say admissible, tight and dangerous, if p andm are clear from the context.
The following claim is well-known.

Claim 7 (see e.g. [5]). The splitting o� at u and v is admissible if and only if there
is no dangerous set containing both u and v.

Contraction of tight sets is a standard technique in splitting-o� proofs (see for
example [5], where contraction is explained in detail).

Lemma 8 (see e.g. [5]). Let u, v ∈ V with m(u),m(v) > 0. If we contract a tight set
X ⊆ V , then the splitting at u′ and v′ is admissible in the contracted instance if and
only if the splitting at u and v is admissible in the original instance (where u′ (v′) is
the contracted image of u (v, respectively)).

We will also use the following lemma.

Lemma 9 ([5, 20]). Let p : 2V → Z ∪ {−∞} be a symmetric skew-supermodular
function and m ∈ C(p)∩ZV . If max{p(X) : X ⊆ V } > 1, then there is an admissible
splitting-o�.

3 Solution of the edge-connectivity augmentation

problem

In this section we solve the following variants of Problem GTBP. We start with the
minimum cardinality version, in which the number of edges |E| of G is to be
minimized (that is, the minimum cost version with cost function c ≡ 1). Then we
prove a splitting-o� theorem that solves the degree-speci�ed version. Unlike other
edge-connectivity augmentation problems, here the minimum cardinality version of
the problem is easier than the degree-speci�ed version. The splitting-o� theorem gives
rise to the solution of the minimum cost version for node-induced cost function
(that is, we �nd a graph G minimizing

∑
v∈V w(v)dG(v)), given some node-weights

w(v) ≥ 0 for every v ∈ V ).

EGRES Technical Report No. 2013-07



3.1 Notation and the minimum cardinality version 7

3.1 Notation and the minimum cardinality version

Consider Problem GTBP above. We introduce the following notation. For any termi-
nal t ∈ T let dt = min{dG0(X) : X ∩ T = {t}} and we say that X ⊆ V is a t-mincut
(in G0) if dG0(X) = dt and X ∩ T = {t}. We can easily see the following.

Claim 10. The intersection and the union of two t-mincuts are again t-mincuts.

For a terminal t ∈ T let Xt (Yt) denote the inclusionwise minimal (maximal, re-
spectively) t-mincut. By Claim 10, the sets Xt and Yt are well de�ned.

Lemma 11. For two di�erent terminals t, t′ ∈ T we have Xt ∩ Y = ∅, where Y is
an arbitrary t′-mincut (and Xt is de�ned above). Consequently, {Xt : t ∈ T} is a
subpartition of V .

Proof. Assume Xt ∩ Y 6= ∅. Since

dt + dt′ = dG0(Xt) + dG0(Y ) ≥ dG0(Xt − Y ) + dG0(Y −Xt) ≥ dt + dt′ ,

we have dG0(Xt − Y ) = dt, which contradicts the minimality of Xt.

Let us de�ne a set function R : 2V → Z ∪ {−∞} by

R(X) =

{
r(t) if X ∩ T = {t},
−∞ otherwise.

It is clear that a graph G is feasible for Problem GTBP if and only if dG(X) ≥
R(X)− dG0(X) holds for every subset X ⊆ V (i.e., G covers R− dG0).

Claim 12. The function R is skew-supermodular (and then so is the function R−dG0).

Proof. Let X, Y ⊆ V . We can assume that R(X) and R(Y ) are both �nite, otherwise
there is nothing to prove. If X ∩ T = Y ∩ T then (∩∪) holds for R (with equality),
otherwise (−) holds for R (again, with equality). The skew-supermodularity of R
implies the skew-supermodularity of R− dG0 .

Let Rs(X) = max{R(X), R(V −X)} for any X ⊆ V (the symmetrized of R): it
is a symmetric and skew supermodular function by Claim 4. Observe that R(X) =
Rs(X), unless |T−X| = 1. Let �nally p(X) = Rs(X)−dG0(X) for any X ⊆ V (called
the de�ciency function for this instance of Problem GTBP), which is symmetric
and skew-supermodular. Note that G covers R−dG0 if and only if G covers p. Notice
that p(X) = r(t)− dt for any t-mincut X if |T | ≥ 3.
By using these notations, we can solve the minimum cardinality version.

Theorem 13. Suppose that p(Xt1) = maxt∈T p(Xt) for some t1 ∈ T . The minimum
number of edges of a graph G that satis�es the requirements of Problem GTBP is equal
to γ = max{p(Xt1), d12

∑
{p(Xt) : t ∈ T, p(Xt) > 0}e}.

Proof. It is clear from Lemma 11 that γ is a lower bound. On the other hand, let us
�nd an arbitrary loopless graph G on nodeset T such that dG(t) ≥ p(Xt) for every
t ∈ T and |E(G)| = γ. Such a graph exists and satis�es our requirements, since
λG(t, T − t) ≥ p(Xt) for every t ∈ T .
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3.2 Properties of the contrapolymatroid

In this subsection, we show some properties of the contrapolymatroid C(p), where
p = Rs − dG0 is de�ned as in the previous subsection.

Lemma 14. Suppose that p(Xt1) = maxt∈T p(Xt) for some t1 ∈ T . Then, we have
min{1 · x : x ∈ C(p)} = max{p(Xt1) + p(V −Xt1),

∑
{p(Xt) : t ∈ T, p(Xt) > 0}}.

Proof. Clearly, max{p(X) : X ∩ T = {t}} = p(Xt) and max{p(X) : |X ∩
T | = 1} = p(Xt1). Let Z1, Z2, . . . , Zk be a subpartition attaining

∑k
i=1 p(Zi) =

max{
∑

X∈X p(X) : X is a subpartition of V } = min{1 · x : x ∈ C(p)}. By the de�-
nition of the function p, for every i = 1, 2, . . . , k either |T ∩ Zi| = 1, or |T − Zi| = 1.
Assume �rst that there exists an i such that |T − Zi| = 1: say this holds for i = 1.
In this case k ≤ 2 and by the symmetry of p we have p(Z1) = p(Z2), and the best
value we can get for p(Z2) is p(Xt1), that is

∑k
i=1 p(Zi) = p(Xt1) + p(V − Xt1) in

this case. The other case is when |T ∩ Zi| = 1 for every i = 1, 2, . . . , k. In this
case

∑k
i=1 p(Zi) =

∑
{p(Xt) : t ∈ T, p(Xt) > 0}}, using that {Xt : t ∈ T} is a

subpartition.

By observing that p(Xt1) = p(V −Xt1), we have the following as a corollary.

Corollary 15. If min{1 · x : x ∈ C(p)} is odd, then p(Xt′) <
∑
{p(Xt) : t ∈ T −

t′, p(Xt) > 0} for any t′ ∈ T and min{1·x : x ∈ C(p)} =
∑
{p(Xt) : t ∈ T, p(Xt) > 0}.

Membership oracle for C(p). In order to turn our proofs into polynomial algo-
rithms, we describe a membership oracle for C(p), where p = Rs− dG0 . This oracle is
needed in Corollary 6, and in our Splitting-o� Theorem (see Section 3.3); note that
this implies a membership oracle for C(p−dG) for any graph G, since we can add G to
G0. Given some x : V → Z+, we want to decide whether x ∈ C(p) or not. This is done
as follows. Add a new node s to G0 and an edge with multiplicity x(v) between s and
every v ∈ V . Denote the resulting hypergraph by H. We claim that x ∈ C(p) if and
only if λH(t, T − t) ≥ r(t) holds for every t ∈ T , which can be checked with maximum
�ow computations. We prove this claim. If x /∈ C(p) then x(Z) < Rs(Z) − dG0(Z)
for some Z ⊆ V . By the de�nition of the function R, there exists some t ∈ T so that
Z ∩ T = {t} or Z ∩ T = T − {t}: for this t we have λH(t, T − t) < r(t). On the other
hand, if λH(t, T − t) < r(t) for some t ∈ T then dH(Z) < r(t) for some set Z ⊆ V + s
separating t and T − t. We can assume that s /∈ Z and then for this set we have
x(Z) < p(Z).

3.3 The splitting-o� theorem and its consequences

In this section we solve the degree-speci�ed version of Problem GTBP. For an instance
of this problem, recall that p : 2V → Z∪{−∞} is de�ned by p(X) = Rs(X)−dG0(X)
for X ⊆ V . We start with the following splitting-o� result.

Theorem 16. If m ∈ C(p) ∩ ZV is minimal and 0 < m(V ) 6= 3 then there exists an
admissible splitting-o�.
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3.3 The splitting-o� theorem and its consequences 9

Proof. If m(V ) = 1 then m cannot be minimal, if m(V ) = 2 then clearly there exists
an admissible splitting-o�, so we can assume that m(V ) ≥ 4.
If max{p(X) : X ⊆ V } > 1 then there exists an admissible splitting-o� by Lemma

9. So we can assume that p ≤ 1. By Corollary 6, there exists a subpartition X of V
such that X is tight and p(X) > 0 for each X ∈ X . Since p ≤ 1 and m(V ) ≥ 4, we
can assume that there exist tight sets X1, X2, X3, X4 ∈ X with p(Xi) = m(Xi) = 1
(i = 1, 2, 3, 4). Choose an arbitrary x ∈ X1 and y ∈ X2 with m(x) > 0,m(y) > 0, and
assume that the splitting-o� at x and y is not admissible. This means that there exists
a set X containing x, y with m(X) ≤ p(X) + 1. By Lemma 8, we can assume that
Xi = {ti} for i = 1, 2, 3, 4, implying that t1, t2 ∈ X. This implies (by the de�nition of
the function p) that |T −X| = 1, so we can assume that t3 ∈ X holds, too. But then
m(X) ≥ 3, so X cannot be dangerous, since p(X) ≤ 1, a contradiction.

Corollary 17. If m ∈ ZV is a minimal member of C(p), and m(V ) is even then
there exists a graph G with dG(v) = m(v) at every v ∈ V satisfying the requirements
of Problem GTBP.

Proof. Clearly follows from Theorem 16 by induction.

Now we are ready to give a solution of Problem DS-GTBP. If a speci�ed degree
of some vertex is too large compared to other degrees (i.e., m(v) > m(V − v) for
some v ∈ V ), then we need to care about loops. For a node v ∈ V in a graph
G = (V,E) let d+G(v) be dG(v) plus 2 times the number of loops at v, which is
a standard de�nition of the degree of v in a graph with loops. Recall that, for a
hypergraph G0 = (V, E0) and a set T ⊆ V with |T | ≥ 2, X ⊆ V is a t-mincut (in
G0) if dG0(X) = dt := min{dG0(X) : X ∩ T = {t}} and X ∩ T = {t}. The following
theorem gives a solution of Problem DS-GTBP.1

Theorem 18. Assume we are given an instance of Problem DS-GTBP (that is, a
hypergraph G0 = (V, E0), a set of at least two terminals T ⊆ V , requirements r :
T → Z+, and degree-speci�cations m : V → Z+), there exists a solution of this
problem (that is a multigraph G = (V,E) with d+G(v) = m(v) at every v ∈ V and
λG0+G(t, T − t) ≥ r(t) for every t ∈ T ) if and only if

1. m ∈ C(p) ∩ ZV
+, m(V ) is even, and

2. at least one of the following holds:

(a) min{1 · x : x ∈ C(p)} is even, or
(b) there exists a t0 ∈ T such that m(Xt0) > max{p(Xt0), 0}, or
(c) there exist a y ∈ V −

⋃
t∈T Xt and a t0 ∈ T such that m(y) > 0, p(Xt0) > 0,

and any t0-mincut X containing y satis�es m(X) > p(X) + 2.

1 We have to mention that in the SODA version of this paper there was an error: unfortunately
Theorem 3.2 in [6] is not true. The correct splitting-o� statement is given in Theorem 18.
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3.3 The splitting-o� theorem and its consequences 10

Proof. Notice that the intersection of two t0-mincuts is again a t0-mincut, so condition
(2c) can be reformulated as follows: either there is no t0-mincut containing y, or
m(X0) > p(X0) + 2 for the inclusionwise minimal t0-mincut X0 containing y.

Necessity: Assume that the required solution G exists but the conditions are
not met. Clearly, the existence of G implies that m ∈ C(p) and that m(V ) is even,
therefore min{1·x : x ∈ C(p)} is odd, m(Xt) = max{p(Xt), 0} for every t ∈ T , and for
every y ∈ V−

⋃
t∈T Xt and t ∈ T such thatm(y) > 0, p(Xt) > 0, there exists a t-mincut

X containing y such that m(X) ≤ p(X) + 2. We get a contradiction by induction
on the number of edges in G. The base case E(G) = ∅ is obvious, so assume that
E(G) 6= ∅. Since min{1 · x : x ∈ C(p)} is odd and m(Xt) = max{p(Xt), 0} for every
t ∈ T , there exist a t′ ∈ T and a y ∈ V −

⋃
t∈T Xt such that there exists an edge xy in

G for some x ∈ Xt′ . Let X0 be the inclusionwise minimal t′-mincut in G0 containing
y: by our conditions, m(X0) = p(X0)+2 must hold (we use that the splitting-o� at x
and y must be admissible by the existence of G, therefore m(X0) ≤ p(X0) + 1 cannot
be the case).
Consider the following modi�ed instance of Problem DS-GTBP: let G′0 = G0 +

xy, m′ = m − χ{x,y} and every other parameter is as in the original instance (that
is, we start with a splitting-o� at x and y), and let G′ = G − xy. Let p′ be the
de�ciency function for this modi�ed instance (that is, p′ = Rs − dG′0). We show
that the conditions fail for this instance, and G′ is a valid solution for this instance,
leading to a contradiction by induction. Notice that the existence of G′ implies that
m′ ∈ C(p′) ∩ ZV

+ (and clearly, m′(V ) is even). The inclusionwise minimal t′-mincut
in G′0 is X0, and p′(X0) = m′(X0). Furthermore, Xt is the inclusionwise minimal
t-mincut in G′ for every t ∈ T − t′, and p′(Xt) = p(Xt) and m(Xt) = m′(Xt) for every
t ∈ T − t′. This shows that condition (2b) fails also in the obtained instance. In what
follows, we show that conditions (2a) and (2c) fail, respectively.

• Condition (2a). Since p ≥ p′, C(p) ⊆ C(p′), therefore min{1 ·x : x ∈ C(p)} ≥
min{1 · x : x ∈ C(p′)}. On the other hand, by Lemma 14, min{1 · x : x ∈
C(p′)} ≥

∑
{p′(Xt) : t ∈ T − t0, p

′(Xt) > 0} + p′(X0) =
∑
{p(Xt) : t ∈

T, p(Xt) > 0} = min{1 · x : x ∈ C(p)}, therefore equality has to hold here, so
min{1 · x : x ∈ C(p′)} is odd.

• Condition (2c). Let z ∈ V − (X0 ∪
⋃

t∈T−t0 Xt) with m
′(z) > 0.

If Z0 is the smallest t0-mincut containing z in G0, then m(Z0) ≤ p(Z0) + 2,
since the original instance does not satisfy condition (2c). Furthermore, we
have m(X0) = p(X0) + 2, m(X0 ∩ Z0) ≥ m(Xt) = p(Xt), and p(Z0) = p(X0) =
p(Xt). By combining these inequalities, we have m(X0 ∪Z0) ≤ p(Xt)+ 4. Since
X0 ∪ Z0 is a t0-mincut containing z in G′0 and {x, y} ⊆ X0 ∪ Z0, we obtain
m′(X0 ∪ Z0) ≤ p′(X0 ∪ Z0) + 2.

Let t ∈ T − t0 with p′(Xt) = p(Xt) > 0 and let Z be the smallest t-mincut
containing z in G0. Observe that Z is disjoint from X0 (use that dG0(X0) +
dG0(Z) ≥ dG0(X0 − Z) + dG0(Z −X0), and that z ∈ Z −X0). This gives that
m′(Z) = m(Z) ≤ p(Z) + 2 = p′(Z) + 2.
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3.3 The splitting-o� theorem and its consequences 11

By the above arguments, the conditions fail in the obtained instance, which completes
the proof of necessity.

Su�ciency: Assume that the conditions hold. If min{1 · x : x ∈ C(p)} is even
then we are done by Corollary 17, so assume that this is not the case. If there exists
a t0 ∈ T such that m(Xt0) > max{p(Xt0), 0} then we can modify the instance at
hand as follows: we increase r(t0) by max{1, 1 − p(Xt0)} (and we leave every other
parameter unchanged), and we arrive at the previous case for this modi�ed instance.
Finally, if min{1 · x : x ∈ C(p)} is odd and m(Xt) = max{p(Xt), 0} for every t ∈ T
then, by Condition (2c), there exists a y ∈ V −

⋃
t∈T Xt and a t0 ∈ T such that

m(y) > 0, p(Xt0) > 0 and any t0-mincut X containing y satis�es m(X) > p(X) + 2.
Choose an arbitrary x ∈ Xt0 with m(x) > 0 and consider the following modi�ed
instance of Problem DS-GTBP: let G′0 = G0 + xy, m′ = m − χ{x,y} and every other
parameter is as in the original instance (that is, we start with a splitting-o� at x and
y). Let p′ be the de�ciency function for this modi�ed instance.

Claim 19. This is an admissible splitting-o�, that is m′ ∈ C(p′).

Proof. Assume indirectly that there exists a set X ⊆ V with x, y ∈ X and m(X) ≤
p(X) + 1. By Lemma 8, we can assume that Xt = {t} is a singleton for every t ∈ T .
Since X contains t0, we have either T −X = {t′} for some t′ ∈ T − t0 or X ∩T = {t0}
by the de�nition of p.
First, suppose that T −X = {t′} for some t′ ∈ T . Since p(X) = r(t′)− dG0(X) ≤

p(Xt′) and m(X) ≥
∑
{m(Xt) : t ∈ T − t′} + 1 =

∑
{p(Xt) : t ∈ T − t′, p(Xt) >

0}+1 > p(Xt′) + 1, where the last inequality follows from Corollary 15, X cannot be
dangerous.
Second, suppose that X ∩ T = {t0}, which implies that p(X) = r(t0) − dG0(X) ≤

p(Xt0). Since m(X) ≥ m(Xt0) + 1 = p(Xt0) + 1 ≥ p(X) + 1, the only way X can
be dangerous is that X is a t0-mincut in G0 containing y with m(X) = p(X) + 1,
contradicting condition (2c).

We now �nish the proof of the su�ciency by distinguishing the following two cases.

• Case 1. There exists no t0-mincut in G0 containing y. In this case, Xt0 is a
t0-mincut in G′0 and min{1 ·x : x ∈ C(p′)} is even, so we are done by induction.

• Case 2. There exists a t0-mincut in G0 containing y: let X0 be the inclusionwise
minimal t0-mincut in G0 containing y. In this case the inclusionwise minimal
t0-mincut in G′0 is X0 and m′(X0) = m(X0) − 2 > p(X0) = p′(X0) > 0 by our
conditions, so we are again done by induction.

By using this theorem, we can solve Problem MC-GTBP in polynomial time if
the weight function is node-induced. Recall that Yt is de�ned as the inclusionwise
maximal vertex set with Yt ∩ T = {t} and dG0(Yt) = dt.

Theorem 20. Given Problem GTBP and node weights w(v) for every node v ∈ V ,
we can �nd a solution G minimizing

∑
v∈V w(v)dG(v) in polynomial time.
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Proof. By Corollary 6, we can �nd a vector m ∈ C(p) ∩ ZV
+ minimizing∑

v∈V w(v)m(v). If m(V ) is even, then there is an optimal solution G with dG = m by
Theorem 18. Otherwise, by the conditions (2b) and (2c) of Theorem 18, there exists
an optimal solution G of the problem such that either

• there exists v ∈
⋃

t∈T Xt such that dG = m+ χv,

• there exists v ∈ V − Yt for some t ∈ T with p(Xt) > 0 such that dG = m + χv,
or

• there exists v ∈ Yt−Xt for some t ∈ T with p(Xt) > 0 such that dG = m+3χv.

Note that the �rst case corresponds to the condition (2b) and the second and third
cases correspond to the condition (2c). With this observation, when m(V ) is odd, we
can solve the problem by the following algorithm. Let V1 =

⋂
{Yt : t ∈ T, p(Yt) > 0}.

Note that there exist at least two terminals t ∈ T with p(Yt) > 0, since m(V ) is odd,
therefore V1∩Xt = ∅ for every t ∈ T (that is, V −V1 = (

⋃
t∈T Xt)∪ (

⋃
t∈T,p(Xt)>0(V −

Yt))). Let x be the vertex in V − V1 with the smallest weight, and let y be the vertex
in V1 with the smallest weight. De�ne m′ ∈ ZV

+ by m′ := m+χx if w(x) ≤ 3w(y) and
m′ := m+3χy otherwise. By Theorem 18, we can �nd a graph G with dG(v) = m′(v)
at every v ∈ V satisfying the requirements of Problem GTBP, which is a desired
graph.

We mention the following related result. In our problem setting (Problem 1) we
insist that G has to be a graph. If we allow hyperedges in G then we arrive at a
di�erent problem, but it is not clear how to choose the objective function. A natural
candidate is to minimize the total size of G (where the total size of a hypergraph is
the sum of the sizes of its hyperedges: note that this is twice the number of edges, if
the hypergraph is in fact a graph). A more general version would consider a node-
induced cost function, as in Theorem 20: given node weights w(v) for every node
v ∈ V , the cost of choosing a hyperedge is the sum of the weights of the nodes
contained in that hyperedge. This general problem is solved by Szigeti in [23], as
it is contained in the framework of covering a skew-supermodular function by
hyperedges.

4 Solution of the survivable network design problem

In this section we solve the minimum cost version of Problem GTBP in the special
case when G0 is the empty graph. Let us formulate this problem separately.

Problem 21. What is the minimum cost of a multigraph G = (V,E) such that
λG(t, T − t) ≥ r(t) for any t ∈ T , given a terminal set T ⊆ V (|T | ≥ 2), a re-
quirement r(t) ∈ Z+ for every t ∈ T , and a cost c(uv) ≥ 0 for every pair u, v ∈ V .

We observe that Problem 21 is polynomially solvable if T = V , because now the
question is to �nd a smallest cost multigraph G = (V,E) so that the degree dG(v)
of each node v is at least r(v). This is a minimum-cost b-edge cover problem with
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4.1 Reduction of Problem 21 to the Simplex b-Edge-Cover Problem 13

b = r (which is equivalent to the maximum-weight b-matching problem with a simple
reduction, see [22, Section 34.4]).
We also note that the special case r ≡ 1 of Problem 21 is known as the Terminal

Backup Problem, and is shown to be polynomially solvable in [1]. It seems that the
methods of [1] also apply to the case when G0 is not an empty graph (and r(t) = 1
for every t ∈ T ), but the details need to be clari�ed.
The solution for the Terminal Backup Problem in [1] is based on a polynomial

time algorithm for the Simplex Matching Problem. To formulate this problem
let us give some de�nitions. A hypergraph that only has hyperedges of size 2 and 3
is called a 2-3 hypergraph. A perfect matching in a hypergraph H = (U, E) is
a subset of hyperedges F ⊆ E so that each node is contained in exactly one member
of F . In an instance of the Simplex Matching Problem we are given a simple 2-3
hypergraph H = (U, E) with edge costs γ : E → R+, and the objective is to �nd a
perfect matching of H with minimum total cost. Since this problem is NP-hard in
general, we consider instances with the simplex condition, which states that for any
hyperedge {u1, u2, u3} ∈ E of size 3, {u1, u2}, {u2, u3}, {u3, u1} ∈ E and

γ({u1, u2}) + γ({u2, u3}) + γ({u3, u1}) ≤ 2γ({u1, u2, u3}).

To simplify the terminology, the Simplex Matching Problem is meant as a problem
with the simplex condition. The main theorem in [1] is as follows.

Theorem 22 (Anshelevich and Karagiozova [1], see also [21]). There is a polynomial
time algorithm for the Simplex Matching Problem.

In this paper we consider and solve the following generalization of the Simplex
Matching Problem that we call the Simplex b-Edge-Cover Problem.

Problem 23. Let H = (T, E) be a simple 2-3 hypergraph, let γ : E → R+ be a cost
function satisfying the simplex condition, and let b(t) ∈ Z+ be a requirement for t ∈ T .
Find a minimum cost multihypergraph H ′ = (T,F) such that F is a multiset of E and
dH′(t) ≥ b(t) for any t ∈ T .

4.1 Reduction of Problem 21 to the Simplex b-Edge-Cover
Problem

In this section, we show how to reduce Problem 21 to the simplex b-edge-cover prob-
lem. We start with the following lemma which will be used in solving the survivable
network design problem in the next section. This lemma is a variant of Theorem 2
and we think that it is of independent interest. Given a graph G = (V,E) and some
T ⊆ V , a T -path is a path P ⊆ E so that its endpoints are distinct nodes of T .
Similarly, a T -3-tree is a tree P ⊆ E that does not necessarily span V , has exactly
3 leaves, these leaves are all in T , and P is not incident with other nodes in T . The
unique node with degree 3 in a T -3-tree is called the hub-node of the T -3-tree: by
the previous de�nition, this node is not in T .
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4.1 Reduction of Problem 21 to the Simplex b-Edge-Cover Problem 14

Lemma 24. Given a graph G = (V,E) and a set T ⊆ V , we can �nd in polynomial
time a set F of mutually edge-disjoint T -paths and T -3-trees so that each t ∈ T is
incident with λG(t, T − t) members of F and each v ∈ V − T is the hub node of at
most one T -3-tree in F .

Proof. If there is an edge e in G so that

λG′(t, T − t) = λG(t, T − t) for every t ∈ T (1)

holds for G′ = G− e, then the proof is ready by induction. Similarly, if there exist a
pair of edges vx, vy incident to some node v ∈ V − T so that (1) holds for the graph
G′ = (V,E − {vx, vy} + {xy}) that we obtain after splitting o� the pair vx, vy then
the proof is ready by induction. So assume that neither a removable edge, nor an
admissible splitting-o� exists. For every v ∈ V − T , by applying Theorem 16 for the
graph G − v, in which m(x) = dG(x, v) for every x ∈ V − v and r(t) = λG(t, T − t)
for every t ∈ T , we have dG(v) ∈ {0, 3}.
We claim that there is no edge between two vertices u, v ∈ V −T : this claim clearly

�nishes the induction. Assume indirectly that uv is such an edge, so dG(u) = dG(v) =
3. Consider an instance of Problem DS-GTBP de�ned by the graph G0 = G − u,
m(x) = dG(x, u) for every x ∈ V − u, and r(t) = λG(t, T − t) for every t ∈ T , and
let p be the de�ciency function de�ned by this instance. By Lemma 14 (applied for
this instance), we get that there exists a set X0 ⊆ V − u such that v ∈ X0, X0 ∩ T =
{t0} for some t0 ∈ T , and dG(X0) = λG(t0, T − t0) (the (p,m)-tight set containing
v). Now consider the following instance of Problem DS-GTBP. Let G′0 = G − v,
m′(x) = dG(x, v) for every x ∈ V − v, and r(t) = λG(t, T − t) for every t ∈ T . Let
p′ be de�ciency function de�ned by this instance: since there is no (p′,m′)-admissible
splitting-o�, p′ ≤ 1 by Lemma 9. This together with dG(V − X0) = λG(t0, T − t0)
implies that m′(V − X0) = p′(V − X0) = 1 (that is, the only G-neighbour of v in
V − X0 is u). By our assumptions, m′(V − v) = 3, so let m′(x1) = m′(x2) = 1 for
some distinct x1, x2 /∈ V −X0 , and let Xi be the smallest (p′,m′)-tight sets containing
xi for i = 1, 2. Note that V − X0, X1, X2 are mutually disjoint, contradicting that
(V −X0) ∩ T = T − {t0} and |Xi ∩ T | ≥ 1 for i = 1, 2.

We note that another proof of this lemma is given in the conference version [6,
Lemma 4.2]. We also note that we will not utilize below the fact that every node of
V − T is the hub-node of at most one T -3-tree in the decomposition given by Lemma
24. Now we show the reduction of Problem 21 to the simplex b-edge-cover problem.

Lemma 25. We can reduce Problem 21 to the simplex b-edge-cover problem (Problem
23) in polynomial time.

Proof. For a given instance I of Problem 21, de�ne the family E =
(
T
2

)
∪
(
T
3

)
⊆ 2T ,

where
(
T
2

)
= {{t1, t2} | t1, t2 ∈ T, t1 6= t2}, and

(
T
3

)
= {{t1, t2, t3} | t1, t2, t3 ∈ T, t1 6=

t2 6= t3 6= t1}, let b = r, and let γ : E → R+ be the cost function such that γ({t1, t2}) is
the minimum cost of a t1-t2 path (with respect to the cost function c) and γ({t1, t2, t3})
is the minimum cost of a Steiner tree spanning t1, t2 and t3 (with respect to the cost
function c). Since a minimum cost Steiner tree spanning t1, t2 and t3 consists of (at
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4.2 Pseudo-polynomial time algorithm 15

most) three paths each connecting a hub vertex v ∈ V and each ti, it can be computed
in polynomial time by guessing the hub vertex v and using a shortest path algorithm.
The family E and the cost function γ de�ne an instance I ′ of the simplex b-edge-cover
problem (note that the simplex condition naturally holds).
Clearly, any solution of instance I ′ of the simplex b-edge-cover problem gives rise

to a solution of instance I of Problem 21 with the same cost. On the other hand, if
we have a solution of instance I of Problem 21, then by Lemma 24 it de�nes edge-
disjoint T -paths and T -3-trees: substitute each T -path with a minimum c-cost T -path
between the same nodes, and substitute each T -3-tree with a minimum c-cost Steiner
tree with the same leaves. This way we obtain a solution of instance I ′ of the simplex
b-edge-cover problem with γ-cost not higher than the c-cost of the solution instance I
of Problem 21 that we started with. This relation �nishes the proof of this lemma.

We note that the corresponding result is given in [26] for the special case r ≡ 1.
In the rest of the paper we give a polynomial time algorithm for the simplex b-

edge-cover problem. This will be done in two steps: in Section 4.2 we obtain a
pseudo-polynomial time algorithm, and based on this algorithm we show in Section
4.3 how to obtain a strongly polynomial time algorithm.

4.2 Pseudo-polynomial time algorithm

Suppose that we are given an instance of the simplex b-edge-cover problem (Problem
23) consisting of a simple 2-3 hypergraphH = (T, E), requirement b : T → Z+ and cost
γ : E → R+. Let us introduce the notation B =

∑
t∈T b(t). Our pseudo-polynomial

time algorithm for this problem is as follows.

Pseudo-polynomial time algorithm for Problem 23

Step 1 Construct a Simplex Matching Problem instance consisting of the simple 2-3
hypergraph (T+, E+ ∪ E0) and costs as follows.

Step 1-1 The ground set is T+ = {t(1), t(2), . . . , t(B+2) : t ∈ T}, that is we
introduce B + 2 copies of each node of T .

Step 1-2 The hyperedges in E+ and their costs are the following. For each

{t1, t2} ∈ E , add edges {t(i)1 , t
(j)
2 } with cost γ({t1, t2}) for all i, j ∈

{1, 2, . . . , B+2}. Similarly, for each {t1, t2, t3} ∈ E , add edges {t(i)1 , t
(j)
2 , t

(k)
3 }

with cost γ({t1, t2, t3}) for all i, j, k ∈ {1, 2, . . . , B + 2}.
Step 1-3 The hyperedges in E0 and their costs are the following. For each

t ∈ T , add edges {t(i), t(j)} with cost 0 for b(t) + 1 ≤ i < j ≤ B + 2, and
add edges {t(i), t(j), t(k)} with cost 0 for b(t) + 1 ≤ i < j < k ≤ B + 2.

Step 2 Solve the obtained Simplex Matching Problem instance using Theorem 22.
Then, from the optimal solution of the Simplex Matching Problem, we can con-
struct a solution of Problem 23 by ignoring the hyperedges in E0 and contracting
t(1), t(2), . . . , t(B+2) to a single vertex for each t ∈ T .
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4.3 Strongly polynomial time algorithm 16

Before proving the correctness of this algorithm, we give a small claim on the
optimal solutions of the simplex b-edge-cover problem.

Claim 26. Problem 23 always has an optimal solution H ′ = (T,F) such that dH′(t) ∈
{b(t), b(t) + 1, . . . , B} for any t ∈ T , where B =

∑
t∈T b(t).

Proof. It su�ces to show that any minimal solution H ′ = (T,F) of Problem 23
satis�es that |F| ≤ B. De�ne Ftight := {e ∈ F : there exists t ∈ T such that
dH′(t) = b(t) and e enters t}. By the minimality of F , we have F = Ftight. Therefore,
we have

|F| = |Ftight| ≤
∑

t∈T : dH′ (t)=b(t)

dH′(t) ≤
∑
t∈T

b(t) = B.

Now we are ready to prove the following theorem, which will be improved in Sec-
tion 4.3.

Theorem 27. Our algorithm solves the simplex b-edge-cover problem (Problem 23)
in polynomial time in |T | and B =

∑
t∈T b(t). Furthermore, we can solve Problem 21

in polynomial time in |V | and R =
∑

t∈T r(t).

Proof. We show the optimality of the output of our algorithm. Without the set of
hyperedges E0 added in Step 1-3 in our algorithm, Step 2 would �nd a minimum cost
multihypergraph H ′ = (T,F) such that F is a multiset of E and dH′(t) = B + 2 for
any t ∈ T . By using edges in E0, we can cover k vertices in t(b(t)+1), t(b(t)+2), . . . , t(B+2),
where k can be 0, 2, 3, 4, . . . , B + 2 − b(t) (note that we cannot cover exactly one
vertex with a zero cost hyperedge). Therefore, in Step 2 of our algorithm, we ob-
tain a minimum cost multihypergraph H ′ = (T,F) such that F is a multiset of E
and dH′(t) ∈ {b(t), b(t) + 1, . . . , B} for any t ∈ T , which is an optimal solution of
Problem 23 by the above argument and Claim 26. We note that since we introduced
B +2 vertices for each vertex u ∈ T in Step 1-1, the running time of our algorithm is
polynomial in |T | and B =

∑
t∈T b(t).

Finally, by Lemma 25, the above algorithm solves Problem 21 in polynomial time
in |V | and R =

∑
t∈T r(t).

Note that in the SODA version [6] of this paper we have shown the following
strengthening of Claim 26: if an instance of the simplex b-edge-cover problem is
obtained from an instance of Problem 21 using Lemma 25, then it has an optimal
solution H ′ = (T,F) such that dH′(t) ≤ max{r(t) : t ∈ T}. This observation re-
duces the running time of the algorithm when used for solving Problem 21: just use
max{r(t) : t ∈ T} in the algorithm instead of R =

∑
t∈T r(t).

4.3 Strongly polynomial time algorithm

In this subsection, we improve the running time of Theorem 27 to strongly polynomial
time.
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Let H = (T, E) be a simple 2-3 hypergraph and let E2 and E3 be the sets of hyper-
edges in E of sizes 2 and 3, respectively. A multihypergraph H ′ = (T,F), where F
is a multiset of E , is represented by a pair (x, y) with x ∈ ZE2+ and y ∈ ZE3+ , where
x(e) is the multiplicity of e ∈ E2 contained in F and y(e) is the multiplicity of e ∈ E3
contained in F . The cost of (x, y) is denoted by

γ(x, y) :=
∑
e∈E2

x(e)γ(e) +
∑
e∈E3

y(e)γ(e).

For t ∈ T , de�ne dx(t) :=
∑
{x(e) | e ∈ E2, t ∈ e} and dy(t) :=

∑
{y(e) | e ∈

E3, t ∈ e}.
We �rst show that there exists an optimal solution of the simplex b-edge-cover

problem that contains not so many hyperedges of size 3.

Lemma 28. There exists an optimal solution (x∗, y∗) of the simplex b-edge-cover
problem (Problem 23) such that dy∗(t) ≤ 1 for any t ∈ T .

Proof. Let (x∗, y∗) be an optimal solution of the simplex b-edge-cover problem that
minimizes ‖y∗‖1, i.e., it contains a minimum number of hyperedges of size 3. In what
follows, we show that dy∗(t) ≤ 1 for any t ∈ T .
Assume that y∗(e) ≥ 2 for some e = {u1, u2, u3}. By decreasing y∗(e) by two and

increasing x∗({u1, u2}), x∗({u2, u3}), and x∗({u3, u1}) by one, we obtain a feasible
solution of the problem. Furthermore, since the total cost is not increased by the
simplex condition, the obtained solution is also an optimal solution, which contradicts
that (x∗, y∗) is an optimal solution minimizing ‖y∗‖1.
Assume that y∗({u1, u2, u3}) ≥ 1 and y∗({u1, u2, u4}) ≥ 1 for distinct u1, u2, u3 and

u4. Let (x1, y1) and (x2, y2) be feasible solutions of the problem such that

• (x1, y1) is obtained from (x∗, y∗) by replacing {u1, u2, u3} and {u1, u2, u4} with
{u1, u2}, {u1, u3}, and {u2, u4}, and

• (x2, y2) is obtained from (x∗, y∗) by replacing {u1, u2, u3} and {u1, u2, u4} with
{u1, u2}, {u1, u4}, and {u2, u3}.

Since

2γ({u1, u2, u3}) + 2γ({u1, u2, u4})
≥ 2γ({u1, u2}) + γ({u1, u3}) + γ({u1, u4}) + γ({u2, u3}) + γ({u2, u4})

by the simplex condition, we have

2γ(x∗, y∗) ≥ γ(x1, y1) + γ(x2, y2),

which implies that γ(x∗, y∗) = γ(x1, y1) = γ(x2, y2) by the optimality of (x∗, y∗). This
contradicts that (x∗, y∗) is an optimal solution minimizing ‖y∗‖1.
Assume that y∗({u1, u2, u3}) ≥ 1 and y∗({u1, u4, u5}) ≥ 1 for distinct u1, u2, u3, u4

and u5. Let (x1, y1) and (x2, y2) be feasible solutions of the problem such that
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• (x1, y1) is obtained from (x∗, y∗) by replacing {u1, u2, u3} and {u1, u4, u5} with
{u1, u2}, {u1, u3}, and {u4, u5}, and

• (x2, y2) is obtained from (x∗, y∗) by replacing {u1, u2, u3} and {u1, u4, u5} with
{u1, u4}, {u1, u5}, and {u2, u3}.

Since

2γ({u1, u2, u3}) + 2γ({u1, u4, u5})
≥ γ({u1, u2}) + γ({u1, u3}) + γ({u4, u5}) + γ({u1, u4}) + γ({u1, u5}) + γ({u2, u3})

by the simplex condition, we have

2γ(x∗, y∗) ≥ γ(x1, y1) + γ(x2, y2),

which implies that γ(x∗, y∗) = γ(x1, y1) = γ(x2, y2) by the optimality of (x∗, y∗). This
contradicts that (x∗, y∗) is an optimal solution minimizing ‖y∗‖1.
Therefore, any two hyperedges of size 3 do not contain a common vertex, that is,

dy∗(t) ≤ 1 for any t ∈ T .

Let (x∗, y∗) be an optimal solution of the simplex b-edge-cover problem such that
dy∗(t) ≤ 1 for any t ∈ T as in Lemma 28. Let b∗ ∈ ZT

+ be the vector de�ned by
b∗(t) = min{dx∗(t), b(t)} for t ∈ T . Then, we can see that b ≥ b∗ ≥ b − 1, where
1 ∈ ZT is the all 1's vector, and x∗ is a minimum cost b∗-edge-cover (in the graph
(T, E2)) by the optimality of (x∗, y∗). Here, for a graph G = (V,E) and a vector
b ∈ ZV

+, we say that z ∈ ZE
+ is a b-edge-cover if

∑
e: v∈e z(e) ≥ b(v) for any v ∈ V .

Since there exists a strongly polynomial time algorithm that computes a b-edge-
cover with minimum total cost (see e.g. [22, Chapter 34]), we would like to utilize
it to compute a minimum cost b∗-edge-cover x∗. However, since b∗ is not known in
advance, we cannot compute x∗ directly. Our idea is to use a minimum cost b-edge-
cover, which can be computed in strongly polynomial time, instead of the minimum
cost b∗-edge-cover x∗. The following lemma guarantees that the minimum cost b-edge-
cover is close to x∗ to some extent (for a vector p ∈ RA let ‖p‖∞ = maxa∈A |p(a)| and
‖p‖1 =

∑
a∈A |p(a)|).

Lemma 29 (see [22, Lemma 31.4β]). Let G = (V,E), let b, b′ ∈ ZV
+ and let c : E →

R+ be a cost function. Then, for any minimum cost b-edge-cover z ∈ ZE, there exists
a minimum cost b′-edge-cover z′ ∈ ZE satisfying that ‖z − z′‖∞ ≤ 2‖b− b′‖1.

Note that this lemma is stated in terms of a maximum weight b-matching in [22,
Lemma 31.4β]. Since the minimum cost b-edge-cover problem and the maximum
weight b-matching problem are equivalent by considering the complement, we can see
that Lemma 29 is equivalent to [22, Lemma 31.4β]. To make the paper self-contained,
we give a sketch of the proof of Lemma 29.

Proof Sketch of Lemma 29. It su�ces to consider the case when ‖b − b′‖1 = 1. By
symmetry, we may assume that there exists a vertex u ∈ V such that b′(u) = b(u)+ 1
and b′(v) = b(v) for v ∈ V \ {u}. Let z ∈ ZE be a minimum cost b-edge-cover, let
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z1 ∈ ZE be a minimum cost b′-edge-cover, and suppose that z is not a b′-edge-cover.
By a standard alternating path argument, we can �nd a walk P = (v0, e1, v1, . . . , el, vl)
such that

1. v0 = u, z1(ei) > z(ei) if i is odd, and z1(ei) < z(ei) if i is even,

2. each edge e is traversed at most min{|z1(e)− z(e)|, 2} times, and

3.
∑

e: vl∈e z1(e) <
∑

e: vl∈e z(e) if l is even, and
∑

e: vl∈e z1(e) >
∑

e: vl∈e z(e) if l is
odd (if vl = v0 and l is odd, then

∑
e: vl∈e z1(e) ≥

∑
e: vl∈e z(e) + 2).

Let zP ∈ ZE be the vector de�ned by

zP (e) :=


|{i : ei = e}| if z1(e) > z(e),

−|{i : ei = e}| if z1(e) < z(e),

0 otherwise.

Then, z + zP is a b′-edge-cover, z1 − zP is a b-edge-cover, and ‖zP‖∞ ≤ 2. Since z is
a minimum cost b-edge-cover, we have c · z ≤ c · (z1 − zP ), and hence c · (z + zP ) ≤
c · z1. This shows that z′ := z + zP is a minimum cost b′-edge-cover satisfying that
‖z′ − z‖∞ = ‖zP‖∞ ≤ 2.

We now describe our strongly-polynomial time algorithm for the simplex b-edge-
cover problem (Problem 23).

Strongly-polynomial time algorithm for Problem 23

Step 1 Let x0 ∈ ZE2+ be a minimum γ-cost b-edge-cover in the graph (T, E2), which
can be computed in strongly polynomial time.

Step 2 De�ne x1 ∈ ZE2+ by x1(e) = max{x0(e)− 2|T |, 0} for e ∈ E2.

Step 3 Let (x2, y2) ∈ ZE2+ × ZE3+ be a minimum cost pair such that dx2(t) + dy2(t) ≥
max{b(t)− dx1(t), 0} for any t ∈ T .

Step 4 Output (x1 + x2, y2).

Theorem 30. Our algorithm solves Problem 23 in strongly polynomial time.

Proof. Let (x∗, y∗) be an optimal solution of the simplex b-edge-cover problem such
that dy∗(t) ≤ 1 for any t ∈ T as in Lemma 28. Let b∗ ∈ ZT

+ be the vector de�ned by
b∗(t) = min{dx∗(t), b(t)} for t ∈ T . As noted earlier, b ≥ b∗ ≥ b − 1, where 1 ∈ ZT

is the all 1's vector, and x∗ is a minimum cost b∗-edge-cover (in the graph (T, E2)) by
the optimality of (x∗, y∗). By Lemma 29, there exists a minimum cost b∗-edge-cover
x∗∗ (which might coincide with x∗) such that

‖x0 − x∗∗‖∞ ≤ 2‖b− b∗‖1 ≤ 2|T |.

By the above inequality, it holds that x∗∗ ≥ x1 ≥ 0.
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Obviously, (x1 + x2, y2) is a feasible solution of the simplex b-edge-cover problem.
Since (x, y) = (x∗∗ − x1, y

∗) satis�es that dx(t) + dy(t) ≥ max{b(t) − dx1(t), 0} for
any t ∈ T , it holds that γ(x2, y2) ≤ γ(x∗∗ − x1, y∗) by the choice of (x2, y2). Hence,
we have γ(x1 + x2, y2) ≤ γ(x∗∗, y∗) = γ(x∗, y∗), which means that (x1 + x2, y2) is an
optimal solution of the problem.
The only thing left is to show is that Step 3 can be implemented in strongly poly-

nomial time. We use our pseudo-polynomial time algorithm for the problem and note
that it runs in polynomial time in |T | and

∑
t∈T (b(t)− dx1(t)) by Theorem 27. Since

b(t)− dx1(t) ≤ dx0(t)− dx1(t) ≤ (|T | − 1)‖x0 − x1‖∞ ≤ 2|T |2

for any t ∈ T , the running time of this part is indeed polynomial in |T |.

By Lemma 25, we have the following as a corollary.

Corollary 31. Problem 21 can be solved in strongly polynomial time.

5 Concluding remarks

Note that in Problem GTBP we allow an arbitrary number of parallel copies of any
edge in G, therefore our problem is an uncapacitated network design problem.
A natural capacitated extension of our problem would be the following (we only
formulate the minimum cost version here).

Problem 32. In the minimum cost version of Problem 1, �nd a graph G = (V,E)
also satisfying that the number of parallel copies of an edge e ∈ E is at most some
capacity cap(e) ∈ Z+, that is given in advance.

This problem can also be seen as a minimum cost subgraph problem by intro-
ducing a supply graph with edge-multiplicities cap(uv) for every u, v ∈ V . Note that
Problem 1 is the special case of this problem by setting cap(uv) =

∑
t∈T r(t) for every

pair u, v ∈ V . We could not extend our results to Problem 32. The problem is open
even if G0 is the empty graph. Note that Jain's framework implies a 2-approximation
algorithm for this problem in the case when the capacities do not exceed some �xed
constant (that is not part of the input).
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