Egerváry Research Group on Combinatorial Optimization

Technical ReportS

TR-2012-21. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres. ISSN 1587-4451.

On minimally k-rigid graphs

Viktória E. Kaszanitzky and Csaba Király

On minimally k-rigid graphs

Viktória E. Kaszanitzky * and Csaba Király ${ }^{\star \star}$

Abstract

A graph $G=(V, E)$ is called k-rigid in \mathbb{R}^{d} if $|V| \geq k+1$ and after deleting at most $k-1$ arbitrary vertices the resulting graph is generically rigid in \mathbb{R}^{d}. A k-rigid graph G is called minimally k-rigid if the omission of an arbitrary edge results in a graph that is not k-rigid. It was shown in [7] that the smallest possible number of edges is $2|V|-1$ in a 2 -rigid graph in \mathbb{R}^{2}. We generalize this result, provide an upper bound for the number of edges of minimally 2 -rigid graphs (for any d) and give examples for minimally k-rigid graphs in higher dimensions.

1 Introduction

A graph $G=(V, E)$ is called k-rigid in \mathbb{R}^{d} or shortly $[k, d]$-rigid if $|V| \geq k+1$ and for any $U \subseteq V$ with $|U| \leq k-1$ graph $G-U$ is generically rigid in \mathbb{R}^{d}. In this context we will call graphs that are rigid in $\mathbb{R}^{\mathrm{d}}[1, d]$-rigid. Every $[k, d]$-rigid graph is $[l, d]$-rigid by definition for $1 \leq l \leq k$. We remark that G is $[k, d]$-rigid if and only if the deletion of $k-1$ arbitrary vertices results in a graph that is generically rigid in \mathbb{R}^{d}.
G is called minimally $[k, d]$-rigid if it is $[k, d]$-rigid but $G-e$ fails to be $[k, d]$-rigid for every $e \in E . G$ is said to be strongly minimally $[k, d]$-rigid if it is minimally $[k, d]$ rigid and there is no minimally $[k, d]$-rigid graph with $|V|$ vertices and less than $|E|$ edges. If G is minimally $[k, d]$-rigid but not strongly minimally $[k, d]$-rigid then it is called weakly minimally $[k, d]$-rigid. Investigating the properties of $[k, d]$-rigid graphs is motivated by industrial applications, see [6, 8].

The following theorem gives a formula for the edge number of minimally rigid graphs.

Theorem 1.1 ([13]). Let $G=(V, E)$ be minimally rigid in \mathbb{R}^{d}. If $|V| \geq d+1$ then $|E|=d|V|-\binom{d+1}{2}$.

A natural question to ask is whether there is a similar formula for the edge number of minimally $[k, d]$-rigid graphs for $k \geq 2$. The answer is no (see Section 6.1), there

[^0]are minimally $[k, d]$-rigid graphs for $k \geq 2$ with different edge numbers, that is, the set of weakly minimally $[k, d]$-rigid graphs is not empty if $k \geq 2$.

To see a simple example consider the case $d=1$. It is well known that G is rigid in \mathbb{R}^{1} if and only if G is connected. Hence G is minimally $[k, 1]$-rigid if and only if it is minimally k-connected. Since there are k-connected graphs with the same number of vertices and different number of edges for $k \geq 2$, weakly minimally [$k, 1]$-rigid graphs exist for every $k \geq 2$.

It was shown in [7] that the smallest possible number of edges in a [2, 2]-rigid graph is $2|V|-1$. Later lower bounds were provided for the edge number of minimally $[k, d]$-rigid graphs in [6, 8, 9$]$ for some other values of $[k, d]$.

The main result of the present paper is a lower bound for the number of edges of $[k, d]$-rigid graphs for every pair $[k, d]$ which is sharp for some values of k and d. We show that weakly minimally $[k, d]$-rigid graphs exist for every pair $[k, d]$. We also provide an upper bound for the number of edges of minimally $[k, d]$-rigid graphs for $k=2$.

1.1 Notation

In this paper we use the basic definitions and theorems of rigidity theory. All of the non-introduced definitions and non-proved statements can be found in the book of Graver et al. [3]. $\mathcal{R}_{d}(G)$ denotes the d-dimensional generic rigidity matroid of G.

We shall also use some standard notation from graph theory. $\Delta(G)$ denotes the maximum degree in $G . K_{n}$ is the complete graph with n vertices. C_{n} denotes the cycle on n vertices. We will use the notation $V\left(C_{n}\right)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E\left(C_{n}\right)=$ $\left\{v_{i} v_{i+1}: 1 \leq i \leq n\right\}$ where $v_{n+1}:=v_{1} . C_{n}^{d}$ is the d th power of C_{n}, or equivalently $E\left(C_{n}^{d}\right)=\left\{v_{i} v_{j}: i-d \leq j \leq i+d\right\}$ where $v_{n+i}:=v_{i} . P_{n}$ denotes the path on n vertices. We will use the notation $V\left(P_{n}\right)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E\left(P_{n}\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$. P_{n}^{d} is the d th power of P_{n}, or equivalently $E\left(P_{n}^{d}\right)=\left\{v_{i} v_{j}: \min \{1, i-d\} \leq j \leq\right.$ $\max \{n, i+d\}$.

2 Operations preserving rigidity

Constructive characterizations are useful tools in combinatorial rigidity. Even though we do not have a constructive characterization theorem for the class of rigid graphs for $d \geq 3$ it can be very useful to find operations that preserve rigidity. In this section we mention some of these operations.

The d-dimensional Henneberg-0 extension on G adds a new vertex and connects it to d distinct vertices of G. The d-dimensional Henneberg-1 extension deletes an edge $u w \in E$, adds a new vertex v and connects it to u, v and $d-1$ other vertices of G. The d-dimensional Henneberg-0 extension is also called d-valent vertex addition.

Theorem 2.1 ([10]). If G is rigid in \mathbb{R}^{d} and G^{\prime} is the graph that we get from G by a d-dimensional Henneberg-0 or Henneberg-1 extension then G^{\prime} is rigid in \mathbb{R}^{d}.

As d-dimensional Henneberg extensions are used when we are in \mathbb{R}^{d}, we will simply call them Henneberg extensions if d is clear from context. For $d=2$ the following stronger statement holds:
Theorem 2.2 ([10]). G is minimally rigid in \mathbb{R}^{2} if and only if it can be built up from the graph K_{2} by a sequence of Henneberg-0 and Henneberg-1 extension.

If $G=(V, E)$ is minimally rigid in \mathbb{R}^{3} then $|E|=3|V|-6$ by Theorem 1.1. Hence a minimally rigid graph in \mathbb{R}^{3} does not necessarily have a vertex with degree 3 or 4 . Thus for proving a 3-dimensional version of Theorem 2.2 one would need an operation that results in adding a vertex with degree 5 . One such operation is the 3-dimensional X-replacement which deletes two non-adjacent edges $e=a b$ and $f=c d$ of G, chooses $w \in V$ different from a, b, c, d, adds a new vertex v and connects it to a, b, c, d, w. It is not known whether the X-replacement preserves rigidity in \mathbb{R}^{3}.
Conjecture 2.3 ([4). Let G be rigid in \mathbb{R}^{3} and let G^{\prime} be the result of a 3-dimensional X-replacement applied to G. Then G^{\prime} is rigid in \mathbb{R}^{3}.

Conjecture 2.3 has been proved for some special cases of the 3-dimensional Xreplacement (see [10, 12] for examples). We will use the special case when a, b, w form a triangle in G and we will call this version of the operation Δ-X-replacement. It is a folklore that the $\underline{\Delta}$-X-replacement preserves independence. We did not find the proof of the following lemma in the literature and we include the sketch of its proof for completeness.

Lemma 2.4. Let G be rigid in \mathbb{R}^{3} and let G^{\prime} be the result of $a \Delta$-X-replacement applied to G. Then G^{\prime} is rigid in \mathbb{R}^{3}.
Proof. (Sketch) Suppose for simplicity that G is minimally rigid in \mathbb{R}^{3}. Let (G, p) be a generic realization of G. Let S be the plane that contains $p(a), p(b), p(w)$ and let ℓ be the line of $p(c), p(d)$. Put $p(v)=S \cap \ell$ and $G_{0}=(V+v, E+\{v a, v b, v c\})$. By Theorem 2.1 framework $\left(G_{0}, p\right)$ is rigid.

Now we have to construct framework $\left(G^{\prime}, p\right)$ from $\left(G_{0}, p\right)$ by replacing edges $a b$ and $c d$ with $v w$ and $v d$, respectively. We shall also prove that $\left(G^{\prime}, p\right)$ is rigid. First add $v w$, let $G_{1}=G_{0}+v w$. There is a circuit in $\left(G_{1}, p\right)$ which is the K_{4} induced by v, a, b, w. (Note that points $p(v), p(a), p(b), p(w)$ lie on a plane.) Thus with notation $G_{1}-a b=G_{2}$ framework $\left(G_{2}, p\right)$ is independent. Using a similar argument it is not difficult to show that replacing $c d$ with $v d$ preserves independence.

It was shown in [7] that every strongly minimally [2, 2]-rigid graph can be built up from a suitable base graph using Henneberg-1 extensions. The author also showed that 3 -valent vertex addition preserves minimal [2, 2]-rigidity under certain conditions.

There is a two-dimensional version of the X-replacement which is known to preserve rigidity in $\mathbb{R}^{2} \mathbb{1}$. The 2-dimensional X-replacement deletes two non-adjacent edges $e=a b$ and $f=c d$ of G, adds a new vertex v and connects it to a, b, c, d. It was observed in [9] that the 2-dimensional X-replacement preserves minimally [2, 2]-rigidity in specific cases. Summers, Yu and Anderson conjectured that the 3 -valent vertex addition and the 2-dimensional X-replacement operations are sufficient to build up every weakly minimally $[2,2]$-rigid graph with at least nine vertices.

Conjecture 2.5 ($[8,9]$). Let $G(V, E)$ be a minimally $[2,2]$-rigid graph with at least nine vertices. Then there exists either (a) a degree 4 vertex on which a reverse X replacement operation can be performed to obtain a weakly minimally [2, 2]-rigid graph or (b) there exists a degree three vertex on which a reverse 3-valent vertex addition can be performed to obtain a weakly minimally $[2,2]$-rigid graph.

We will disprove this conjecture by constructing weakly minimally [2, 2]-rigid graphs on n vertices that does not have such a vertex, where n can be arbitrarily large.

3 On the number of edges in $[k, d]$-rigid graphs

First we present some results that apply to every dimension.

3.1 Lower bound for the number of edges

It was known that every [2, 2]-rigid graph has at least $2|V|-1$ edges, see [7]. In [6] Motevallian et al. gave a lower bound for the edge number of $[k, 2]$-rigid graphs. We improve their results and extend it to every d. In Sections 4 and 5 we show that this lower bound is sharp for some values of $[k, d]$.

Theorem 3.1. If a graph $G=(V, E)$ is $[k, d]$-rigid with $|V| \geq d^{2}+d+k$ then

$$
\begin{equation*}
|E| \geq d|V|-\binom{d+1}{2}+(k-1) d \tag{1}
\end{equation*}
$$

Proof. Observe that if a graph $H=\left(V^{\prime}, E^{\prime}\right)$ is $[1, d]$-rigid with $\left|V^{\prime}\right| \geq d^{2}+d$ then $\Delta(H) \geq 2 d$. (To see this suppose that $\Delta(H) \leq 2 d-1$. Then $\left|E^{\prime}\right| \leq\left|V^{\prime}\right| d-$ $\frac{\left|V^{\prime}\right|}{2}<\left|V^{\prime}\right| d-\binom{d+1}{2}$ which contradicts Theorem 1.1.) Let $v_{1}, v_{2}, \ldots, v_{k-1} \in V$ be such that $d_{G-\left\{v_{1} \ldots v_{\ell-1}\right\}}\left(v_{\ell}\right)=\Delta\left(G_{\ell}\right)$ for every $1 \leq \ell \leq k-1$ where $G_{1}=G$ and $G_{\ell}=G-\left\{v_{1} \ldots v_{\ell-1}\right\}$. As G_{k} is $[1, d]$-rigid,

$$
\left|E\left(G_{k}\right)\right| \geq d(|V|-(k-1))-\binom{d+1}{2}=d|V|-\binom{d+1}{2}-(k-1) d
$$

by Theorem 1.1. Using this inequality, we have

$$
|E| \geq d|V|-\binom{d+1}{2}-(k-1) d+\left(|E|-\left|E\left(G_{k}\right)\right|\right)
$$

G_{ℓ} is $[1, d]$-rigid with $\left|V\left(G_{\ell}\right)\right|=|V|-\ell+1 \geq d^{2}+d$ hence $\Delta\left(G_{\ell}\right) \geq 2 d$ for every $1 \leq$ $\ell \leq k$. This implies that $|E|-\left|E\left(G_{k}\right)\right| \geq(k-1) 2 d$. Thus $|E| \geq d|V|-\binom{d+1}{2}+(k-1) d$ as we claimed.

3.2 Upper bound for $k=2$

In this section we give an upper bound for the number of edges of minimally $[2, d]$-rigid graphs.

Theorem 3.2. Let $G=(V, E)$ be a minimally $[2, d]$-rigid graph. Then

$$
|E| \leq 2 d|V|-3\binom{d+1}{2}
$$

Proof. As G is $[2, d]$-rigid, it is also $[1, d]$-rigid, thus it has a minimally $[1, d]$-rigid subgraph H that has exactly $d|V|-\binom{d+1}{2}$ edges. Now, we count the edges in $E-E(H)$. For a vertex $v \in V$, let E_{v} denote the set of edges in $E-E(H)$ for which $G-v-e$ is not $[2, d]$-rigid. By the minimality of $G, \bigcup_{v \in V} E_{v}=E-E(H)$. As H is minimally rigid, the graph $H-v$ is independent in $\mathcal{R}_{d}(H-v)$ for any $v \in V$. By our assumption, $G-v$ is rigid for every $v \in V$ hence there is a set of edges $F_{v} \subseteq E(G-v)$ for which $(H-v)+F_{v}$ is minimally rigid. Since $|E(H-v)|=d|V|-\binom{\overline{d+1}}{2}-d_{H}(v)$, we have $\left|F_{v}\right|=d_{H}(V)-d$. (Note that $d_{H}(v) \geq d$ as H is $[1, d]$-rigid.) The existence of F_{v} ensures that $G-e-v$ is rigid for every $e \in(E-E(H))-F_{v}$. Hence $E_{v} \subseteq F_{v}$ thus $\left|E_{v}\right| \leq d_{H}(v)-d$. Therefore,

$$
|E|=|E(H)|+\left|\bigcup_{v \in V} E_{v}\right| \leq|E(H)|+\sum_{v \in V}\left(d_{H}(v)-d\right)=3|E(H)|-d|V|=2 d|V|-3\binom{d+1}{2}
$$

which completes the proof.
The upper bound given in Theorem 3.2 is $4|V|-9$ for $d=2$. The number of edges of graph $W_{t, 2}^{2}$ (to be defined in Section 6.1) is $3|V|-7$ and this is the minimally [2, 2]-rigid graph with the highest number of edges that we know of, see [8, 9]. Hence it remains open if there are examples for minimally [2, 2]-rigid graphs with more edges or the bound given in Theorem 3.2 can be improved.

4 Strongly minimally [2, d]-rigid graphs

In this section we consider the case $k=2$. We show that the lower bound given in Theorem 3.1 is sharp for $k=2$ in any dimension and we disprove Conjecture 2.5.

Consider the graph C_{n}^{d} and its subgraph L_{d} induced by vertices v_{n-d+1}, \ldots, v_{n}. (Note that L_{d} is isomorphic to K_{d}.) $H_{n, 2}^{d}=C_{n}^{d}-E\left(L_{d}\right)$ denotes the graph we get from C_{n}^{d} after deleting the edge set of L_{d}. First we prove that $H_{n, 2}^{d}$ is $[2, d]$-rigid.

Lemma 4.1. $H_{n, 2}^{d}$ is $[2, d]$-rigid if $n \geq 3 d$.
Proof. Let $v_{i} \in V\left(H_{n, 2}^{d}\right)$ be arbitrary. We will prove that $H_{n, 2}^{d}-v_{i}$ is $[1, d]$-rigid by constructing it from a subgraph isomorphic to K_{d} using (d-dimensional) Henneberg-0 and Henneberg-1-extensions.

First suppose that $v_{i} \notin V\left(L_{d}\right)$. For simplicity, we can assume that $\left\lfloor\frac{n-d+1}{2}\right\rfloor \leq$ $i \leq n-d$. Since $n \geq 3 d$ we have $i \geq d+1$. Vertices v_{1}, \ldots, v_{d} induce a subgraph isomorphic to K_{d} hence we can add v_{d+1}, \ldots, v_{i-1} in this order using Henneberg-0 extensions which connect v_{j} to vertices $v_{j-d+1}, \ldots, v_{j-1}$ for every $d+1 \leq j \leq i-1$. Therefore v_{1}, \ldots, v_{i-1} induce a $[1, d]$-rigid subgraph.

Now we will add vertices v_{i+1}, \ldots, v_{i+d} in this order using Henneberg-0 extensions. If $j \leq n-d$ then the extension connects v_{j} to vertices $v_{j-d}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{j-1}$ and to v_{1}. Note that $v_{j} v_{1}$ is not an edge of $H_{n, 2}^{d}-v_{i}$ if $j \leq n-d$. We will apply Henneberg- 1 extensions on these extra edges. If $j>n-d$ then it will be connected to $v_{j-d}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n-d}$ and to v_{1}, \ldots, v_{d-n+j} all of which are edges of $H_{n, 2}^{d}-v_{i}$.

From now on we will use Henneberg-1 extensions only for adding vertices v_{i+d+1}, \ldots, v_{n} in this order. When adding v_{j} for $j \leq n-d$ we apply the Henneberg- 1 extension on edge $v_{j-d} v_{1}$ that connects v_{j} to $v_{j-d+1}, \ldots, v_{j-1}$. In this case we remove the extra edge $v_{j-d} v_{1}$ and add a new one $v_{j} v_{1}$. If $j>n-d$ then similarly we apply the Henneberg-1 extension on edge $v_{j-d} v_{1}$ but we connect v_{j} to v_{j-d}, \ldots, v_{n-d} and to v_{2}, \ldots, v_{d-n+j} and all of these edges are present in $H_{n, 2}^{d}-v_{i}$. In this case the number of extra edges decreased by one.

Figure 1: Building up $C_{13}^{3}-E\left(L_{3}\right)-v_{5}$ using Henneberg operations.

If $v \in V\left(L_{d}\right)$, then it is easy to see that $H_{n, 2}^{d}$ has a subgraph that can be built up using Henneberg-0-extensions only (we first build up the subgraph induced by vertices of $H_{n, 2}^{d}$ and then we add the nodes in $\left.V\left(L_{d}\right)-v\right)$.

If $G=(V, E)$ is $[2, d]$-rigid then $|E| \geq d|V|-\binom{d+1}{2}+d=d|V|-\binom{d}{2}$ if $|V| \geq d^{2}+d+2$ by Theorem 3.1. $\left|E\left(H_{n, 2}^{d}\right)\right|=d n-\binom{d}{2}$ since C_{n}^{d} has $d n$ edges if $n \geq 2 d+1$ and the deleted edges form a complete subgraph with d vertices. Hence by Lemma 4.1 we get the mail result of this section:

Theorem 4.2. If $G=(V, E)$ is a strongly minimally $[2, d]$-rigid graph with $|V| \geq$ $d^{2}+d+2$ then $|E|=d|V|-\binom{d}{2}$.

5 Strongly minimally [3, 3]-rigid graphs

In this section we show that the lower bound given in Theorem 3.1 is sharp when $k=d=3$.

Lemma 5.1. C_{n}^{3} is $[3,3]$-rigid if $n \geq 9$.
Proof. Let $v_{i}, v_{j} \in V\left(C_{n}^{3}\right)$ be arbitrary. We will prove that $C_{n}^{3}-\left\{v_{i}, v_{j}\right\}$ is [1,3]-rigid by constructing it from a subgraph isomorphic to K_{4} using 3-dimensional Henneberg-0 and Henneberg-1-extensions and Δ-X-replacements.

We can assume that $j=n$ and $i \geq\left\lceil\frac{n+1}{2}\right\rceil . n \geq 9$ hence $i \geq 5$ and as in proof of Lemma 4.1 it can be seen easily that the subgraph induced by v_{1}, \ldots, v_{i-1} is rigid.

Let $\ell=n-i-1$. We have to perform ℓ more extension to add the remaining vertices. We split the proof into two cases depending on ℓ.

If $1 \leq \ell \leq 3$, we add v_{i+1} and connect it to v_{1}, v_{i-2}, v_{i-1}. If $\ell \geq 2$ then we add v_{i+2} and connect it to v_{1}, v_{i-1}, v_{i+1}. If $\ell=3$ then we can add v_{i+3} performing a Henneberg-1 extension on edge $v_{i+1} v_{1}$ and connecting v_{i+3} to v_{i+2} and v_{2}.

If $\ell \geq 4$ then we will need a $\underline{\Delta}$-X-replacement on edges $v_{2} v_{n-3}, v_{1} v_{n-4}$. In this case we will add vertices $v_{i+1}, v_{i+2}, v_{i+3}$ by Henneberg-0 extensions, v_{i+4}, \ldots, v_{n-2} by Henneberg-1 extensions. We will perform these operations such that after adding v_{n-2} edges $v_{2} v_{n-3}, v_{1} v_{n-2}, v_{1} v_{n-4}, v_{n-2} v_{n-4}$ will be present in the resulting graph.

Let $\sigma: \mathbb{Z} \rightarrow\{1,2\}$ be a function with $\sigma(t):=2$ if $t \equiv \ell-2(\bmod 3)$ and $\sigma(t):=1$ otherwise. We add v_{i+1} with Henneberg-0-extension that connects it to $v_{i-2}, v_{i-1}, v_{\sigma(1)}$. Then add v_{i+2} with a Henneberg-0-extension that connects it to $v_{i-1}, v_{i+1}, v_{\sigma(2)}$. Next, we add v_{i+3} with a Henneberg-0-extension that connects it to $v_{i-1}, v_{i-2}, v_{\sigma(3)}$. Then we add v_{i+m} for $4 \leq m \leq \ell-1$ in sequence with Henneberg-1 extension on $v_{i+m-3} v_{\sigma(m-3)}$ that connects it to v_{i+m-2}, v_{i+m-1}. Finally, we add v_{n-1} with a $\underline{\Delta}$-X-replacement on edges $v_{2} v_{n-3}, v_{1} v_{n-4}$ as $v_{n-2} v_{1} v_{n-1}$ is a triangle.

We have proved that C_{n}^{3} is [3,3]-rigid and clearly C_{n}^{3} has $3 n$ edges if $n \geq 7$. This together with Theorem 3.1 gives the following:

Theorem 5.2. If $G=(V, E)$ is a strongly minimally $[3,3]$-rigid graph with $|V| \geq 9$ then $|E|=3|V|$.

Figure 2: Building up $C_{12}^{3}-\{u, v\}$.

6 Higher dimensions revisited

Recall that L_{d} denotes the complete subgraph of C_{n}^{d} spanned by vertices v_{n-d+1}, \ldots, v_{n}. Let L_{d}^{\prime} denote the graph that we get from L_{d} by deleting the Hamiltonian cycle that consist of edges $v_{i} v_{i+1}$ for $n-d+1 \leq i \leq n-1$ and $v_{n-d+1} v_{n}$. Note that L_{3}^{\prime} is the empty graph on three vertices. Lemma 5.1 states that $C_{n}^{d}-L_{d}^{\prime}$ is strongly minimally [3, 3]-rigid.
$\left|E\left(C_{n}^{d}-L_{d}^{\prime}\right)\right|=d n-\binom{d}{2}+d=d n-\binom{d+1}{2}+2 d$ which motivates the second part of the following conjecture:

Conjecture 6.1. The lower bound given in Theorem 3.1 is sharp for $k=3$ for any $d \geq 3$. Moreover, $C_{n}^{d}-L_{d}^{\prime}$ is a strongly minimally $[3, d]$-rigid if n is sufficiently large.

It remains open if the lower bound given in Theorem 3.1 is tight for some pairs $[k, d]$ different from $[2, d]$ and $[3,3]$. This question seems to be more complicated for larger values of k and d as there are just a few operations known that preserve rigidity in higher dimensions. Furthermore it was shown in [6] that the lower bound given in Theorem 3.1 is not tight for $k=3$ and $d=2$, a strongly minimally [3, 2]-rigid graph on at least 6 vertices has $2|V|+2$ edges. Following their idea, the lower bound given in Theorem 3.1 can also be improved if the right-hand side of (11) is larger than $d|V|$ because in this case $\Delta(G) \geq 2 d+1$ holds.

6.1 Examples for minimally [$k, d]$-rigid graphs

The question whether weakly minimally $[k, d]$-rigid graphs exist for every pair (k, d) can still be solved without knowing the edge count of strongly minimally $[k, d]$-rigid graphs. There are examples for weakly minimally [2, 2]-rigid graphs in [7, 8, 9] but the existence of weakly minimally $[k, d]$-rigid graphs for other values of k and d was open so far. In this section we will give examples for minimally $[k, d]$-rigid graphs with the same number of vertices but with different number of edges. Such a pair of graphs shows that the graph with the larger number of edges has to be weakly minimally $[k, d]$-rigid.

First we generalize an example from [8, 9]. In the following lemma, P_{n}^{0} denotes the empty graph on n vertices.

Lemma 6.2. Let t, k and d be three positive integers with $t \geq k d+1$. Then there exists a minimally $[k, d]$-rigid graph with $t+k$ vertices and $(d+k-1) t-\binom{d}{2}$ edges.

Proof. Let the graph $W_{t, k}^{d}$ consist of P_{t}^{d-1} (with vertex set $\left\{v_{1}, \ldots, v_{t}\right\}$) and k additional vertices s_{1}, \ldots, s_{k} each of which is connected to all vertices of P_{t}^{d-1} (see Figure 3). We first prove that $W_{t, k}^{d}$ is $[k, d]$-rigid.

For $k=1$, we need to show that $W_{t, 1}^{d}$ is minimally $[1, d]$-rigid. As $t \geq d+1, s_{1}$ and v_{1}, \ldots, v_{d} form a complete graph with $d+1$ vertices. Starting with this subgraph, $W_{t, 1}^{d}$ can be built up by adding vertices v_{d+1}, \ldots, v_{t} with Henneberg-0 extensions. This proves case $k=1$.

Assume that $k \geq 2$. First, we show that $W_{t, k}^{d}-\left\{u_{1}, \ldots, u_{k-1}\right\}$ is $[1, d]$-rigid if $\left\{u_{1}, \ldots, u_{k-1}\right\} \subseteq\left\{v_{1}, \ldots, v_{t}\right\}$. As $t \geq k d+1$ there should be some integer $1 \leq$ $j \leq n-d+1$ such that $\left\{v_{j}, \ldots, v_{j+d-1}\right\} \cap\left\{u_{1}, \ldots, u_{k-1}\right\}=\emptyset$. Starting with the complete subgraph spanned by $\left\{s_{1}, v_{j}, \ldots, v_{j+d-1}\right\}$ we can build up a subgraph of $W_{t, k}^{d}-\left\{u_{1}, \ldots, u_{k-1}\right\}$ up by Henneberg-0 extensions. First we add $s_{2}, \ldots s_{k}$ one after one and then the vertices that are not deleted from $\left\{v_{j+d}, \ldots, v_{t}, v_{j-1}, \ldots, v_{1}\right\}$ in this order.

Next observe that $W_{t, k}^{d}-s_{i}$ is isomorphic to $W_{t, k-1}^{d}$ for any $i \in\{1, \ldots, k\}$. Thus by induction, $W_{t, k}^{d}-\left\{s_{i}, u_{1}, \ldots, u_{k-2}\right\}$ is $[1, d]$-rigid for every $i \in\{1, \ldots, k\}$ and $\left\{u_{1}, \ldots, u_{k-2}\right\} \subseteq$ $\left\{v_{1}, \ldots, v_{t}\right\}$. So far we proved that $W_{t, k}^{d}$ is $[k, d]$-rigid.

Moreover, as subgraphs, $\left\{W_{t, k}^{d}-s_{i}: i \in\{1, \ldots, k\}\right\}$ cover all edges of $W_{t, k}^{d}$ and by induction these subgraphs are all minimally $[k-1, d]$-rigid graphs, $W_{t, k}^{d}$ is minimally $[k, d]$-rigid.

Figure 3: $W_{6,2}^{3}$.

Clearly $\left|V\left(W_{t, k}^{d}\right)\right|=t+k .\left|E\left(W_{t, k}^{d}\right)\right|=\left|E\left(P_{t}^{d-1}\right)\right|+k t=(d+k-1) t-\binom{d}{2}$ if $t \geq k d+1$ since in this case $\left|E\left(P_{t}^{d-1}\right)\right|=(d-1) t-\binom{d}{2}$. This completes the proof.

The cone graph of G is the graph that arises from G by adding a new vertex s and edges $s v$ for every $v \in V$. The operation that creates the cone graph of G is called coning. The following claim states that one can construct $[k, d]$-rigid graphs by coning [$k-1, d]$-rigid graphs. However these examples will not necessarily be minimal but by omitting some of their edges one can achieve minimality.

Claim 6.3. Let $k \geq 2$ and $d \geq 1$ integers. Let $G=(V, E)$ be a $[k-1, d]$-rigid graph and let $H=\left(V+s, E^{\prime}\right)$ be the cone graph of G. Then H is $[k, d]$-rigid.

Proof. We need to show that after omitting $k-1$ vertices H remains $[1, d]$-rigid. If s is omitted, then we are done by the $[k-1, d]$-rigidity of G. Otherwise, let u_{1}, \ldots, u_{k-1} be the omitted vertices. $G-\left\{u_{1}, \ldots, u_{k-2}\right\}$ is $[1, d]$-rigid and s is connected to every neighbor of v_{k-1}. Hence $H-\left\{u_{1}, \ldots, u_{k-1}\right\}$ has a subgraph isomorphic to the $[1, d]$-rigid graph $G-\left\{u_{1}, \ldots, u_{k-2}\right\}$ showing that it is $[1, d]$-rigid.

Let $H_{n, i}^{d}$ denote the cone graph of $H_{n,(i-1)}^{d}$ for $i \geq 3$. (For the definition of $H_{n, 2}^{d}$ see Section 4.) By Claim 6.3 and Lemma 4.1, we get the following:

Corollary 6.4. Let t, d and k be three positive integers such that $t \geq 3 d$ and $k \geq 2$. Then there exists a minimally $[k, d]$-rigid graph $H_{t, k}^{d}$ with $t+k-2$ vertices and at most $(d+k-2) t-\binom{d}{2}+\binom{k-2}{2}$ edges.

We shall also use Claim 6.3 in the proof of the following lemma.

Lemma 6.5. Let $t \geq 2, k \geq 1$ and $d \geq 3$ be three integers. There exists a minimally $[k, d]$-rigid graph with $t+k+d-2$ vertices and $(d+k-1) t+\binom{k+d-2}{2}-1$ edges.

Proof. Define graph M_{t}^{k+d-2} as follows. Take the disjoint union of a path P_{t} (on vertex set $\left\{v_{1}, \ldots, v_{t}\right\}$) and a complete graph K_{k+d-2} (on vertex set $\left\{w_{1}, \ldots, w_{k+d-2}\right\}$) and add edges $v_{i} w_{j}$ for every pair $1 \leq i \leq t, 1 \leq j \leq k+d-2$ (see Figure 4).

Figure 4: M_{6}^{3}.

First we show that M_{t}^{k+d-2} is minimally $[k, d]$-rigid. If $k=1$ then $v_{1}, v_{2}, w_{1}, \ldots, w_{k+d-2}$ form a complete subgraph with $d+1$ vertices. Starting with this subgraph, M_{t}^{d-1} can be built up by adding v_{3}, \ldots, v_{t} with Henneberg-0 extensions.

For $k \geq 2$ graph M_{t}^{k+d-2} is $[k, d]$-rigid by induction and Claim 6.3. Moreover, $M_{t}^{k+d-2}-w_{j}$ is isomorphic to $M_{t}^{(k-1)+d-2}$ for any $1 \leq j \leq k+d-2$ that is minimally [$k-1, d]$-rigid by induction. As $d \geq 3$ these subgraphs cover M_{t}^{k+d-2} showing the minimality.

Clearly, $\left|V\left(M_{t}^{k+d-2}\right)\right|=t+k+d-2$ and $\left|E\left(M_{t}^{k+d-2}\right)\right|=(t-1)+\binom{k+d-2}{2}+(k+$ $d-2) t=(d+k-1) t+\binom{k+d-2}{2}-1$.

Let k, d, n be integers such that $k \geq 2, d \geq 3$ and $n \geq k(d+1)+1$. Put $t_{1}=n-k$ and $t_{2}=n-k-d+2$. With this notation $n=\left|V\left(W_{t_{1}, k}^{d}\right)\right|=\left|V\left(M_{t_{2}}^{k+d-2}\right)\right|$. We will prove that $\left|E\left(W_{t_{1}, k}^{d}\right)\right|<\left|E\left(M_{t_{2}}^{k+d-2}\right)\right|$ which shows that $M_{t_{2}}^{k+d-2}$ is weakly minimally [$k, d]$-rigid. By Lemmas 6.2 and 6.5. we have to prove that

$$
(d+k-1)(n-k)-\binom{d}{2}<(d+k-1)(n-k-d+2)+\binom{k+d-2}{2}-1
$$

By subtracting $(d+k-1)(n-k)-\binom{d}{2}$ from each side, we get

$$
0<\frac{d(d-1)}{2}+(d+k-1)(-d+2)+\frac{(k+d-2)(k+d-3)}{2}-1,
$$

that is,

$$
0<\frac{k^{2}-k}{2}
$$

that holds for $k \geq 2$.

Now, let k, d, n be positive integers such that $k \geq 2$ and $n \geq \max \{k(d+1)+1,3 d+$ $\left.k-2,3 k+2 d-4+\binom{k-2}{2}\right\}$. Put $t_{0}=n-k+2$. With this notation $n=\left|H_{t_{0}, k}^{d}\right|=\left|V\left(W_{t_{1}, k}^{d}\right)\right|$. We will prove that $\left|E\left(H_{t_{0}, k}^{d}\right)\right|<\left|E\left(W_{t_{1}, k}^{d}\right)\right|$ which shows that $W_{t_{1}, k}^{d}$ is weakly minimally [$k, d]$-rigid. By Lemma 6.2 and Corollary 6.4 , it is enough to prove that

$$
(d+k-2)(n-k+2)-\binom{d}{2}+\binom{k-2}{2}<(d+k-1)(n-k)-\binom{d}{2}
$$

By subtracting $(d+k-2)(n-k+2)-\binom{d}{2}+\binom{k-2}{2}$ from each side, we get

$$
0<n-2 d-3 k+4-\binom{k-2}{2}
$$

that holds because of the choice of n.
We have proved the following theorem:
Theorem 6.6. Let d and k be positive integers with $k \geq 2$. Then there are weakly minimally $[k, d]$-rigid graphs, that is, there are minimally $[k, d]$-rigid graphs that are not strongly minimally $[k, d]$-rigid.

7 A counterexample for Conjecture 2.5

In this section we disprove Conjecture 2.5 by constructing minimally [2,2]-rigid graphs that do not have a vertex at which the reverse degree 3 vertex addition or the reverse X-replacement can be performed. To give such an example we will need the following simple observation.

Claim 7.1. Let $G=(V, E)$ be a graph. Suppose $v \in V$ with $d(v)=4$ is contained in a K_{4} subgraph of G. Then every possible reverse X-replacement at v creates a parallel pair of edges.

We define an operation called K_{4}-extension that preserves [2, 2]-rigidity although the resulting graph may not be minimally $[2,2]$-rigid. Let $G=(V, E)$ be a graph with $|V| \geq 4$, and let $v_{1}, v_{2}, v_{3}, v_{4} \in V$ be four distinct vertices. The K_{4}-extension adds four new vertices $u_{1}, u_{2}, u_{3}, u_{4}$ to G, connects v_{i} to u_{i} for every $1 \leq i \leq 4$ and u_{k} to u_{l} for every pair $1 \leq k, l \leq 4$.

Claim 7.2. If $G=(V, E)$ is $[2,2]$-rigid then $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ obtained by a K_{4}-extension is also [2,2]-rigid. Furthermore $G^{\prime}-e$ is not $[2,2]$-rigid for any $e \in E^{\prime}-E$.

Proof. Clearly, $G^{\prime}-v$ is rigid for any $v \in V^{\prime}$.
Consider the graph $G^{\prime}-e$ for some $e \in E^{\prime}-E$. Let $u_{i} \in V^{\prime}-V$ be such that e is not incident to u_{i}. We claim that $G^{\prime \prime}=G^{\prime}-u_{i}-e$ is not rigid. $G^{\prime \prime}$ consist of G and a set of three vertices that is incident to five edges only. Hence there are only $2|V|-3+5=2\left|V^{\prime}\right|-4$ independent edges in $G^{\prime \prime}$ thus $G^{\prime \prime}$ is not rigid as we claimed.

Now let $G_{0}=\left(V_{0}, E_{0}\right)$ be a $[2,2]$-rigid graph with $V_{0} \geq 4$. Apply some K_{4}-extensions to vertices of V_{0}, let the resulting graph be $G_{1}=\left(V_{1}, E_{1}\right)$ (see Figure 5). Suppose that every vertex in V_{0} is incident to at least five edges from $E_{1}-E_{0}$. After the extensions delete edges from E_{1} (if necessary) to obtain a minimally [2,2]-rigid graph $G_{2}=\left(V_{1}, E_{2}\right)$. By Claim 7.1 deleting any edge from $E_{1}-E_{0}$ results in a graph that is not [2,2]-rigid hence the minimum degree in G_{2} is four and all the degree four vertices are in $V_{1}-V_{0}$. Clearly we cannot perform the reverse degree 3 vertex addition in G_{2}. But every vertex of $V_{1}-V_{0}$ is contained in a K_{4} subgraph of G_{2} and by Claim 7.1 every reverse X-replacement on one of these vertices creates a parallel pair of edges. Thus no reverse X-replacement operation preserves minimal [2, 2]-rigidity of G_{2} which disproves Conjecture 2.5.

Figure 5: A counterexample G_{c} for Conjecture 2.5 that we get by performing five K_{4}-extensions on the subgraph induced by vertices a, b, c, d. Clearly, K_{4} is minimally [2, 2]-rigid hence G_{c} is [2, 2]-rigid by Claim 7.2 . It can be easily seen that deleting any of the edges $b c, c d, d b$ from graph $G_{c}-a$ results in a flexible graph. By symmetry the deletion of any edge of the starting graph results in a graph that is not [2, 2]-rigid. This implies that G_{c} is minimally [2,2]-rigid.

Remark 7.3. We also remark that for any positive integer t graph G_{1} can be constructed such that every vertex in V_{0} is incident to at least t edges from $E_{1}-E_{0}$. Hence G_{2} has vertices of degree four and the rest of its vertices has degree at least t. Since t can be arbitrarily large this example shows that it may be difficult to find a constructive characterization that only uses operations that add low-degree vertices.

8 Concluding remarks

The results presented in this paper are about the edge numbers of minimally $[k, d]$ rigid graphs. Similar questions were asked about minimally globally $[k, d]$-rigid graphs in [8] where $G=(V, E)$ is globally $[k, d]$-rigid if $|V| \geq k+1$ and after deleting at most $k-1$ arbitrary vertices the resulting graph is globally rigid in \mathbb{R}^{d}.

Other version of the problem is $[k, d]$-edge rigidity (and global $[k, d]$-edge rigidity) where instead of at most $k-1$ vertices we delete at most $k-1$ edges of the graph. Proving similar results on these variants of the problem considered is a possible direction of future research.

A different direction is to characterize inductively the class of graphs mentioned above for some values of $[k, d]$ which seems to be an interesting and difficult open question.

Acknowledgments

The authors received a grant (no. CK 80124) from the National Development Agency of Hungary, based on a source from the Research and Technology Innovation Fund. Research was supported by the MTA-ELTE Egerváry Research Group.

The authors thank Zsuzsanna Jankó and János Geleji for the inspiring discussions and Tibor Jordán for posing the interesting questions solved in this paper.

References

[1] L. Berenchtein, L. Chavez, and W. Whiteley, Inductive constructions for 2-rigidity: bases and circuits via tree partitions. Manuscript, York University, Toronto, 2002.
[2] R. Connelly and W. Whiteley, Global Rigidity: The effect of coning. Discrete Comput. Geom. 43: pp 717-735, 2010.
[3] J. Graver, B. Servatius, and H. Servatius, Combinatorial Rigidity. AMS Graduate Studies in Mathematics Vol. 2, 1993.
[4] J. Graver, A Combinatorial Approach to Infinitesimal Rigidity. Technical Report $\sharp 10$, Department of Mathematics, Syracuse University, August 1984.
[5] G. Laman, On graphs and rigidity of plane skeletal structures. J. Engineering Math. 4: pp 331-340, 1970.
[6] S.A. Motevallian, C. Yu, and B.D.O. Anderson, Multi-agent rigid formations: A study of robustness to the loss of multiple agents. In: Proceedings of the 50th IEEE CDC-ECE, pp 3602-3607, 2011.
[7] B. Servatius, Birigidity in the plane. SIAM J. Discrete Math 8: pp 582-589, 1989.
[8] T.H. Summers, C. Yu, and B.D.O. Anderson, Robustness to Agent Loss in Vehicle Formations and Sensor Networks. In: Proceedings of the 47 th IEEE CDC, pp 1193-1199, 2008.
[9] T.H. Summers, C. Yu, and B.D.O. Anderson, Addressing agent loss in vehicle formations and sensor networks. International Journal of Robust and Nonlinear Control, 19(15): pp 1673-1696, 2009.
[10] T-S. Tay and W. Whiteley, Generating Isostatic Frameworks. Structural Topology 11: pp 21-69, 1985.
[11] W. Whiteley, Cones, infinity and one-story buildings, Structural Topology 8: pp 53-70, 1983.
[12] W. Whiteley, Rigidity and scene analysis. In: (J.E. Goodman and J. O'Rourke ed.) Handbook of Discrete and Computational Geometry , CRC-Press, 1997.
[13] W. Whiteley, Some matroids from discrete applied geometry. In: (J. Bonin, J. Oxley, and B. Servatius ed.) Matroid theory, pp 171-311, Contemp. Math., 197, AMS, Providence, 1996.

[^0]: *Eötvös University, Pázmány Péter sétány $1 / \mathrm{C}$ Budapest, Hungary H-1117. E-mail: viktoria@cs.elte.hu
 ${ }^{\star \star}$ Eötvös University, Pázmány Péter sétány 1/C Budapest, Hungary H-1117. E-mail: csabi@cs.elte.hu

