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On minimally k-rigid graphs

Viktória E. Kaszanitzky ? and Csaba Király??

Abstract

A graph G = (V,E) is called k-rigid in Rd if |V | ≥ k + 1 and after deleting
at most k − 1 arbitrary vertices the resulting graph is generically rigid in Rd.
A k-rigid graph G is called minimally k-rigid if the omission of an arbitrary
edge results in a graph that is not k-rigid. It was shown in [7] that the smallest
possible number of edges is 2|V |−1 in a 2-rigid graph in R2. We generalize this
result, provide an upper bound for the number of edges of minimally 2-rigid
graphs (for any d) and give examples for minimally k-rigid graphs in higher
dimensions.

1 Introduction

A graph G = (V,E) is called k-rigid in IRd or shortly [k, d]-rigid if |V | ≥ k+1 and for
any U ⊆ V with |U | ≤ k−1 graph G−U is generically rigid in IRd. In this context we
will call graphs that are rigid in IRd [1, d]-rigid. Every [k, d]-rigid graph is [l, d]-rigid
by definition for 1 ≤ l ≤ k. We remark that G is [k, d]-rigid if and only if the deletion
of k − 1 arbitrary vertices results in a graph that is generically rigid in IRd.
G is called minimally [k, d]-rigid if it is [k, d]-rigid but G− e fails to be [k, d]-rigid

for every e ∈ E. G is said to be strongly minimally [k, d]-rigid if it is minimally [k, d]-
rigid and there is no minimally [k, d]-rigid graph with |V | vertices and less than |E|
edges. If G is minimally [k, d]-rigid but not strongly minimally [k, d]-rigid then it is
called weakly minimally [k, d]-rigid. Investigating the properties of [k, d]-rigid graphs
is motivated by industrial applications, see [6, 8].

The following theorem gives a formula for the edge number of minimally rigid
graphs.

Theorem 1.1 ([13]). Let G = (V,E) be minimally rigid in IRd. If |V | ≥ d + 1 then
|E| = d|V | −

(
d+1
2

)
.

A natural question to ask is whether there is a similar formula for the edge number
of minimally [k, d]-rigid graphs for k ≥ 2. The answer is no (see Section 6.1), there
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1.1 Notation 2

are minimally [k, d]-rigid graphs for k ≥ 2 with different edge numbers, that is, the
set of weakly minimally [k, d]-rigid graphs is not empty if k ≥ 2.

To see a simple example consider the case d = 1. It is well known that G is rigid in
IR1 if and only if G is connected. Hence G is minimally [k, 1]-rigid if and only if it is
minimally k-connected. Since there are k-connected graphs with the same number of
vertices and different number of edges for k ≥ 2, weakly minimally [k, 1]-rigid graphs
exist for every k ≥ 2.

It was shown in [7] that the smallest possible number of edges in a [2, 2]-rigid graph
is 2|V | − 1. Later lower bounds were provided for the edge number of minimally
[k, d]-rigid graphs in [6, 8, 9] for some other values of [k, d].

The main result of the present paper is a lower bound for the number of edges
of [k, d]-rigid graphs for every pair [k, d] which is sharp for some values of k and d.
We show that weakly minimally [k, d]-rigid graphs exist for every pair [k, d]. We also
provide an upper bound for the number of edges of minimally [k, d]-rigid graphs for
k = 2.

1.1 Notation

In this paper we use the basic definitions and theorems of rigidity theory. All of the
non-introduced definitions and non-proved statements can be found in the book of
Graver et al. [3]. Rd(G) denotes the d-dimensional generic rigidity matroid of G.

We shall also use some standard notation from graph theory. ∆(G) denotes the
maximum degree in G. Kn is the complete graph with n vertices. Cn denotes the
cycle on n vertices. We will use the notation V (Cn) = {v1, . . . , vn} and E(Cn) =
{vivi+1 : 1 ≤ i ≤ n} where vn+1 := v1. Cd

n is the dth power of Cn, or equivalently
E(Cd

n) = {vivj : i−d ≤ j ≤ i+d} where vn+i := vi. Pn denotes the path on n vertices.
We will use the notation V (Pn) = {v1, . . . , vn} and E(Pn) = {vivi+1 : 1 ≤ i ≤ n− 1}.
P d
n is the dth power of Pn, or equivalently E(P d

n) = {vivj : min{1, i − d} ≤ j ≤
max{n, i+ d}}.

2 Operations preserving rigidity

Constructive characterizations are useful tools in combinatorial rigidity. Even though
we do not have a constructive characterization theorem for the class of rigid graphs
for d ≥ 3 it can be very useful to find operations that preserve rigidity. In this section
we mention some of these operations.

The d-dimensional Henneberg-0 extension on G adds a new vertex and connects it
to d distinct vertices of G. The d-dimensional Henneberg-1 extension deletes an edge
uw ∈ E, adds a new vertex v and connects it to u, v and d − 1 other vertices of G.
The d-dimensional Henneberg-0 extension is also called d-valent vertex addition.

Theorem 2.1 ([10]). If G is rigid in IRd and G′ is the graph that we get from G by
a d-dimensional Henneberg-0 or Henneberg-1 extension then G′ is rigid in IRd.
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Section 2. Operations preserving rigidity 3

As d-dimensional Henneberg extensions are used when we are in IRd, we will simply
call them Henneberg extensions if d is clear from context. For d = 2 the following
stronger statement holds:

Theorem 2.2 ([10]). G is minimally rigid in IR2 if and only if it can be built up from
the graph K2 by a sequence of Henneberg-0 and Henneberg-1 extension.

If G = (V,E) is minimally rigid in IR3 then |E| = 3|V | − 6 by Theorem 1.1. Hence
a minimally rigid graph in IR3 does not necessarily have a vertex with degree 3 or 4.
Thus for proving a 3-dimensional version of Theorem 2.2 one would need an operation
that results in adding a vertex with degree 5. One such operation is the 3-dimensional
X-replacement which deletes two non-adjacent edges e = ab and f = cd of G, chooses
w ∈ V different from a, b, c, d, adds a new vertex v and connects it to a, b, c, d, w. It
is not known whether the X-replacement preserves rigidity in IR3.

Conjecture 2.3 ([4]). Let G be rigid in IR3 and let G′ be the result of a 3-dimensional
X-replacement applied to G. Then G′ is rigid in IR3.

Conjecture 2.3 has been proved for some special cases of the 3-dimensional X-
replacement (see [10, 12] for examples). We will use the special case when a, b, w form
a triangle in G and we will call this version of the operation ∆-X-replacement. It
is a folklore that the ∆-X-replacement preserves independence. We did not find the
proof of the following lemma in the literature and we include the sketch of its proof
for completeness.

Lemma 2.4. Let G be rigid in IR3 and let G′ be the result of a ∆-X-replacement
applied to G. Then G′ is rigid in IR3.

Proof. (Sketch) Suppose for simplicity that G is minimally rigid in IR3. Let (G, p) be
a generic realization of G. Let S be the plane that contains p(a), p(b), p(w) and let
` be the line of p(c), p(d). Put p(v) = S ∩ ` and G0 = (V + v, E + {va, vb, vc}). By
Theorem 2.1 framework (G0, p) is rigid.

Now we have to construct framework (G′, p) from (G0, p) by replacing edges ab
and cd with vw and vd, respectively. We shall also prove that (G′, p) is rigid. First
add vw, let G1 = G0 + vw. There is a circuit in (G1, p) which is the K4 induced by
v, a, b, w. (Note that points p(v), p(a), p(b), p(w) lie on a plane.) Thus with notation
G1 − ab = G2 framework (G2, p) is independent. Using a similar argument it is not
difficult to show that replacing cd with vd preserves independence.

It was shown in [7] that every strongly minimally [2, 2]-rigid graph can be built up
from a suitable base graph using Henneberg-1 extensions. The author also showed
that 3-valent vertex addition preserves minimal [2, 2]-rigidity under certain conditions.

There is a two-dimensional version of the X-replacement which is known to preserve
rigidity in R2 [1]. The 2-dimensional X-replacement deletes two non-adjacent edges
e = ab and f = cd of G, adds a new vertex v and connects it to a, b, c, d. It was ob-
served in [9] that the 2-dimensional X-replacement preserves minimally [2, 2]-rigidity
in specific cases. Summers, Yu and Anderson conjectured that the 3-valent vertex
addition and the 2-dimensional X-replacement operations are sufficient to build up
every weakly minimally [2, 2]-rigid graph with at least nine vertices.
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Section 3. On the number of edges in [k, d]-rigid graphs 4

Conjecture 2.5 ([8, 9]). Let G(V, E) be a minimally [2, 2]-rigid graph with at least
nine vertices. Then there exists either (a) a degree 4 vertex on which a reverse X-
replacement operation can be performed to obtain a weakly minimally [2, 2]-rigid graph
or (b) there exists a degree three vertex on which a reverse 3-valent vertex addition
can be performed to obtain a weakly minimally [2, 2]-rigid graph.

We will disprove this conjecture by constructing weakly minimally [2, 2]-rigid graphs
on n vertices that does not have such a vertex, where n can be arbitrarily large.

3 On the number of edges in [k, d]-rigid graphs

First we present some results that apply to every dimension.

3.1 Lower bound for the number of edges

It was known that every [2, 2]-rigid graph has at least 2|V | − 1 edges, see [7]. In [6]
Motevallian et al. gave a lower bound for the edge number of [k, 2]-rigid graphs. We
improve their results and extend it to every d. In Sections 4 and 5 we show that this
lower bound is sharp for some values of [k, d].

Theorem 3.1. If a graph G = (V,E) is [k, d]-rigid with |V | ≥ d2 + d+ k then

|E| ≥ d|V | −
(
d+ 1

2

)
+ (k − 1)d. (1)

Proof. Observe that if a graph H = (V ′, E ′) is [1, d]-rigid with |V ′| ≥ d2 + d then
∆(H) ≥ 2d. (To see this suppose that ∆(H) ≤ 2d − 1. Then |E ′| ≤ |V ′|d −
|V ′|
2

< |V ′|d −
(
d+1
2

)
which contradicts Theorem 1.1.) Let v1, v2, ..., vk−1 ∈ V be

such that dG−{v1...v`−1}(v`) = ∆(G`) for every 1 ≤ ` ≤ k − 1 where G1 = G and
G` = G− {v1 . . . v`−1}. As Gk is [1, d]-rigid,

|E(Gk)| ≥ d(|V | − (k − 1))−
(
d+ 1

2

)
= d|V | −

(
d+ 1

2

)
− (k − 1)d

by Theorem 1.1. Using this inequality, we have

|E| ≥ d|V | −
(
d+ 1

2

)
− (k − 1)d+ (|E| − |E(Gk)|).

G` is [1, d]-rigid with |V (G`)| = |V | − `+ 1 ≥ d2 + d hence ∆(G`) ≥ 2d for every 1 ≤
` ≤ k. This implies that |E|−|E(Gk)| ≥ (k−1)2d. Thus |E| ≥ d|V |−

(
d+1
2

)
+(k−1)d

as we claimed.

3.2 Upper bound for k = 2

In this section we give an upper bound for the number of edges of minimally [2, d]-rigid
graphs.
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Section 4. Strongly minimally [2, d]-rigid graphs 5

Theorem 3.2. Let G = (V,E) be a minimally [2, d]-rigid graph. Then

|E| ≤ 2d|V | − 3

(
d+ 1

2

)
.

Proof. As G is [2, d]-rigid, it is also [1, d]-rigid, thus it has a minimally [1, d]-rigid
subgraph H that has exactly d|V |−

(
d+1
2

)
edges. Now, we count the edges in E−E(H).

For a vertex v ∈ V , let Ev denote the set of edges in E − E(H) for which G− v − e
is not [2, d]-rigid. By the minimality of G,

⋃
v∈V Ev = E −E(H). As H is minimally

rigid, the graph H−v is independent in Rd(H−v) for any v ∈ V . By our assumption,
G− v is rigid for every v ∈ V hence there is a set of edges Fv ⊆ E(G− v) for which
(H − v) + Fv is minimally rigid. Since |E(H − v)| = d|V | −

(
d+1
2

)
− dH(v), we have

|Fv| = dH(V ) − d. (Note that dH(v) ≥ d as H is [1, d]-rigid.) The existence of Fv
ensures that G − e − v is rigid for every e ∈ (E − E(H)) − Fv. Hence Ev ⊆ Fv thus
|Ev| ≤ dH(v)− d. Therefore,

|E| = |E(H)|+

∣∣∣∣∣⋃
v∈V

Ev

∣∣∣∣∣ ≤ |E(H)|+
∑
v∈V

(dH(v)−d) = 3|E(H)|−d|V | = 2d|V |−3

(
d+ 1

2

)
which completes the proof.

The upper bound given in Theorem 3.2 is 4|V | − 9 for d = 2. The number of edges
of graph W 2

t,2 (to be defined in Section 6.1) is 3|V | − 7 and this is the minimally
[2, 2]-rigid graph with the highest number of edges that we know of, see [8, 9]. Hence
it remains open if there are examples for minimally [2, 2]-rigid graphs with more edges
or the bound given in Theorem 3.2 can be improved.

4 Strongly minimally [2, d]-rigid graphs

In this section we consider the case k = 2. We show that the lower bound given in
Theorem 3.1 is sharp for k = 2 in any dimension and we disprove Conjecture 2.5.

Consider the graph Cd
n and its subgraph Ld induced by vertices vn−d+1, . . . , vn.

(Note that Ld is isomorphic to Kd.) Hd
n,2 = Cd

n − E(Ld) denotes the graph we get
from Cd

n after deleting the edge set of Ld. First we prove that Hd
n,2 is [2, d]-rigid.

Lemma 4.1. Hd
n,2 is [2, d]-rigid if n ≥ 3d.

Proof. Let vi ∈ V (Hd
n,2) be arbitrary. We will prove that Hd

n,2 − vi is [1, d]-rigid by
constructing it from a subgraph isomorphic to Kd using (d-dimensional) Henneberg-0
and Henneberg-1-extensions.

First suppose that vi 6∈ V (Ld). For simplicity, we can assume that bn−d+1
2
c ≤

i ≤ n − d. Since n ≥ 3d we have i ≥ d + 1. Vertices v1, . . . , vd induce a subgraph
isomorphic to Kd hence we can add vd+1, . . . , vi−1 in this order using Henneberg-0
extensions which connect vj to vertices vj−d+1, . . . , vj−1 for every d + 1 ≤ j ≤ i − 1.
Therefore v1, . . . , vi−1 induce a [1, d]-rigid subgraph.
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Section 4. Strongly minimally [2, d]-rigid graphs 6

Now we will add vertices vi+1, . . . , vi+d in this order using Henneberg-0 extensions.
If j ≤ n − d then the extension connects vj to vertices vj−d, . . . , vi−1, vi+1, . . . , vj−1
and to v1. Note that vjv1 is not an edge of Hd

n,2 − vi if j ≤ n − d. We will apply
Henneberg-1 extensions on these extra edges. If j > n−d then it will be connected to
vj−d, . . . , vi−1, vi+1, . . . , vn−d and to v1, . . . , vd−n+j all of which are edges of Hd

n,2 − vi.
From now on we will use Henneberg-1 extensions only for adding vertices vi+d+1, . . . , vn

in this order. When adding vj for j ≤ n− d we apply the Henneberg-1 extension on
edge vj−dv1 that connects vj to vj−d+1, . . . , vj−1. In this case we remove the extra edge
vj−dv1 and add a new one vjv1. If j > n− d then similarly we apply the Henneberg-1
extension on edge vj−dv1 but we connect vj to vj−d, . . . , vn−d and to v2, . . . , vd−n+j
and all of these edges are present in Hd

n,2− vi. In this case the number of extra edges
decreased by one.

v7

v6

v5

v4

v2

v1

v3

v9

v8

v11

v10

v12

v13

(a) Add v5 with a Henneberg-0-
extension.

v7

v8

v5

v4

v2

v1

v3

v9

v8

v11

v10

v12

v13

(b) Add v7, v8, v9 with Henneberg-
0-extensions by adding the extra
(dotted red) edges vjv1 for 7 ≤
j ≤ 9.

v7

v8

v5

v4

v2

v1

v3

v9

v8

v11

v10

v12

v13

(c) Add v10 with Henneberg-1-
extension on the (crossed red) ex-
tra edge v7v1 by adding the extra
(dotted red) edge v10v1

v7

v8

v5

v4

v2

v1

v3

v9

v8

v11

v10

v12

v13

(d) Add v11, v12, v13 with
Henneberg-1-extensions on the
(red) edges v8v1, v9v1, v10v1,
respectively.

Figure 1: Building up C3
13 − E(L3)− v5 using Henneberg operations.
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Section 5. Strongly minimally [3, 3]-rigid graphs 7

If v ∈ V (Ld), then it is easy to see that Hd
n,2 has a subgraph that can be built up

using Henneberg-0-extensions only (we first build up the subgraph induced by vertices
of Hd

n,2 and then we add the nodes in V (Ld)− v).

If G = (V,E) is [2, d]-rigid then |E| ≥ d|V |−
(
d+1
2

)
+d = d|V |−

(
d
2

)
if |V | ≥ d2+d+2

by Theorem 3.1. |E(Hd
n,2)| = dn −

(
d
2

)
since Cd

n has dn edges if n ≥ 2d + 1 and the
deleted edges form a complete subgraph with d vertices. Hence by Lemma 4.1 we get
the mail result of this section:

Theorem 4.2. If G = (V,E) is a strongly minimally [2, d]-rigid graph with |V | ≥
d2 + d+ 2 then |E| = d|V | −

(
d
2

)
.

5 Strongly minimally [3, 3]-rigid graphs

In this section we show that the lower bound given in Theorem 3.1 is sharp when
k = d = 3.

Lemma 5.1. C3
n is [3, 3]-rigid if n ≥ 9.

Proof. Let vi, vj ∈ V (C3
n) be arbitrary. We will prove that C3

n − {vi, vj} is [1, 3]-rigid
by constructing it from a subgraph isomorphic to K4 using 3-dimensional Henneberg-0
and Henneberg-1-extensions and ∆-X-replacements.

We can assume that j = n and i ≥ dn+1
2
e. n ≥ 9 hence i ≥ 5 and as in proof of

Lemma 4.1 it can be seen easily that the subgraph induced by v1, . . . , vi−1 is rigid.
Let ` = n − i − 1. We have to perform ` more extension to add the remaining

vertices. We split the proof into two cases depending on `.
If 1 ≤ ` ≤ 3, we add vi+1 and connect it to v1, vi−2, vi−1. If ` ≥ 2 then we add

vi+2 and connect it to v1, vi−1, vi+1. If ` = 3 then we can add vi+3 performing a
Henneberg-1 extension on edge vi+1v1 and connecting vi+3 to vi+2 and v2.

If ` ≥ 4 then we will need a ∆-X-replacement on edges v2vn−3, v1vn−4. In this
case we will add vertices vi+1, vi+2, vi+3 by Henneberg-0 extensions, vi+4, . . . , vn−2 by
Henneberg-1 extensions. We will perform these operations such that after adding vn−2
edges v2vn−3, v1vn−2, v1vn−4, vn−2vn−4 will be present in the resulting graph.

Let σ : ZZ→ {1, 2} be a function with σ(t) := 2 if t ≡ `− 2 (mod 3) and σ(t) := 1
otherwise. We add vi+1 with Henneberg-0-extension that connects it to vi−2, vi−1, vσ(1).
Then add vi+2 with a Henneberg-0-extension that connects it to vi−1, vi+1, vσ(2). Next,
we add vi+3 with a Henneberg-0-extension that connects it to vi−1, vi−2, vσ(3). Then we
add vi+m for 4 ≤ m ≤ `−1 in sequence with Henneberg-1 extension on vi+m−3vσ(m−3)
that connects it to vi+m−2, vi+m−1. Finally, we add vn−1 with a ∆-X-replacement on
edges v2vn−3, v1vn−4 as vn−2v1vn−1 is a triangle.

We have proved that C3
n is [3, 3]-rigid and clearly C3

n has 3n edges if n ≥ 7. This
together with Theorem 3.1 gives the following:

Theorem 5.2. If G = (V,E) is a strongly minimally [3, 3]-rigid graph with |V | ≥ 9
then |E| = 3|V |.
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v6

v13

v1

v2
v3

v4

v5

v7

v8

v9
v10

v11

v12

(a) Add u5 with a Henneberg-0
extension.

v6

v13

v1

v2
v3

v4

v5

v7

v8

v9
v10

v11

v12

(b) Add v7, v8, v9 with
Henneberg-0 extensions by
adding extra edges vi+mvσ(i).

v6

v13

v1

v2
v3

v4

v5

v7

v8

v9
v10

v11

v12

(c) Add v10 and v11 with
Henneberg-1 extensions on edges
v7v2, v8v1, respectively. By
performing the first of these
extensions we create the extra
edge v10v2.

v6

v13

v1

v2
v3

v4

v5

v7

v8

v9
v10

v11

v12

(d) Add v12 with ∆-X-
replacement on edges v2v10, v1v9.
(Note that v1v9v11 is a triangle.)

Figure 2: Building up C3
12 − {u, v}.

6 Higher dimensions revisited

Recall that Ld denotes the complete subgraph of Cd
n spanned by vertices vn−d+1, . . . , vn.

Let L′d denote the graph that we get from Ld by deleting the Hamiltonian cycle that
consist of edges vivi+1 for n − d + 1 ≤ i ≤ n − 1 and vn−d+1vn. Note that L′3 is the
empty graph on three vertices. Lemma 5.1 states that Cd

n − L′d is strongly minimally
[3, 3]-rigid.
|E(Cd

n − L′d)| = dn−
(
d
2

)
+ d = dn−

(
d+1
2

)
+ 2d which motivates the second part of

the following conjecture:

Conjecture 6.1. The lower bound given in Theorem 3.1 is sharp for k = 3 for any
d ≥ 3. Moreover, Cd

n −L′d is a strongly minimally [3, d]-rigid if n is sufficiently large.
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6.1 Examples for minimally [k, d]-rigid graphs 9

It remains open if the lower bound given in Theorem 3.1 is tight for some pairs
[k, d] different from [2, d] and [3, 3]. This question seems to be more complicated for
larger values of k and d as there are just a few operations known that preserve rigidity
in higher dimensions. Furthermore it was shown in [6] that the lower bound given in
Theorem 3.1 is not tight for k = 3 and d = 2, a strongly minimally [3, 2]-rigid graph
on at least 6 vertices has 2|V |+ 2 edges. Following their idea, the lower bound given
in Theorem 3.1 can also be improved if the right-hand side of (1) is larger than d|V |
because in this case ∆(G) ≥ 2d+ 1 holds.

6.1 Examples for minimally [k, d]-rigid graphs

The question whether weakly minimally [k, d]-rigid graphs exist for every pair (k, d)
can still be solved without knowing the edge count of strongly minimally [k, d]-rigid
graphs. There are examples for weakly minimally [2, 2]-rigid graphs in [7, 8, 9] but the
existence of weakly minimally [k, d]-rigid graphs for other values of k and d was open
so far. In this section we will give examples for minimally [k, d]-rigid graphs with the
same number of vertices but with different number of edges. Such a pair of graphs
shows that the graph with the larger number of edges has to be weakly minimally
[k, d]-rigid.

First we generalize an example from [8, 9]. In the following lemma, P 0
n denotes the

empty graph on n vertices.

Lemma 6.2. Let t, k and d be three positive integers with t ≥ kd + 1. Then there
exists a minimally [k, d]-rigid graph with t+ k vertices and (d+ k − 1)t−

(
d
2

)
edges.

Proof. Let the graph W d
t,k consist of P d−1

t (with vertex set {v1, . . . , vt}) and k addi-

tional vertices s1, ..., sk each of which is connected to all vertices of P d−1
t (see Figure

3). We first prove that W d
t,k is [k, d]-rigid.

For k = 1, we need to show that W d
t,1 is minimally [1, d]-rigid. As t ≥ d+ 1, s1 and

v1, . . . , vd form a complete graph with d + 1 vertices. Starting with this subgraph,
W d
t,1 can be built up by adding vertices vd+1, . . . , vt with Henneberg-0 extensions. This

proves case k = 1.
Assume that k ≥ 2. First, we show that W d

t,k − {u1, . . . , uk−1} is [1, d]-rigid if
{u1, . . . , uk−1} ⊆ {v1, . . . , vt}. As t ≥ kd + 1 there should be some integer 1 ≤
j ≤ n − d + 1 such that {vj, . . . , vj+d−1} ∩ {u1, . . . , uk−1} = ∅. Starting with the
complete subgraph spanned by {s1, vj, . . . , vj+d−1} we can build up a subgraph of
W d
t,k − {u1, ..., uk−1} up by Henneberg-0 extensions. First we add s2, ...sk one after

one and then the vertices that are not deleted from {vj+d, . . . , vt, vj−1, . . . , v1} in this
order.

Next observe that W d
t,k−si is isomorphic to W d

t,k−1 for any i ∈ {1, ..., k}. Thus by in-

duction, W d
t,k−{si, u1, . . . , uk−2} is [1, d]-rigid for every i ∈ {1, ..., k} and {u1, . . . , uk−2} ⊆

{v1, . . . , vt}. So far we proved that W d
t,k is [k, d]-rigid.

Moreover, as subgraphs, {W d
t,k − si : i ∈ {1, ..., k}} cover all edges of W d

t,k and by

induction these subgraphs are all minimally [k − 1, d]-rigid graphs, W d
t,k is minimally

[k, d]-rigid.
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6.1 Examples for minimally [k, d]-rigid graphs 10

s1

P 2
6

s2

Figure 3: W 3
6,2.

Clearly |V (W d
t,k)| = t + k. |E(W d

t,k)| = |E(P d−1
t )| + kt = (d + k − 1)t −

(
d
2

)
if

t ≥ kd+ 1 since in this case |E(P d−1
t )| = (d− 1)t−

(
d
2

)
. This completes the proof.

The cone graph of G is the graph that arises from G by adding a new vertex s and
edges sv for every v ∈ V . The operation that creates the cone graph of G is called
coning. The following claim states that one can construct [k, d]-rigid graphs by coning
[k − 1, d]-rigid graphs. However these examples will not necessarily be minimal but
by omitting some of their edges one can achieve minimality.

Claim 6.3. Let k ≥ 2 and d ≥ 1 integers. Let G = (V,E) be a [k − 1, d]-rigid graph
and let H = (V + s, E ′) be the cone graph of G. Then H is [k, d]-rigid.

Proof. We need to show that after omitting k− 1 vertices H remains [1, d]-rigid. If s
is omitted, then we are done by the [k− 1, d]-rigidity of G. Otherwise, let u1, ..., uk−1
be the omitted vertices. G − {u1, ..., uk−2} is [1, d]-rigid and s is connected to every
neighbor of vk−1. Hence H−{u1, ..., uk−1} has a subgraph isomorphic to the [1, d]-rigid
graph G− {u1, ..., uk−2} showing that it is [1, d]-rigid.

Let Hd
n,i denote the cone graph of Hd

n,(i−1) for i ≥ 3. (For the definition of Hd
n,2 see

Section 4.) By Claim 6.3 and Lemma 4.1, we get the following:

Corollary 6.4. Let t, d and k be three positive integers such that t ≥ 3d and k ≥ 2.
Then there exists a minimally [k, d]-rigid graph Hd

t,k with t + k − 2 vertices and at

most (d+ k − 2)t−
(
d
2

)
+
(
k−2
2

)
edges.

We shall also use Claim 6.3 in the proof of the following lemma.
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6.1 Examples for minimally [k, d]-rigid graphs 11

Lemma 6.5. Let t ≥ 2, k ≥ 1 and d ≥ 3 be three integers. There exists a minimally
[k, d]-rigid graph with t+ k + d− 2 vertices and (d+ k − 1)t+

(
k+d−2

2

)
− 1 edges.

Proof. Define graph Mk+d−2
t as follows. Take the disjoint union of a path Pt (on vertex

set {v1, . . . , vt}) and a complete graph Kk+d−2 (on vertex set {w1, . . . , wk+d−2}) and
add edges viwj for every pair 1 ≤ i ≤ t, 1 ≤ j ≤ k + d− 2 (see Figure 4).

P6

K3

Figure 4: M3
6 .

First we show thatMk+d−2
t is minimally [k, d]-rigid. If k = 1 then v1, v2, w1, . . . , wk+d−2

form a complete subgraph with d+ 1 vertices. Starting with this subgraph, Md−1
t can

be built up by adding v3, . . . , vt with Henneberg-0 extensions.
For k ≥ 2 graph Mk+d−2

t is [k, d]-rigid by induction and Claim 6.3. Moreover,

Mk+d−2
t −wj is isomorphic to M

(k−1)+d−2
t for any 1 ≤ j ≤ k+ d− 2 that is minimally

[k − 1, d]-rigid by induction. As d ≥ 3 these subgraphs cover Mk+d−2
t showing the

minimality.
Clearly, |V (Mk+d−2

t )| = t + k + d− 2 and |E(Mk+d−2
t )| = (t− 1) +

(
k+d−2

2

)
+ (k +

d− 2)t = (d+ k − 1)t+
(
k+d−2

2

)
− 1.

Let k, d, n be integers such that k ≥ 2, d ≥ 3 and n ≥ k(d+ 1) + 1. Put t1 = n− k
and t2 = n − k − d + 2. With this notation n = |V (W d

t1,k
)| = |V (Mk+d−2

t2 )|. We will

prove that |E(W d
t1,k

)| < |E(Mk+d−2
t2 )| which shows that Mk+d−2

t2 is weakly minimally
[k, d]-rigid. By Lemmas 6.2 and 6.5, we have to prove that

(d+ k − 1)(n− k)−
(
d

2

)
< (d+ k − 1)(n− k − d+ 2) +

(
k + d− 2

2

)
− 1.

By subtracting (d+ k − 1)(n− k)−
(
d
2

)
from each side, we get

0 <
d(d− 1)

2
+ (d+ k − 1)(−d+ 2) +

(k + d− 2)(k + d− 3)

2
− 1,

that is,

0 <
k2 − k

2

that holds for k ≥ 2.

EGRES Technical Report No. 2012-21



Section 7. A counterexample for Conjecture 2.5 12

Now, let k, d, n be positive integers such that k ≥ 2 and n ≥ max{k(d+1)+1, 3d+
k−2, 3k+2d−4+

(
k−2
2

)
}. Put t0 = n−k+2.With this notation n = |Hd

t0,k
| = |V (W d

t1,k
)|.

We will prove that |E(Hd
t0,k

)| < |E(W d
t1,k

)| which shows that W d
t1,k

is weakly minimally
[k, d]-rigid. By Lemma 6.2 and Corollary 6.4, it is enough to prove that

(d+ k − 2)(n− k + 2)−
(
d

2

)
+

(
k − 2

2

)
< (d+ k − 1)(n− k)−

(
d

2

)
By subtracting (d+ k − 2)(n− k + 2)−

(
d
2

)
+
(
k−2
2

)
from each side, we get

0 < n− 2d− 3k + 4−
(
k − 2

2

)
that holds because of the choice of n.

We have proved the following theorem:

Theorem 6.6. Let d and k be positive integers with k ≥ 2. Then there are weakly
minimally [k, d]-rigid graphs, that is, there are minimally [k, d]-rigid graphs that are
not strongly minimally [k, d]-rigid.

7 A counterexample for Conjecture 2.5

In this section we disprove Conjecture 2.5 by constructing minimally [2,2]-rigid graphs
that do not have a vertex at which the reverse degree 3 vertex addition or the reverse
X-replacement can be performed. To give such an example we will need the following
simple observation.

Claim 7.1. Let G = (V,E) be a graph. Suppose v ∈ V with d(v) = 4 is contained in
a K4 subgraph of G. Then every possible reverse X-replacement at v creates a parallel
pair of edges.

We define an operation called K4-extension that preserves [2, 2]-rigidity although
the resulting graph may not be minimally [2, 2]-rigid. Let G = (V,E) be a graph with
|V | ≥ 4, and let v1, v2, v3, v4 ∈ V be four distinct vertices. The K4-extension adds
four new vertices u1, u2, u3, u4 to G, connects vi to ui for every 1 ≤ i ≤ 4 and uk to ul
for every pair 1 ≤ k, l ≤ 4.

Claim 7.2. If G = (V,E) is [2, 2]-rigid then G′ = (V ′, E ′) obtained by a K4-extension
is also [2, 2]-rigid. Furthermore G′ − e is not [2, 2]-rigid for any e ∈ E ′ − E.

Proof. Clearly, G′ − v is rigid for any v ∈ V ′.
Consider the graph G′ − e for some e ∈ E ′ − E. Let ui ∈ V ′ − V be such that e

is not incident to ui. We claim that G′′ = G′ − ui − e is not rigid. G′′ consist of G
and a set of three vertices that is incident to five edges only. Hence there are only
2|V |−3+5 = 2|V ′|−4 independent edges in G′′ thus G′′ is not rigid as we claimed.
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Section 7. A counterexample for Conjecture 2.5 13

Now letG0 = (V0, E0) be a [2, 2]-rigid graph with V0 ≥ 4. Apply some K4-extensions
to vertices of V0, let the resulting graph be G1 = (V1, E1) (see Figure 5). Suppose
that every vertex in V0 is incident to at least five edges from E1 − E0. After the
extensions delete edges from E1 (if necessary) to obtain a minimally [2, 2]-rigid graph
G2 = (V1, E2). By Claim 7.1 deleting any edge from E1−E0 results in a graph that is
not [2, 2]-rigid hence the minimum degree in G2 is four and all the degree four vertices
are in V1− V0. Clearly we cannot perform the reverse degree 3 vertex addition in G2.
But every vertex of V1 − V0 is contained in a K4 subgraph of G2 and by Claim 7.1
every reverse X-replacement on one of these vertices creates a parallel pair of edges.
Thus no reverse X-replacement operation preserves minimal [2, 2]-rigidity of G2 which
disproves Conjecture 2.5.

d c

ba

Figure 5: A counterexample Gc for Conjecture 2.5 that we get by performing five
K4-extensions on the subgraph induced by vertices a, b, c, d. Clearly, K4 is minimally
[2, 2]-rigid hence Gc is [2, 2]-rigid by Claim 7.2. It can be easily seen that deleting any
of the edges bc, cd, db from graph Gc− a results in a flexible graph. By symmetry the
deletion of any edge of the starting graph results in a graph that is not [2, 2]-rigid.
This implies that Gc is minimally [2, 2]-rigid.

Remark 7.3. We also remark that for any positive integer t graph G1 can be con-
structed such that every vertex in V0 is incident to at least t edges from E1 − E0.
Hence G2 has vertices of degree four and the rest of its vertices has degree at least t.
Since t can be arbitrarily large this example shows that it may be difficult to find a
constructive characterization that only uses operations that add low-degree vertices.
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8 Concluding remarks

The results presented in this paper are about the edge numbers of minimally [k, d]-
rigid graphs. Similar questions were asked about minimally globally [k, d]-rigid graphs
in [8] where G = (V,E) is globally [k, d]-rigid if |V | ≥ k+ 1 and after deleting at most
k − 1 arbitrary vertices the resulting graph is globally rigid in Rd.

Other version of the problem is [k, d]-edge rigidity (and global [k, d]-edge rigidity)
where instead of at most k−1 vertices we delete at most k−1 edges of the graph. Prov-
ing similar results on these variants of the problem considered is a possible direction
of future research.

A different direction is to characterize inductively the class of graphs mentioned
above for some values of [k, d] which seems to be an interesting and difficult open
question.
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The authors thank Zsuzsanna Jankó and János Geleji for the inspiring discussions
and Tibor Jordán for posing the interesting questions solved in this paper.

References

[1] L. Berenchtein, L. Chavez, and W. Whiteley, Inductive constructions
for 2-rigidity: bases and circuits via tree partitions. Manuscript, York University,
Toronto, 2002.

[2] R. Connelly and W. Whiteley, Global Rigidity: The effect of coning.
Discrete Comput. Geom. 43: pp 717–735, 2010.

[3] J. Graver, B. Servatius, and H. Servatius, Combinatorial Rigidity. AMS
Graduate Studies in Mathematics Vol. 2, 1993.

[4] J. Graver, A Combinatorial Approach to Infinitesimal Rigidity. Technical
Report ]10, Department of Mathematics, Syracuse University, August 1984.

[5] G. Laman, On graphs and rigidity of plane skeletal structures. J. Engineering
Math. 4: pp 331–340, 1970.

[6] S.A. Motevallian, C. Yu, and B.D.O. Anderson, Multi-agent rigid for-
mations: A study of robustness to the loss of multiple agents. In: Proceedings of
the 50th IEEE CDC-ECE, pp 3602–3607, 2011.

[7] B. Servatius, Birigidity in the plane. SIAM J. Discrete Math 8: pp 582–589,
1989.

EGRES Technical Report No. 2012-21



References 15

[8] T.H. Summers, C. Yu, and B.D.O. Anderson, Robustness to Agent Loss
in Vehicle Formations and Sensor Networks. In: Proceedings of the 47th IEEE
CDC, pp 1193–1199, 2008.

[9] T.H. Summers, C. Yu, and B.D.O. Anderson, Addressing agent loss in
vehicle formations and sensor networks. International Journal of Robust and
Nonlinear Control, 19(15): pp 1673–1696, 2009.

[10] T-S. Tay and W. Whiteley, Generating Isostatic Frameworks. Structural
Topology 11: pp 21–69, 1985.

[11] W. Whiteley, Cones, infinity and one-story buildings, Structural Topology 8:
pp 53–70, 1983.

[12] W. Whiteley, Rigidity and scene analysis. In: (J.E. Goodman and J. O’Rourke
ed.) Handbook of Discrete and Computational Geometry , CRC-Press, 1997.

[13] W. Whiteley, Some matroids from discrete applied geometry. In: (J. Bonin,
J. Oxley, and B. Servatius ed.) Matroid theory, pp 171–311, Contemp. Math.,
197, AMS, Providence, 1996.

EGRES Technical Report No. 2012-21


	Introduction
	Notation

	Operations preserving rigidity
	On the number of edges in [k,d]-rigid graphs
	Lower bound for the number of edges
	Upper bound for k=2

	Strongly minimally [2,d]-rigid graphs
	Strongly minimally [3,3]-rigid graphs
	Higher dimensions revisited
	Examples for minimally [k,d]-rigid graphs

	A counterexample for Conjecture 2.5
	Concluding remarks

