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Gain-sparsity and Symmetry-forced Rigidity in the
Plane

Tibor Jordán⋆, Viktória E. Kaszanitzky⋆⋆, and Shin-ichi Tanigawa⋆ ⋆ ⋆

Abstract

We consider planar bar-and-joint frameworks with discrete point group sym-
metry in which the joint positions are as generic as possible subject to the sym-
metry constraint. We provide combinatorial characterizations for symmetry-
forced rigidity of such structures with cyclic or odd-order dihedral symmetry,
unifying and extending previous work on this subject.

We also explore the matroidal background of our results and show that
the matroids induced by the row independence of the orbit matrices of the
symmetric frameworks are isomorphic to gain sparsity matroids defined on the
quotient graph of the framework, whose edges are labeled by elements of the
corresponding symmetry group.

The proofs are based on new Henneberg type inductive constructions of the
gain graphs that correspond to the bases of the matroids in question, which can
also be seen as symmetry preserving graph operations in the original graph.

1 Introduction

This paper deals with planar bar-and-joint frameworks with point group symme-
try and provides combinatorial characterizations for symmetry-forced rigidity of such
structures with cyclic or dihedral symmetry, unifying and extending previous work on
this subject.
Frameworks can be used to model various structures with pairwise distance con-

straints and are useful in applications ranging from civil engineering [16, 28] and
crystallography [31] to sensor network localization [12] and biochemistry [34]. In sev-
eral applications the model frameworks have symmetry, which makes it interesting to
explore the impact of symmetry on the flexibility and rigidity of the framework.
In the past ten years this research area has received an ever increasing attention

which has led to rigorous definitions, a clear separation of different directions and a
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number of new results [8, 6, 24, 27, 15]. Similar questions have been identified in the
study of infinite periodic frameworks along with similar definitions and methods to
attack fundamental problems [4, 5, 22, 17, 21, 13, 14].
Our goal is to extend Laman’s classical theorem on generically rigid planar frame-

works (with no symmetry conditions), as well as its matroidal background and algo-
rithmic implications, to planar frameworks with cyclic or dihedral symmetry, assuming
that the joint positions are as generic as possible subject to the symmetry conditions.
In our symmetry-forced setting a framework is said to be flexible (non-rigid) if it
has a non-trivial symmetric infinitesimal motion. For the generic frameworks that
we consider this is equivalent to the existence of a non-trivial symmetry preserving
flex [26]. By using the orbit rigidity matrix, introduced by Schulze and Whiteley [27],
we can reformulate our problems in terms of the generic rank of a matrix in which
each row corresponds to an edge orbit and each vertex orbit has two columns. This
in turn is equivalent to characterizing independence in a matroid defined on the edge
set of the group-labeled quotient graph of the framework, in which vertices and edges
correspond to vertex and edge orbits, respectively, and which concisely represents
the graph structure with the corresponding symmetry. Our main results characterize
these matroids in the case of cyclic or odd-order dihedral symmetry. In the case of
cyclic symmetry, the matroid turns out to be a (k, l)-gain-count matroid, in which
independence is defined by imposing certain sparsity conditions on the edge sets of a
graph, whose edges are labeled by group elements. In the dihedral case of odd order
the matroid arises by a related, but more general construction.
Matroids of the former type can be obtained by matroidal operations (e.g. matroid

union and Dilworth truncation) from matroids that have been studied before and are
called frame matroids (or bias matroids) in the literature [35, 36]. These matroids, and
their relatives, which also play a role in the theory of infinite periodic frameworks, have
been generalized in a recent paper [29] which unified most of the existing results on
symmetric and periodic frameworks, including our cyclic case. However, the matroid
of the dihedral case does not fit this general class.
We prove our results by developing Henneberg type inductive constructions for the

bases of our matroids and show that these operations preserve the row-independence of
the orbit rigidity matrix. This approach, which has been used in many combinatorial
characterizations of rigidity theory, leads to the desired result. In our problems, due to
the more complex sparsity conditions and the group labeling, we also need some new
operations and extended geometric arguments, to handle the symmetry constraints.
The complete answer in the case of dihedral symmetry remains open. However, most

of our inductive steps (extending or reducing a symmetric framework or a labeled
graph, respectively) are valid also for dihedral groups of even order, and can be
used to show that in the even case the irreducible graphs (frameworks), where our
reduction operations are not applicable, are very special. Interestingly, the smallest
such framework, which is predicted to be rigid by the matroidal count but is flexible
is the Bottema mechanism, a well-known mechanism in the engineering literature.
The structure of the paper is as follows. In the rest of this section we introduce some

basic notation. In Section 2 we define and investigate gain graphs, which are directed
multigraphs with edges labeled by elements of a group. Gain count matroids, defined
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on gain graphs by sparsity conditions, are introduced in Section 3 along with the
necessary matroidal background. In Section 4 we develop our inductive construction
for the bases of a specific gain count matroid by using three operations and a single
base graph. In Section 5 we recall the basic definitions and results needed to study
symmetric frameworks, including the orbit rigidity matrix and the necessary count
conditions. In Section 6 we prove the first geometic lemmas and use them, together
with results of Section 4, to complete the characterization of rigid frameworks with
cyclic symmetry. In Section 7 we prove the inductive construction for the bases of
our second matroid by using five operations and four types of base graphs. In this
case we may need to handle graphs of minimum degree four and hence we need more
operations and longer arguments. To make the paper more readable, the lengthy
case, when the graph is four-regular, is moved to the end of the paper, to Section 9.
In Section 8 we prove additional geometic lemmas and use them, together with the
inductive construction of Section 7, to prove the second main result, the character-
ization of rigid frameworks with dihedral symmetry of odd order. We also present
frameworks that meet the sparsity requirements but are dependent and flexible when
the underlying dihedral group has even order. In Section 10 we briefly discuss the
algorithmic implications and make some further remarks.
In the rest of the introduction, let us introduce notations used thoughout the paper.
Let E be a finite set. A partition P of E is a family of nonempty subsets of E such

that each element of E belongs to exactly one member of P. If E = ∅, the partition
of E is defined as the empty set. A subpartition of E is a partition of a subset of E.
Let G = (V,E) be an undirected graph. For v ∈ V , let dG(v) be the degree of v in

G and NG(v) be the set of neighbors of v in G. For F ⊆ E, VG(F ) denotes the set of
endvertices of edges in F , and let G[F ] = (V (F ), F ), that is, the graph edge-induced
by F . If the graph is clear from the context, the subsript G may be dropped. For
F ⊆ E and v ∈ V (F ), let dF (v) = dG[F ](v).
A vertex subset X ⊂ V (G) (resp., an edge subset X ⊂ E(G) is called a separator

(resp., a cut) if the removal of X disconnects G. A separator X with |X| = 1 is
called a cut-vertex. G is called k-connected (resp., k-edge-connected) if the size of any
separator (resp., any cut) is at least k. A separator (resp., a cut) is called nontrivial
if its removal disconnects G into at least two nontrivial connected components, where
a connected component is called trivial if it consists of a single vertex. G is called
essentially k-connected (resp., essentially k-edge-connected) if the size of any nontrivial
separator (resp., any nontrivial cut) is at least k.
For simplicity, some properties of edge-induced subgraphs will be associated with

the corresponding edge sets as follows. Let F ⊆ E. F is called connected if G[F ] is
connected. A connected component of F is the edge set of a connected component
of G[F ]. C(F ) denotes the partition of F into connected components of F , and let
c(F ) = |C(F )|. F is called a forest if it contains no cycle and called a tree if it is a
connected forest. F is called a spanning tree of a graph G = (V,E) if F is a tree with
F ⊆ E and V (F ) = V .
Let G = (V,E) be a directed graph. A walk in G is a sequence W =

v0, e1, v1, e2, v2, . . . , vk−1, ek, vk of vertices and edges such that vi−1 and vi are the end-
vertices of ei for every 1 ≤ i ≤ k. The reversed walk of W is W−1 = vk, ek, . . . , e1, v0.
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We often denote a walk as a sequence of edges implicitly assuming the incidence at
each vertex. For two walks W and W ′ for which the end vertex of W and the starting
vertex of W ′ coincide, we denote the concatenation of W and W ′ (that is, the walk
W followed by W ′) by W ∗W ′. A walk is called closed if the starting vertex and the
end vertex coincide.
It is sometimes convenient to regard the empty set as a subgroup of a group. Let

D be a dihedral group. For a cyclic subgroup C of D, C̄ denotes the maximal cyclic
subgroup containing C.

2 Gain Graphs

In this section we shall review some basic properties of gain graphs. We refer the
reader to [11, 35, 36] for more details.
Let G = (V,E) be a directed graph which may contain multiple edges and loops,

and let S be a group. An S-gain graph (G, φ) is a pair, in which each edge is associated
with an element of S by a gain function φ : E → S. See Figure 1 for an example. The
orientation of G is, in some sense, arbitrary, and is used only as a reference orentation:
the orientation of each edge may be changed, provided that we also modify φ such
that if the edge has gain g in one direction then it has gain g−1 in the other direction.
Therefore we often do not distinguish between G and the underlying undirected graph
and use notations introduced in §1, implicitly referring to the underlying graph.

v1
v2

v3

v4

v5
v6

e1, id

e2, id e3, a

e4, b
2 e5, b

−1 e6, id

e7, a
3 e8, id

e9, a

Figure 1: An example of an S-gain graph, where S is a group generated by a and b.

LetW be a walk in (G, φ). The gain ofW is defined as φ(W ) = φ(e1)·φ(e2) · · ·φ(ek)
if each edge is oriented in the forward direction through W , and for a backward
edge ei we replace φ(ei) with φ(ei)

−1 in the product. For example, in Figure 1,
W = e2, e5, e7, e4 is a closed walk starting at v1 and its gain is b−1a3b−2. Note that
φ(W−1) = φ(W )−1.
Let (G, φ) be a gain graph. For v ∈ V (G) we denote by π1(G, v) the set of closed

walks starting at v. Similarly, for X ⊆ E(G) and v ∈ V (G), π1(X, v) denotes the
set of closed walks starting at v and using only edges of X , where π1(X, v) = ∅ if
v /∈ V (X).
Let X ⊆ E(G). The subgroup induced by X relative to v is defined as 〈X〉φ,v =

{φ(W ) | W ∈ π1(X, v)}. The subscript φ of 〈X〉φ,v is sometimes omitted if it is clear
from the context.
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2.1 The switching operation 5

Proposition 2.1. For any connected X ⊆ E(G) and two vertices u, v ∈ V (X), 〈X〉u
is conjugate to 〈X〉v.

Proof. Since X is connected, there is a path P starting at u and ending at v. Then,
for allW ∈ π1(X, u), P

−1∗W ∗P ∈ π1(X, v) and hence φ(P )−1φ(W )φ(P ) ∈ 〈X〉v.

2.1 The switching operation

For v ∈ V (G) and g ∈ S, a switching operation at v with g changes the gain function
φ on E(G) as follows.

φ′(e) =







g · ψ(e) · g−1 if e is a loop incident with v

g · φ(e) if e is a non-loop edge and is directed from v

φ(e) · g−1 if e is a non-loop edge and is directed to v

φ(e) otherwise.

(1)

We say that a gain function φ′ on edge set E(G) is equivalent to another gain function
φ on E(G) if φ′ can be obtained from φ by a sequence of switching operations.

Proposition 2.2. Let (G, φ) be a gain graph. Let φ′ be the gain function obtained
from φ by a switching operation. Then, for any X ⊆ E(G) and u ∈ V (G), 〈X〉φ′,u is
conjugate to 〈X〉φ,u.

Proof. Suppose the switching operation is performed at v ∈ V (G) with g ∈ S. Notice
that φ′(e)φ′(f) = φ(e)φ(f) for any incoming edge e to v and any outgoing edge f from
v. Also, φ′(e) = φ(e) for any edge e not incident to v. Hence, for any closed walk W
starting at u ∈ V (G), we have φ′(W ) = φ(W ) if u 6= v and φ′(W ) = g · φ(W ) · g−1 if
u = v. Thus, for any X ⊆ E(G), we have 〈X〉φ′,u = 〈X〉φ,u if u 6= v, and 〈X〉φ′,v =
g · 〈X〉φ,v · g

−1 if u = v.

Proposition 2.2 implies the following useful property.

Proposition 2.3. Let (G, φ) be a gain graph. Then, for any forest F ⊆ E(G), there
is a gain function φ′ equivalent to φ such that φ′(e) = id for every e ∈ F .

Proof. Suppose that G is connected. Let T be a spanning tree of G with F ⊆ T .
Take a vertex u as a root and consider T as a rooted tree, i.e., edges of T are oriented
from the root to descendants. We then perform switching operations from the root
to descendants so that φ(e) = id for e ∈ T .
More precisely, we first take a child v of the root u and perform a switching operation

at v with φ(uv). We then take a child w of v and perform a switching operation at w
with φ′′(vw), where φ′′ is the gain function obtained by the first switching operation.
We perform this process from the root to all leaves. Each operation makes the gain
of an edge e of T identity, and after that the gain of e is never changed. Therefore,
for the final gain function φ′, we have φ′(e) = id for all e ∈ T . See Figure 2 for an
example.
If G is not connected, we can apply this argument to each connected component.
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v1
v2

v3

v4

v5
v6

e1, a
−1

e2, id e3, id

e4, b
2a−3b e5, id e6, b

−1a

e7, id e8, id

e9, b
−1a4b

Figure 2: An equivalent gain function for the graph of Figure 1, where the gain of
each edge in T = {e2, e3, e5, e7, e8} is identity.

2.2 Balanced and cyclic sets of edges

As we shall see, the subgroup 〈X〉v itself will not be important, when we define our
matroids induced by gains. We only need to know whether 〈X〉v is trivial or not, or
whether it is cyclic or not. We now introduce notions to describe these properties.
Let (G, φ) be a gain graph. A connected edge subset F ⊆ E(G) is called balanced

if 〈F 〉v = {id} for some v ∈ V (F ). F is called unbalanced if it is not balanced.
By Proposition 2.1, this property is invariant under the choice of the base vertex
v ∈ V (F ), and F is unbalanced if and only if F contains an unbalanced cycle. Thus
we can extend this notion to any (possibly disconnected) F ⊆ E(G), and say that F
is unbalanced if and only if F contains an unbalanced cycle.
In the same way, a connected edge subset F ⊆ E(G) is called cyclic if 〈F 〉v is a

cyclic subgroup of S for some v ∈ V (F ). (Note that the terms balanced and cyclic
are not exclusive.) As above, this property is invariant under the choice of the base
vertex v ∈ V (F ). However, F may be cyclic even if F contains two closed walks
W1 and W2 such that the group generated by φ(W1) and φ(W2) is not cyclic, if the
starting vertices of the walks are distinct. In general, a (possibly disconnected) edge
subset F ⊆ E(G) is called cyclic if every connected component of F is cyclic.
A gain graph (G, φ) is called balanced and cyclic if E(G) is balanced and cyclic,

respectively.
Consider two closed walks W,W ′ ∈ π1(F, v) for which W first walks through a path

P starting from v and W ′ walks through P−1 at the end as shown in Figure 3. If we
omit P−1 and P in W ′ ∗W , we obtain a closed walk with base vertex v. This walk is
denoted by W ′ ◦W . Notice that

φ(W ′ ◦W ) = φ(W ′) · φ(W ). (2)

Proposition 2.3 suggests a simple way to check the above introduced properties of
X , in analogy with the fact that the cycle space of a graph is spanned by fundamental
cycles. For a connected X ⊆ E(G), take a spanning tree T of the edge induced
graph G[X ]. By Proposition 2.3 we can convert the gain function to an equivalent
gain function such that φ(e) = id for all e ∈ T . Then, observe that any closed walk
W ∈ π1(X, v) can be decomposed intoW =W1◦W2◦· · ·◦Wk such thatWi is a closed
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W

W
′

P
P

−1
W

′
◦ W

v v

Figure 3

walk in π1(X, v) that passes through only one edge of X \ T . To see this, denote W
by W = v1v2, v2v3, . . . , vkvk+1, and let Wi = Pi ∗ {vivi+1} ∗ P

−1
i+1 for 1 ≤ i < k, where

Pi denotes the path from v to vi in T .
By (2) and φ(e) = id for all e ∈ T , we deduce that φ(W ) is a product of elements in

{φ(e) : e ∈ X \T}, implying that 〈X〉φ,v ⊆ 〈φ(e) : e ∈ X \T 〉, where 〈φ(e) : e ∈ X \T 〉
is the group generated by {φ(e) : e ∈ X \ T}. Conversely, φ(e) is contained in 〈X〉φ,v
for all e ∈ X \ T . Thus, 〈X〉φ,v = 〈φ(e) : e ∈ X \ T 〉. In particular, we proved the
following.

Lemma 2.4. For a connected X ⊆ E(G) and a spanning tree T of G[X ], suppose
that φ(e) = id for all e ∈ T . Then, 〈X〉φ,v = 〈φ(e) : e ∈ X \ T 〉. In particular, the
following hold.

(i) X is unbalanced if and only if there is an edge in X \T whose gain is non-identity.

(ii) X is cyclic if and only if all gains of X \ T are contained in a cyclic subgroup of
S.

The following technical lemmas will be used in the proof of our main theorem.

Lemma 2.5. Let (G, φ) be a S-gain graph, and X and Y be connected edge subsets
such that the graph (V (X) ∩ V (Y ), X ∩ Y ) is connected.

(1) If X and Y are balanced, then X ∪ Y is balanced.

(2) If X is balanced and Y is cyclic, then X ∪ Y is cyclic.

(3) If X, Y are cyclic and X∩Y is unbalanced, then X∪Y is cyclic, provided that for
every non-trivial cyclic subgroup C of S there is a unique largest cyclic subgroup
C̄ of S containing C.

Proof. Since the graph (V (X) ∩ V (Y ), X ∩ Y ) is connected, there is a spanning tree
T in G[X ∪ Y ] such that T ∩X is a spanning tree of G[X ], T ∩ Y is a spanning tree
of G[Y ], and T ∩X ∩ Y is a spanning tree of G[X ∩ Y ]. By Proposition 2.3, there is
a gain function φ′ equivalent to φ such that φ′(e) = id for each e ∈ T .
If X and Y are balanced, Lemma 2.4 implies that φ′(e) = id for all e ∈ X ∪ Y .

Thus (1) holds.
If X is balanced, then every label in X ∪ Y is contained in 〈Y 〉φ′,v by Lemma 2.4,

and hence X ∪ Y is cyclic if Y is cyclic. This implies (2).
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If X, Y are cyclic and X ∩ Y is unbalanced, then there is an edge e ∈ X ∩ Y for
which φ′(e) is non-identity. Let C be a cyclic subgroup of S generated by φ′(e) and
C̄ be the largest cyclic subgroup containing C. Since X and Y are cyclic, Lemma 2.4
implies that φ′(e) ∈ C̄ holds for every e ∈ X and for every e ∈ Y . Therefore X ∪ Y is
cyclic.

Lemma 2.6. Let (G, φ) be a gain graph, and X and Y be connected balanced edge
subsets. If the number of connected components of the graph (V (X) ∩ V (Y ), X ∩ Y )
is two, then X ∪ Y is cyclic.

Proof. We take a spanning tree T of G[X ∪ Y ] such that T ∩ X is a spanning tree
of G[X ]. Since the number of connected components of (V (X) ∩ V (Y ), X ∩ Y ) is
two, T ∩Y consists of two connected components, denoted T1 and T2. {V (T1), V (T2)}
partitions Y into three subsets {Y1, Y2, Y3} such that Yi = {e ∈ Y : V ({e}) ⊆ V (Ti)}
for i = 1, 2 and Y3 = Y \ (Y1 ∪ Y2).
By Proposition 2.3, we can take a gain function φ′ equivalent to φ such that φ′(e) =

id for e ∈ T . Since X and Y are balanced, we have φ′(e) = id for e ∈ X ∪ Y1 ∪ Y2.
Moreover, assuming that every edge in Y3 is oriented toward V (Y1), we have φ′(e) =
φ′(f) for all e, f ∈ Y3, since otherwise T1 ∪ T2 ∪ {e, f} contains an unbalanced cycle,
contradicting the fact that Y is balanced. Therefore X ∪ Y is cyclic.

Remark 2.1. By Proposition 2.1, for each X ⊆ E(G), the property of being balanced is
invariant under the choice of the base vertex v ∈ V (X) and hence is simply determined
by the homology of X rather than π1(X, v), see e.g., [35]. For the property of being
cyclic or non-cyclic, we need π1(X, v).

3 Gain Count Matroids

3.1 Matroids induced by submodular functions

Let E be a finite set. A function µ : 2E → R is called submodular if µ(X) + µ(Y ) ≥
µ(X ∪ Y ) + µ(X ∩ Y ) for every X, Y ⊆ E. µ is monotone if µ(X) ≤ µ(Y ) for any
X ⊆ Y . A monotone submodular function µ : 2E → Z induces a matroid on E, where
F ⊆ E is independent if and only if |I| ≤ µ(I) for every nonempty I ⊆ F . See e.g.
[9, Section 13.4]. This matroid is denoted by M(µ).
For a monotone submodular function µ, let ν = µ − 1. Then, ν is monotone sub-

modular and induces the matroid M(ν). This matroid is referred to as the Dilworth
truncation of M(µ). Although the details are omitted here, the name of Dilworth
truncation is justified from a connection with Dilworth truncation for general ma-
troids, see [9, 23] for more details.
Now we consider the union of two matroids induced by monotone submodular

functions µ1 and µ2. Since monotonicity and submodularity are both preserved under
the sum operation, µ1 + µ2 is monotone and submodular. In general, the union of
M(µ1) and M(µ2) is not equal to M(µ1 + µ2). We do have equality in some special
cases, for example, when µ1 = µ2 or when both µ1 and µ2 are nonnegative.
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3.2 Gain-count matroids 9

As an example, consider the union of two copies of the graphic matroid of a graph
G = (V,E). It is the matroid induced by f2,2 defined by f2,2(F ) = 2|V (F )| − 2 on
E, as f2,2/2 induces the graphic matroid on G. The 2-dimensional generic rigidity
matroid is the one induced by f2,2 − 1, and hence it is the Dilworth truncation of the
union of two copies of the graphic matroid.
In general, for a graph G = (V,E) and two integers k and l with k ≥ 1 and

l ≤ 2k − 1, let
fk,l(F ) = k|V (F )| − l (F ⊆ E).

G is called (k, l)-sparse if |F | ≤ fk,l(F ) for any nonempty F ⊆ E. The matroid
induced by fk,l is called the (k, l)-count matroid on G. If l ≥ 0, M(fk,l) is indeed the
one induced by fk,0, truncated l times. See e.g. [9] for more detail. Below we shall
apply the same construction to the union of some copies of a frame matroid to define
gain-count matroids.

3.2 Gain-count matroids

Let Θ be the graph with two vertices u and v and three parallel edges. A subdivision
of Θ is called a theta graph. So a theta graph consists of three openly disjoint paths
between u and v, and contains three cycles.
Let G = (V,E) be an undirected multigraph which may contain loops and parallel

edges. A family C of cycles of G is called a linear class if it satisfies the following
property: if two cycles in C form a theta subgraph, then the third cycle of the theta
subgraph is also contained in C. For a graph G = (V,E) and a linear class C of cycles,
the frame matroid (sometimes called bias matroid) F(G, C) is defined such that F ⊆ E
is independent if and only if each connected component of F contains no cycle or just
one cycle, which is not included in the linear class C [36]. Therefore, the rank of
F ⊆ E in F(G, C) is equal to

gC(F ) :=
∑

Fi∈C(F )

(|V (Fi)| − 1 + αC(Fi))

where

αC(F ) =

{

1 if F contains a cycle not included in C

0 otherwise.

This implies that gC is monotone and submodular.
In this paper we shall consider frame matroids on gain graphs. For a group S and

an S-gain graph (G, φ), let C be the set of balanced cycles. It is easy to check that C
forms a linear class, and the associated frame matroid can be defined with respect to
C. This matroid is called the frame matroid of (G, φ) [36]. If we define gS : 2E → Z

by

gS(F ) =
∑

Fi∈C(F )

(|V (Fi)| − 1 + αS(Fi)) (3)

where

αS(F ) =

{

1 if F is unbalanced

0 otherwise,
(4)
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3.2 Gain-count matroids 10

then the frame matroid is the matroid induced by gS . We omit the subscript S from
αS if it is clear from the context.
For an S-gain graph and two positive integers k and l with k ≤ l, we define

gk,l : 2
E → Z by

gk,l(F ) = kgS(F )− (l − k). (5)

We call the matroid M(gk,l) induced by gk,l a (k, l)-gain-count matroid or g-count
matroid for short. This matroid is the union of k copies of the frame matroid, followed
by l − k Dilworth truncations. In this paper, we shall investigate the (2, 3)-g-count
matroid and its variants.
The independence of M(gk,l) can be described in a compact form.

Lemma 3.1. Let (G, φ) be an S-gain graph. Then E(G) is independent in M(gk,l)
if and only if |F | ≤ k|V (F )| − l + kα(F ) for any nonempty F ⊆ E(G).

Proof. “If”-part: Suppose that |F | ≤ k|V (F )| − l+ kα(F ) for any nonempty F ⊆ E.
Note that gk,l(F ) = k|V (F )| − l+ kα(F ) if F is connected. Thus, for any F ⊆ E, we
have |F | =

∑

Fi∈C(F ) |Fi| ≤
∑

Fi∈C(F )(k|V (Fi)| − l + kα(Fi)) =
∑

Fi∈C(F ) k(|V (Fi)| −

1+α(Fi))− (l−k)c(F ) ≤ gk,l(F ) by c(F ) ≥ 1. Thus E(G) is independent in M(gk,l).
“Only if”-part: If E(G) is independent in M(gk,l), then for each connected F we

have |F | ≤ gk,l(F ) = k|V (F )| − l + kα(F ). Therefore,

|F | =
∑

Fi∈C(F )

|Fi| ≤ k|V (F )| − lc(F ) + k
∑

Fi∈C(F )

α(Fi). (6)

Since α is a monotone 0-1 valued function,
∑

Fi∈C(F ) α(Fi) ≤ α(F ) + c(F )− 1. Com-

bining this with (6) and k ≤ l, we get |F | ≤ k|V (F )|− lc(F )+kα(F )+k(c(F )−1)≤
k|V (F )| − l + kα(F ) for any nonempty F ⊆ E(G).

In this sense, we may define (k, l)-gain-sparsity as in the case of (k, l)-sparsity of
undirected graphs as follows.

Definition 3.1. Let k and l be positive integers with k ≤ l and (G, φ) be an S-gain
graph with a graph G = (V,E) and a group S. An edge set X ⊆ E is called (k, l)-
gain-sparse (or (k, l)-g-sparse for short) if |F | ≤ g2,3(F ) for any nonempty F ⊆ X ,
i.e.,

• |F | ≤ k|V (F )| − l for every nonempty balanced F ⊆ X ;

• |F | ≤ k|V (F )| − l + k for every nonempty unbalanced F ⊆ X ,

and it is clalled (k, l)-gain-tight (or (k, l)-g-tight for short) if it is (k, l)-g-sparse with
|X| = gk,l(X).
(G, φ) is called (k, l)-g-sparse if so is E(G), and it is called maximum (k, l)-g-tight

if it is (k, l)-g-sparse with |E(G)| = k|V (G)| − l + k.

Remark 3.1. Note that the value of gk,l is invariant under switching operations, and
thus the induced matroid is uniquely determined up to equivalence of gain functions.
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Remark 3.2. We can further consider the union of frame matroids of gain graphs
(G, φ1) and (G, φ2) with the same underlying graph but distinct gain functions. We
should remark that both graphic matroids and bicircular matroids are special cases
of frame matroids. The union of copies of graphic, frame and bicircular matroids on
an S-gain graph, followed by Dilworth truncations, can be described as the matroid
induced by a counting condition. For example, in the union of the graphic matroid
and the frame matroid of a gain graph (G, φ), followed by a single Dilworth truncation,
E(G) is independent if and only if |F | ≤ 2|V (F )| − 3 for any balanced set F ⊆ E(G)
and |F | ≤ 2|V (F )| − 2 for any nonempty F ⊆ E(G). This matroid was used by
Ross [22] for characterizing the generic rigidity of bar-joint frameworks on a torus. In
[29] Tanigawa proposed a more general class of gain graphs extending matroid union
operations.

4 Constructive Characterization of Maximum

(2, 3)-g-tight Graphs

4.1 Operations preserving (2, 3)-g-sparsity

In this section we define three operations, called extensions, that preserve (2, 3)-g-
sparsity. The first two operations generalize the well-known Henneberg operations [30,
32] to gain graphs.
Let (G, φ) be an S-gain graph. The 0-extension adds a new vertex v and two new

non-loop edges e1 and e2 to G such that the new edges are incident to v and the
other endvertices are two not necessarily distinct vertices of V (G). If e1 and e2 are
not parallel then their labels can be arbitrary. Otherwise the labels are assigned such
that φ(e1) 6= φ(e2), assuming that e1 and e2 are directed to v.
The 1-extension first chooses an edge e and a vertex z, where e may be a loop and

z may be an endvertex of e. It subdivides e, with a new vertex v and new edges e1, e2
such that the tail of e1 is the tail of e and the tail of e2 is the head of e. The labels
of the new edges are assigned such that φ(e1) · φ(e2)

−1 = φ(e). The 1-extension also
adds a third edge e3 oriented to v. The label of e3 is assigned so that it is locally
unbalanced, i.e., every two-cycle eiej , if exists, is unbalanced.
The loop 1-extension adds a new vertex v to G and connects it to a vertex z ∈ V (G)

by a new edge with any label. It also adds a new loop l incident to v with φ(l) 6= id.

Lemma 4.1. Let (G, φ) be a (2,3)-g-sparse S-gain graph. Applying the 0-extension,
1-extension or loop 1-extension to G results in a (2,3)-g-sparse graph (G′, φ′) with
|V (G′)| = |V (G)|+ 1 and |E(G′)| = |E(G)|+ 2.

Proof. For a contradiction, suppose that G′ contains an edge set F ⊆ E(G′) for which
|F | > 2|V (F )|−3+2α(F ). Let v be the new vertex added by the extension, and let Ev

be the set of edges incident to v. Since E(G′)\Ev ⊆ E(G), Ev∩F 6= ∅. In particular,
v ∈ V (F ). Also, since the new labeling is assigned to be locally unbalanced, F is not
contained in Ev.
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(a) (b)

(c)

Figure 4: (a) 0-extension, where the new edges may be parallel. (b) 1-extension,
where the removed edge may be a loop and the new edges may be parallel. (c)
loop-1-extension.

If G′ is constructed by a 1-extension then let e be the subdivided edge of G and let
e1 and e2 be the resulting two new edges.
Let F ′ = F \ Ev. If G′ is constructed by a 1-extension and {e1, e2} ⊆ F , then

we further insert e to F ′. We then have |F ′| ≥ |F | − 2, |V (F ′)| = |V (F )| − 1, and
α(F ′) ≤ α(F ) in each case. These imply |F ′| ≥ |F | − 2 > 2|V (F )| − 5 + 2α(F ) ≥
2|V (F ′)| − 3+ 2α(F ′), contradicting the (2, 3)-g-sparsity of G as ∅ 6= F ′ ⊆ E(G).

We shall define the inverse moves of the operations above, which are called reduc-
tions. For a vertex v and two incoming non-loop edges e1 = (u, v) and e2 = (w, v), we
denote by e1 · e

−1
2 a new edge from u to w with label φ(e1) · φ(e2)

−1 (by extending φ).
If u = w then e1 · e

−1
2 is a loop. Each reduction corresponds to one of the following

operations on a gain graph (G, φ).
The 0-reduction chooses a degree two vertex and deletes it from G.
The 1-reduction chooses a vertex v with d(v) = 3 that is not incident to a loop. Let

e1, e2, e3 be the edges incident to v. Without loss of generality we may assume that
each ei is oriented to v. The 1-reduction deletes v with the incident edges and adds
one of e1 · e

−1
2 , e2 · e

−1
3 and e3 · e

−1
1 as a new edge.

The loop 1-reduction chooses a vertex incident to exactly one loop and one non-loop
edge and deletes the chosen vertex with the incident edges.
A 1-reduction may destroy the (2, 3)-g-sparsity of a graph. We say that a reduction

(at a vertex v) is admissible if the resulting graph is (2,3)-g-sparse.

4.2 Constructive characterization

Lemma 4.2. Let (G, φ) be a (2,3)-g-sparse graph and v ∈ V (G) a vertex not incident
to a loop with d(v) = 3. Then there is an admissible 1-reduction at v.

Proof. Let E = E(G), G′ = G−v and E ′ = E(G′). Let e1, e2, e3 be the edges incident
to v in G. Without loss of generality we may assume that each ei is oriented to v.
For simplicity we put ei,j = ei · e

−1
j .
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Suppose for a contradiction that there is no admissible splitting at v, that is,
none of E ′ + e1,2, E

′ + e2,3 and E ′ + e3,1 is independent in M(g2,3). Equivalently,
e1,2, e2,3, e3,1 ∈ clg(E

′), where clg denotes the closure operator of M(g2,3). Let
X = {e1, e2, e3, e1,2, e2,3, e3,1}.

Claim 4.3. e1 ∈ clg(X − e1).

Proof. We split the proof into three cases depending on the cardinality of N(v).
If |N(v)| = 3 then, by Proposition 2.3, we may assume φ(e1) = φ(e2) = φ(e3) = id.

We then have φ(e1,2) = φ(e2,3) = φ(e3,1) = id. Therefore X forms a balanced K4,
which is a circuit of M(g2,3). Thus, e1 ∈ clg(X − e1) holds.
If |N(v)| = 2 then we may assume that e1 and e2 are parallel. By Proposition 2.3,

we may assume that φ(e2) = φ(e3) = id. This implies φ(e1,3) = φ(e1) and φ(e2,3) = id.
Since G is (2, 3)-g-sparse, we have φ(e1) 6= id by φ(e2) = φ(e3) = id, which implies
that e1,2 is an unbalanced loop with φ(e1,2) = φ(e1). Thus, it can be easily checked,
by counting, that X is indeed a circuit in M(g2,3). Thus, e1 ∈ clg(X − e1) holds.
If |N(v)| = 1 then let X ′ = {e1, e2, e3, e1,2}. We have |X ′| = 2|V (X ′)| and X ′ is a

circuit of M(g2,3). Therefore e1 ∈ clg(X
′ − e1) ⊂ clg(X − e1).

Since e1,2, e2,3, e3,1 ∈ clg(E
′), by Claim 4.3, we have e1 ∈ clg(X− e1) ⊆ clg(E

′+X−
e1) = clg(E

′ + e2 + e3) = clg(E − e1), which contradicts the (2, 3)-g-sparsity of G.

We are now ready to show a constructive characterization of maximum (2, 3)-g-tight
graphs.

Theorem 4.4. An S-gain graph (G, φ) is maximum (2,3)-g-tight if and only if it can
be built up from an S-gain graph with one vertex and an unbalanced loop incident to
it with a sequence of 0-extensions, 1-extensions, and loop-1-extensions.

Proof. By Lemma 4.1, by applying any of the extension operations we obtain a max-
imum (2,3)-g-tight graph from a maximum (2, 3)-g-tight graph.
To prove the other direction it is sufficient to show that G can be reduced to a

smaller (2, 3)-g-tight graph. Since |E(G)| = 2|V (G)| − 1, the average degree is less
than 4, which implies that there is a vertex v of degree at most 3. If d(v) = 2, the
0-reduction can be applied at v which is always admissible. If d(v) = 3, we have two
cases depending on whether v is incident to a loop or not. If v is incident to a loop, the
loop-1-reduction, which is always admissible, can be applied at v to obtain a smaller
(2, 3)-g-tight graph. Otherwise, by Lemma 4.2, there is an admissible 1-reduction at
v.

5 Symmetry-forced Rigidity

In this section we define the notion of symmetry-forced infinitesimal rigidity, intro-
duced by Schulze and Whiteley [27]. In §5.1, we first introduce S-symmetric graphs,
whose automorphism group has a subgroup isomorphic to S. In §5.2 we shall review
the conventional notion of infinitesimal rigidity. In §5.3 we introduce symmetry-forced
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infinitesimal rigidity, which is only concerned with infinitesimal motions invariant un-
der the underlying symmetry. In §5.4 we introduce the orbit rigidity matrix, which
is the main tool for investigating symmetry-forced infinitesimal rigidity in the subse-
quent sections. In §5.5 we prove a necessary condition for symmetric frameworks to
be symmetry-forced infinitesimally rigid.

5.1 S-symmetric graphs

Let H be a simple graph. An automorphism of H is a permutation π : V (H) →
V (H) such that {u, v} ∈ E(H) if and only if {π(u), π(v)} ∈ E(H). The set of all
automorphisms of H forms a subgroup of the symmetric group of V (H), known as
the automorphism group Aut(H) of H .
Let S be a group. An action of S on H is a group homomorphism ρ : S → Aut(H).

An action ρ is called free if ρ(g)(v) 6= v for any v ∈ V and any non-identity g ∈ S.
We say that a graph H is (S, ρ)-symmetric if S acts on H by ρ. If ρ is clear from
the context, we will simply denote ρ(g)(v) by g · v or gv. Note that, for g ∈ S and
u, v ∈ V , {u, v} ∈ E(H) if and only if {gu, gv} ∈ E(H), and hence there is an induced
action of S on E(H) defined by g · {u, v} = {gu, gv}.
Let H be an (S, ρ)-symmetric graph. The quotient graph H/S of H is a multigraph

on the set V (H)/S of vertex orbits, together with the set E(H)/S of edge orbits as
the edge set. An edge orbit may be represented by a loop in H/S. Figure 5 provides
an example when S is the dihedral group of order 4.

id

r

Cπ

id

r

Figure 5: A D4-symmetric graph and the quotient gain graph.

Different graphs may have the same quotient graph. However, if we assume that ρ
is free, then a gain labeling makes the relation one-to-one. To see this, we arbitrarily
choose a vertex v as a representative vertex from each vertex orbit. Then, each orbit
is written by Sv = {gv : g ∈ S}. If ρ is a free action, an edge orbit connecting Su
and Sv in H/S can be written by {{gu, ghv} : g ∈ S} for a unique h ∈ S. We then
orient the edge orbit from Su to Sv in H/S and assign to it the gain h. In this way,
we obtain the quotient S-gain graph, denoted (H/S, φ).
Conversely, any S-gain graph (G, φ) can be “lifted” as an (S, ρ)-symmetric graph

with a free action ρ. To see this, we simply denote the pair (g, v) of g ∈ S and
v ∈ V (G) by gv. The covering graph (also known as the derived graph) of (G, φ) is
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5.2 Bar-joint frameworks and infinitesimal rigidity 15

the simple graph with vertex set S × V (G) = {gv : g ∈ S, v ∈ V (G)} and the edge
set {{gu, gφ(e)v} : e = (u, v) ∈ E(G), g ∈ S}. Clearly, S freely acts on the covering
graph, under which the quotient gain graph comes back to (G, φ). For more properties
of covering graphs, see e.g. [3, 11].

5.2 Bar-joint frameworks and infinitesimal rigidity

Before we investigate the rigidity theory of symmetric graphs we review the basic
notions of the conventional rigidity of graphs.
A d-dimensional bar-joint framework (or simply a framework) is a pair (H, p) of

a simple graph H and a mapping p : V (H) → Rd, called a joint-configuration. We
denote the set {p(v) : v ∈ V (H)} of points by p(H).
Infinitesimal rigidity is concerned with the dimension of the space of infinitesimal

motions. An infinitesimal motion of a framework (H, p) is defined as an assignment
m : V (H) → Rd such that

〈m(u)−m(v), p(u)− p(v)〉 = 0 for all {u, v} ∈ E(H) (7)

where 〈·, ·〉 denotes the standard inner product in the d-dimensional Euclidean space.
The set of infinitesimal motions forms a linear space, denoted L(H, p).
In general, for a set P ⊆ Rd of points, an infinitesimal isometry of P is defined by

m : P → Rd such that

〈m(x)−m(y), x− y〉 = 0 for all x, y ∈ P.

The set of infinitesimal isometries forms a linear space, denoted by iso(P ). Notice
that, for a skew-symmetric matrix S and t ∈ Rd, a mapping m : P → Rd defined by

m(x) = Sx+ t (x ∈ P )

is an infinitesimal isometry of P . Indeed, it is well-known that any infinitesimal
isometry can be described in this form, and

dim iso(P ) = d(k + 1)−

(
k + 1

2

)

, (8)

where k denotes the affine dimension of P .

Example 5.1. Let us consider the infinitesimal isometries of a point set P in the plane.
According to (8), we have

dim iso(P ) =

{

3 if |P | ≥ 2

2 if |P | = 1.

For t ∈ R2, let mt(x) = t (x ∈ P ). Then, mt is an infinitesimal isometry, called a
translation. On the other hand, let mr(x) = Cπ/2x (x ∈ P ), where Cπ/2 denotes the
2× 2 orthogonal matrix representing the 4-fold rotation around the origin. Then, mr

is also an infinitesimal isometry, which we call an infinitesimal rotation. It is well
known that iso(P ) is spanned by {mt, mt′ , mr} for two linearly independent vectors
t, t′ ∈ R2. See Figure 6 for examples.
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An infinitesimal motion m : V (H) → Rd of a framework (H, p) is said to be trivial
if m can be expressed by

m(v) = Sp(v) + t (v ∈ V (H)) (9)

for some skew-symmetric matrix S and t ∈ Rd. The set of all trivial motions forms a
linear subspace of L(H, p), denoted by tri(H, p). By definition, tri(H, p) is isomorphic
to iso(p(H)), and hence (8) gives the exact dimension of tri(H, p). (H, p) is called
infinitesimally rigid if L(H, p) = tri(H, p).

5.3 Symmetric frameworks and symmetric infinitesimal

rigidity

A discrete point group (or simply a point group) is a finite discrete subgroup of O(Rd),
the orthogonal group of dimension d, i.e., the set of d× d orthogonal matrices over R.
For d = 2, point groups are classified into two classes, groups Ck of k-fold rotations
and dihedral groups Dk of order k. For a special case, D1 consists of a mirror-reflection
and the identity. In the subsequent discussion of this section, S denotes a point group.
Suppose that H is (S, ρ)-symmetric for a point group S. A joint-configuration p is

said to be (S, ρ)-symmetric (or, simply, S-symmetric) if

gp(v) = p(gv) for all g ∈ S and for all v ∈ V (H). (10)

Such a pair (H, p) is called an (S, ρ)-symmetric framework (or simply an S-symmetric
framework or a symmetric framework).
We shall consider “symmetry-preserving” infinitesimal motions of symmetric frame-

works. We say that an infinitesimal motion m : V (H) → Rd is symmetric if

gm(v) = m(gv) for all g ∈ S and for all v ∈ V (H). (11)

The set of S-symmetric infinitesimal motions and the set of trivial ones form linear
subspaces of L(H, p) and tri(H, p), denoted LS(H, p) and triS(H, p), respectively. We
say that (H, p) is symmetry-forced infinitesimally rigid if LS(H, p) = triS(H, p).
A set P of points is called S-symmetric if gP = {gp : p ∈ P} = P for all g ∈ S.

An infinitesimal isometry m : P → Rd of an S-symmetric point set P is called S-
symmetric if gm(x) = m(gx) for all x ∈ P and g ∈ S. The set of S-symmetric
infinitesimal isometries forms a linear subspace of iso(P ), denoted isoS(P ). Clearly,
triS(H, p) is isomorphic to isoS(p(H)).

Example 5.2. Let us consider point groups in O(R2), which will be mainly discussed
in §6 and §8. Let P be an S-symmetric point set in R2. See Figure 6 for examples of
Ck-symmetric infinitesimal isometries. In general, if |P | > 1,

dim isoCk(P ) =

{

3 if k = 1

1 if k ≥ 2,
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and if P = {x},

dim isoCk(P ) =

{

2 if k = 1

0 if k ≥ 2 (where x should be the origin)

Similarly, for the dihedral group Dk of order k,

dim isoDk
(P ) =

{

1 if k = 1

0 if k ≥ 2,

(a) (b) (c)

Figure 6: Three independent infinitesimal isometries in the plane, among which (a)
is symmetric with respect to the group of a vertical reflection, (b) is symmetric with
respect to the group of a horizontal reflection, and (c) is symmetric with respect to
the group of rotations.

A result of Schulze [26] motivates us to look at S-symmetric infinitesimal rigidity,
which states that if (H, p) is not symmetry-forced infinitesimally rigid on an S-generic
p, then (H, p) has a nontrivial continuous motion that preserves the (S, ρ)-symmetry.

5.4 The orbit rigidity matrix

Let (H, p) be an (S, ρ)-symmetric framework in Rd. Due to (11), the system (7) of
linear equations (with respect to m) is redundant. Schulze and Whiteley [27] pointed
out that the system can be reduced to |E(H)/S| linear equations.
To see this, we first define a joint-configuration p̃ of vertex orbits by p̃ : V (H)/S →

Rd. By taking a representative vertex v from each vertex orbit Sv, we shall fix a
one-to-one correspondence by p̃(Sv) = p(v). (Then, the locations of the other non-
representative vertices are uniquely determined by (10).)
In a similar way, we define an infinitesimal motion of (H/S, p̃) by m̃ : V (H)/S →

Rd. By using the representative vertices determined above, we fix a one-to-one cor-
respondence between S-symmetric infinitesimal motions of V (H) and infinitesimal
motions of V (H)/S by m̃(Sv) = m(v) for each vertex orbit Sv.
Let (H/S, φ) be the quotient S-gain graph of H . Recall that each (oriented) edge

orbit Se connecting Su and Sv with gain he can be written by Se = {{gu, ghev} : g ∈
S}. The system (7) is hence written by

〈m(gu)−m(ghev), p(gu)− p(ghev)〉 = 0 for all {gu, ghev} ∈ Se (12)
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5.5 Necessary condition for symmetric infinitesimal rigidity 18

over all edge orbits Se ∈ E(H)/S. Recall that the transpose of g is g−1 for any
g ∈ O(Rd). By (10) and (11),

〈m(gu)−m(ghev), p(gu)− p(ghev)〉 =〈m(u)− hem(v), p(u)− hep(v)〉

=〈m(u), p(u)− hep(v)〉+ 〈m(v), p(v)− h−1
e p(u)〉

=〈m̃(Su), p̃(Su)− hep̃(Sv)〉+ 〈m̃(Sv), p̃(Sv)− h−1
e p̃(Su)〉.

Therefore, for p̃ : V (H)/S → Rd, a mapping m̃ : H/S → Rd is an infinitesimal motion
of (H/S, p̃) if and only if

〈m̃(Su), p̃(Su)− hep̃(Sv)〉 + 〈m̃(Sv), p̃(Sv)− h−1
e p̃(Su)〉 = 0 (13)

for every oriented edge orbit Se with φ(Se) = he. By regarding (13) as a system of
linear equations of m̃, the corresponding |E(H)/S| × d|V (H)/S|-matrix is called the
orbit rigidity matrix.
In general, for an S-gain graph (G, φ) and p̃ : V → Rd, we shall define the orbit

rigidity matrix as an |E(G)| × d|V (G)|-matrix, in which each row corresponds to an
edge, each vertex is associated with a d-tuple of columns, and the row corresponding
to e = (u, v) ∈ E(G) is written by

u
︷ ︸︸ ︷

v
︷ ︸︸ ︷

0 . . . 0 p̃(u)− φ(e)p̃(v) 0 . . . 0 p̃(v)− φ(e)−1p̃(u) 0 . . . 0

if e is not a loop, and by

v
︷ ︸︸ ︷

0 . . . 0 (2Id − φ(e)− φ(e)−1)p̃(v) 0 . . . 0

if e is a loop. The orbit rigidity matrix of (G, φ, p̃) is denoted by O(G, φ, p̃). ¿From the
above discussion, it follows that the dimension of the S-symmetric infinitesimal mo-
tions can be computed from the rank of the orbit rigidity matrix of the corresponding
quotient gain graph, which is formally stated as follows:

Theorem 5.1 (Schulze and Whiteley [27]). Let (H, p) be an (S, ρ)-symmetric frame-
work with a free action ρ. Then,

dimLS(H, p) = d|V (H)/S| − rankO(H/S, φ, p̃),

where (H/S, φ) is the quotient S-gain graph and p̃ is a joint-configuration of vertex
orbits corresponding to p.

5.5 Necessary condition for symmetric infinitesimal rigidity

Combining some observations given in §2, we can show a necessary condition for the
row independence of orbit rigidity matrices.
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Lemma 5.2. Let (G, φ) be an S-gain graph with underlying graph G = (V,E), and
let p : V → Rd. If O(G, φ, p) is row independent, then

|F | ≤
∑

Fi∈C(F )

{d|V (Fi)| − dim iso〈Fi〉φ,w(p(Fi))}

for all F ⊆ E and w ∈ V (Fi), where p(Fi) = {gp(v) : v ∈ V (Fi), g ∈ S}.

Proof. Let RF be the linear space spanned by the row vectors associated with F in
O(G, φ, p). Observe that each non-zero entry of the row vector associated with e ∈ F
is in the columns associated with V (F ). This means that RF is the direct sum of RF ′

for F ′ ∈ C(F ), and hence it suffices to check the statement for a connected F with
V (F ) = V .
Clearly, dimRF ≤ d|V |. Since |F | ≤ dimRF , we now show that dimR⊥

F ≥
dim iso〈F 〉φ,w(p(F )), where R

⊥
F denotes the orthogonal complement of RF .

To see this we first check that a switching operation does not change the rank of
the orbit rigidity matrix. Let φ′ be the gain function obtained from φ by a switching
operation at v0 with g0 ∈ S. We define p′ : V → Rd by

p′(u) =

{

p(u) if u 6= v0

g0p(u) if u = v0.
(14)

Note that p′(F ) = {gp′(v) : v ∈ V, g ∈ S} = p(F ). We now show

rankO(G, φ, p) = rankO(G, φ′, p′). (15)

Let us consider a non-loop edge e = (u, v0) oriented to v0 in G. The row corre-
sponding to e in O(G, φ′, p′) is written by

u v0
0 . . . 0 p′(u)− φ′(e)p′(v0) 0 . . . 0 p′(v0)− φ′(e)−1p′(u) 0 . . . 0

By (1), we have φ′(e) = φ(e)g−1
0 . Thus, by using (14), the row of e becomes

u v0
0 . . . 0 p(u)− φ(e)p(v0) 0 . . . 0 g0(p(v0)− φ(e)−1p(u)) 0 . . . 0

Similarly, for a non-loop edge e = (v0, u) oriented from v0 in G, the row of e becomes
exactly the same form as above. By using the same calculation, for a loop e incident
to v0 in G, the row of e in O(G′, φ′, p′) can be written as

v0
0 . . . 0 g0(2Id − φ(e)− φ(e)−1)p(v0) 0 . . . 0

By performing column operations within the d columns associated with v0, these
are converted to

u v0
0 . . . 0 p(u)− φ(e)p(v0) 0 . . . 0 p(v0)− φ(e)−1p(u) 0 . . . 0

EGRES Technical Report No. 2012-17



Section 6. Combinatorial Characterization of Generic Rigidity with Cyclic Symmetry 20

and
v0

0 . . . 0 (2Id − φ(e)− φ(e)−1)p(v0) 0 . . . 0

respectively, which implies that rankO(G, φ, p) = rankO(G, φ′, p′). Therefore, the
row independence of the orbit rigidity matrix is invariant under switching operations.
Moreover, since p(F ) = p′(F ), dim iso〈F 〉φ,w(p(F )) = dim iso〈F 〉φ′,w

(p′(F )). So it suf-
fices to prove the statement for O(G, φ′, p′).
Let T be a spanning tree of G. Since we can freely apply switching operations, we

may assume that φ(e) = id for all e ∈ T . Then, by Lemma 2.4, 〈F 〉φ,w = 〈φ(e) : e ∈
F \ T 〉 for a vertex w ∈ V (F ).
Let us take any m ∈ iso〈F 〉φ,w(p(F )) and let m̃ : V → Rd be defined by m̃(v) =

m(p(v)) for v ∈ V . We show that m̃ is in the orthogonal complement of RF . To check
it, let us consider any edge e = (u, v) ∈ F with gain h = φ(e). Since m ∈ iso(p(F )),
we have

〈p(u)− hp(v), m(p(u))−m(hp(v))〉 = 0.

Since m is 〈F 〉φ,w-symmetric, we also have m(hp(v)) = hm(p(v)). Therefore, we
obtain

0 = 〈p(u)− hp(v), m(p(u))−m(hp(v))〉 = 〈p(u)− hp(v), m̃(u)− hm̃(v)〉,

implying that m̃ is in the orthogonal complement of RF . Consequently, dimR⊥
F ≥

dim iso〈F 〉φ,w(p(F )), and hence |F | ≤ dimRF ≤ d|V | − dim iso〈F 〉φ,w(p(F )).

This, together with Theorem 5.1, directly implies a necessary condition for sym-
metric frameworks to be symmetry-forced infinitesimally rigid.
Recall that S is a finite family of orthogonal matrices. Let QS be the field generated

by Q and the entries of all the matrices in S. Since S is finite, almost all numbers in R

are transcendental over QS . For a given gain graph (G, φ), a mapping p̃ : V (G) → Rd

is called S-generic if the set of coordinates of p̃(v) for all v ∈ V (G) is algebraically
independent over QS . Similarly, for a given (S, ρ)-symmetric graph H , an (S, ρ)-
symmetric joint-configuration p : V (H) → Rd is called S-generic if the corresponding
joint-configuration p̃ of the vertex orbits is S-generic. An S-symmetric framework is
called generic if the joint configuration is S-generic.
In §6 and §8 we will check that the condition of Lemma 5.2 is indeed sufficient for

generic symmetric frameworks in the plane with cyclic groups and dihedral groups
with odd order, respectively.

6 Combinatorial Characterization of Generic

Rigidity with Cyclic Symmetry

In this section we shall prove a combinatorial characterization of the infinitesimal
rigidity of S-generic symmetric frameworks for cyclic point groups in the plane.
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Let (H, p) be an (S, ρ)-symmetric framework with a point group S ∈ O(R2), and
suppose that p is S-generic. We only focus on the case when ρ is a free action. As
in §5.4, we fix a representative vertex v from each vertex orbit, which determines a
one-to-one correspondence between p and the joint-configuration p̃ of vertex orbits by
p̃(Sv) = p(v). We prove that the row matroid of the orbit rigidity matrix O(H/S, φ, p̃)
is equal to the (2, 3)-g-matroid M(g2,3) of (H/S, φ). We shall make use of extensions
of the quotient gain graphs to “extend” frameworks by keeping the rigidity. The
following lemma is a key observation, which is an extension of the one given in [30, 32]
for proving Laman’s theorem. The lemma is not limited to cyclic groups.

Lemma 6.1. Let (G, φ) be an S-gain graph for a point group S ⊂ O(R2). Let
(G′, φ′) be an S-gain graph obtained from (G, φ) by a 0-extension, 1-extension, or
loop-1-extension. If there is a mapping p : V (G) → R2 such that O(G, φ, p) is row
independent, then there is a mapping p′ : V (G′) → R2 such that O(G′, φ′, p′) is row
independent.

Proof. If there is a p such that O(G, φ, p) is row independent, then O(G, φ, q) is row
independent for all S-generic q. Hence, we may assume that p is S-generic.
(Case 1) Suppose that G′ is obtained from G by a 0-extension, by adding a vertex

v and non-loop edges e1 and e2 incident to v. Let ui be the other endvertex of ei and
let gi = φ(ei) for i = 1, 2.
By the definition of 0-extensions, g1 6= g2 if u1 = u2. Therefore, as p is generic,

g1p(u1) 6= g2p(u2). Let us take p′ : V (G′) → R2 such that p′(w) = p(w) for all
w ∈ V (G) and p′(v) is a point not on the line through g1p(u1) and g2p(u2). Then
O(G′, φ′, p′) can be described as follows, by decomposing it into four blocks:

v V (G)
e1 p′(v)− g1p(u1) ∗
e2 p′(v)− g2p(u2) ∗

E(G) 0 O(G, φ, p)

where the right-bottom block, corresponding to E(G) and V (G), is equal toO(G, φ, p).
Since O(G, φ, p) is row independent, it suffices to show that the top-left block is row
independent. Since p′(v) does not lie on the line through g1p(u1) and g2p(u2), the
top-left block is indeed row independent.
(Case 2) Suppose that G′ is obtained from G by a loop-1-extension, by adding

a vertex v with a non-loop edge e and a loop l incident to v. Let u be the other
endvertex of e and let g = φ(e) and h = φ(l). Without loss of generality, we may
assume that e is outgoing from v.
By the definition of loop-1-extensions, h is not equal to the 2 × 2-identity matrix

I2, and hence 2I2 − h− h−1 is nonzero. Therefore, there is a point q ∈ R2 such that
{(2I2 − h − h−1)q, q − gp(u)} is linearly independent (c.f. Lemma 8.3). We define
p′ : V (G′) → R2 such that p′(w) = p(w) for all w ∈ V (G) and p′(v) = q. Then,

EGRES Technical Report No. 2012-17



Section 6. Combinatorial Characterization of Generic Rigidity with Cyclic Symmetry 22

O(G′, φ′, p′) can be described as follows:

v V (G)
e q − gp(u) ∗
l (2I2 − h− h−1)q 0

E(G) 0 O(G, φ, p)

Since the top-left block and the bottom-right block are both row independent,
O(G′, φ′, p′) is row independent.
(Case 3) Suppose that G′ is obtained from G by a 1-extension, by removing an

existing edge e and adding a new vertex v with three new non-loop edges e1, e2, e3
incident to v. We may assume that ei is outgoing from v. Let ui be the other endvertex
of ei, and let gi = φ′(ei) and pi = p(ui) for i = 1, 2, 3. By the definition of 1-extension,
we have φ(e) = g−1

1 g2.

Claim 6.2. The three points gipi (i = 1, 2, 3) do not lie on a line.

Proof. Since p is S-generic, u1 = u2 = u3 should hold if they lie on a line. Then
p1 = p2 = p3. By the definition of 1-extensions, gi 6= gj if ui = uj. This implies
that g1p1, g2p2, g3p3 are three distinct points on a circle. Thus, they do not lie on a
line.

We take p′ : V (G′) → R2 such that p′(w) = p(w) for all w ∈ V (G), and p′(v) is
a point on the line through g1p1 and g2p2 but neither g1p1 nor g2p2. O(G

′, φ′, p′) is
described as follows: if u1 6= u2

v u1 u2
e3 p′(v)− g3p3 ∗ ∗ ∗
e1 p′(v)− g1p1 p1 − g−1

1 p′(v) 0 0
e2 p′(v)− g2p2 0 p2 − g−1

2 p′(v) 0
E(G)− e 0 O(G− e, φ, p)

where the right-bottom block O(G−e, φ, p) denotes the orbit rigidity matrix obtained
from O(G, φ, p) by removing the row of e, whereas, if u1 = u2,

v u1
e3 p′(v)− g3p3 ∗ ∗
e1 p′(v)− g1p1 p1 − g−1

1 p′(v) 0
e2 p′(v)− g2p1 p1 − g−1

2 p′(v) 0
E(G)− e 0 O(G− e, φ, p)

We consider the case when u1 6= u2. (The case when u1 = u2 is similar.) Since p′(v)
lies on the line through g1p1 and g2p2, p

′(v)−gip(ui) is a scalar multiple of g1p1−g2p2
for i = 1, 2. Hence, by multiplying the rows of e1 and e2 by an appropriate scalar,
O(G′, φ′, p′) becomes

v u1 u2
e3 p′(v)− g3p3 ∗ ∗ ∗
e1 g1p1 − g2p2 −g−1

1 (g1p1 − g2p2) 0 0
e2 g1p1 − g2p2 0 −g−1

2 (g1p1 − g2p2) 0
E(G)− e 0 O(G− e, φ, p)
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Subtracting the row of e1 from that of e2, we finally get

v u1 u2
e3 p′(v)− g3p3 ∗ ∗ ∗
e1 g1p1 − g2p2 −g−1

1 (g1p1 − g2p2) 0 0
e2 0 p1 − g−1

1 g2p2 p2 − g−1
2 g1p1 0

E(G)− e 0 O(G− e, φ, p)

Since φ(e) = g−1
1 g2, the row of e2 is equal to the row of e in O(G, φ, p). This means

that the right-bottom block together with the row of e2 forms O(G, φ, p), which is
row independent. Thus, the matrix is row independent if and only if the top-left
block is row independent. Since gipi (i = 1, 2, 3) are not on a line by Claim 6.2, the
line through p′(v) and g3p3 is not parallel to the line through g1p1 and g2p2. This
implies that the top-left block is row independent, and consequently O(G′, φ′, p′) is
row independent.

Theorem 6.3. Let C ⊂ O(R2) be a cyclic point group, that is, either a group of k-
fold rotations or a group of a reflection, and let (H, p) be a generic (C, ρ)-symmetric
framework in the plane with a free action ρ. Then (H, p) is symmetry-forced infinites-
imally rigid if and only if the quotient C-gain graph contains a spanning maximum
(2, 3)-g-tight subgraph.

Proof. By Theorem 5.1 it suffices to show that for the quotient C-gain graph (H/C, φ)
and any C-generic p̃ : V (H/C) → R2, O(H/C, φ, p̃) is row independent if and only if
(H/C, φ) is (2, 3)-g-sparse. Let us simply denote G = H/C.
(“If part”) It suffices to consider the case when G is maximum (2, 3)-g-tight. The

proof is done by induction on |V (G)|. For |V (G)| = 1, G consists of single vertex
with an unbalanced loop. Then O(G, φ, p̃) consists of a nonzero row, which implies
that O(G, φ, p̃) is row-independent.
For |V (G)| > 1, by Theorem 4.4, G can be built up from a C-gain graph with

one vertex and an unbalanced loop with a sequence of 0-extensions, 1-extensions,
and loop-1-extensions. Thus, there is a maximum (2, 3)-g-tight graph (G′, φ′) from
which (G, φ) is constructed by a 0-extension, 1-extension, or loop-1-extension. By
induction, there is a p′ such that O(G, φ′, p′) is row independent. Thus, Lemma 6.1
implies that there is a p such that O(G, φ, p) is row independent, which in turn implies
that O(G, φ, q) is row independent for all C-generic q.
(“Only-if part”) The necessity is based on Lemma 5.2. Suppose that O(G, φ, p̃)

is row independent. Recall that we have seen the exact value of dim isoC(P ) for
C ⊂ O(R2) and a C-symmetric point set P ⊆ R2 in Example 5.2. Since p̃ is C-generic,
we have

iso〈F 〉v(p̃(F )) =

{

3 (if F is balanced)

1 (otherwise)

for all connected F ⊆ E(G) and v ∈ V (F ), where p̃(F ) = {gp̃(v) : v ∈ V (F ), g ∈ C}.
Therefore, by Lemma 5.2, we have

|F | ≤
∑

F ′∈C(F )

{2|V (F ′)| − iso〈F ′〉v(p̃(F
′))} ≤ 2|V (F )| −

{

3 (if F is balanced)

1 (otherwise)
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for all F ⊆ E(G). Therefore, (G, φ) is (2, 3)-g-sparse.

Remark 6.1. We have seen in Lemma 6.1 that the 0-extension, 1-extension, and loop-
1-extension operations all preserve the row independence of the orbit rigidity matrix.
In the covering graph these operations can be seen as graph operations that preserve
the underlying symmetry. Some of them can be recognized as performing so-called
Henneberg operations [30, 32] simultaneously. See Figure 7. In case of 3-fold rotation
symmetry, these operations are considered by Schulze [26].

(a)

(b)

(c)

Figure 7: (a) 0-extension, (b) 1-extension, (c) loop-1-extension in the covering graph.
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7 Constructive Characterization of Maximum D-

tight Graphs

In the previous sections we gave a constructive characterization of (2, 3)-g-sparse
graphs and their realizations as symmetry-forced rigid frameworks in the plane with
cyclic point group symmetry. We next move to non-cyclic point groups, that is, di-
hedral groups that we denote by Dk (or simply by D). The corresponding matroid,
that we construct in the next subsection, is slightly different from the (2, 3)-g-count
matroid, as we need to take into account the fact that the underlying group is not
cyclic.

7.1 D-sparsity

Let (G, φ) be a D-gain graph with underlying graph G = (V,E). We define a function
fD on E by

fD(X) = 2|V (X)| − 3 + β(X) (X ⊆ E)

where

β(X) =







0 (if X is balanced)

2 (if X is unbalanced and cyclic)

3 (otherwise),

and define a class of sparse graphs determined by fD as follows.

Definition 7.1. Let (G, φ) be a D-gain graph. An edge set X ⊆ E(G) is called
D-sparse if |F | ≤ fD(F ) for any nonempty F ⊆ X , and it is called D-tight if it is
D-sparse with |X| = fD(X).
(G, φ) is said to be D-sparse if so is E(G), and it is called maximum D-tight if it is

D-sparse with |E(G)| = 2|V (G)|.

By a simple degree of freedom counting argument based on Example 5.2 and
Lemma 5.2, it is not difficult to see that the D-sparsity is a necessary condition
for orbit rigidity matrices to be row independent in case of dihedral symmetry. (A
formal proof will be given in Lemma 8.1.) To prove the sufficiency, the first question
is whether D-sparsity defines a collection of independent sets of a matroid. This will
be proved in this subsection.
We will use the following technical lemmas on properties of D-tight sets.

Lemma 7.1. Let (G, φ) be a D-sparse graph with G = (V,E) and F ⊆ E be a D-tight
set. Then, the following holds.

(i) If F is cyclic, then F is connected.

(ii) If F is balanced with |F | > 1, then F has neither parallel edges nor loops and is
2-connected and essentially 3-edge-connected.
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Proof. Since G is D-sparse and β is monotone nondecreasing, we have |F | ≤
∑

F ′∈C(F ) fD(F
′) ≤ 2|V (F )| − (3 − β(F ))c, where c denotes the number of con-

nected components in F . Hence, if F is not connected and β(F ) < 3, then
|F | < 2|V (F )|−3+β(F ), implying that F is not D-tight. Therefore if β(F ) < 3 then
X is connected.
Suppose further that F is balanced. Then we have β(X) = 0 for any X ⊆ F . This

means that |X| ≤ f2,3(X) for any nonempty X ⊆ F , and |F | = fD(F ) = 2|V (F )|−3 =
f2,3(F ). In other words, F is independent in the generic 2-rigidity matroid M(f2,3) of
G[F ]. It is known that, in the generic 2-rigidity matroid, an independent set F with
|F | = f2,3(F ) and |F | > 1 has neither parallel edges nor a loop and is 2-connected
and essentially 3-edge-connected (see e.g. [12]).

Lemma 7.2. Let (G, φ) be a D-sparse graph with G = (V,E). Let X, Y ⊆ E be
D-tight edge sets with X ∩ Y 6= ∅. Then X ∪ Y is D-tight.

Proof. Without loss of generality, assume β(X) ≥ β(Y ).
Let d = 2|V (X ∪ Y )| − |X ∪ Y |. Note that X ∪ Y is D-tight if one of the following

holds: (i) d = 0, (ii) d ≤ 1 and X ∪ Y is cyclic, or (iii) d ≤ 3 and X ∪ Y is balanced.
Let c0 be the number of isolated vertices in the graph (V (X)∩V (Y ), X ∩Y ) and c1

be the number of connected components in X∩Y . We have |X| = 2|V (X)|−3+β(X)
and |Y | = 2|V (Y )| − 3 + β(Y ). We also have

|X ∩ Y | ≤
∑

F∈C(X∩Y )

fD(F ) = 2|V (X ∩ Y )| − 3c1 +
∑

F∈C(X∩Y )

β(F )

= 2|V (X) ∩ V (Y )| − 2c0 − 3c1 +
∑

F∈C(X∩Y )

β(F )

≤ 2|V (X) ∩ V (Y )| − 2c0 − 3c1 + β(Y )c1 (16)

since β is monotone non-decreasing. Therefore,

d = 2|V (X ∪ Y )| − |X ∪ Y | = 2|V (X ∪ Y )| − (|X|+ |Y | − |X ∩ Y |)

≤ 6− β(X)− β(Y )− 2c0 − 3c1 + β(Y )c1

≤ 3− β(X)− 2c0 − (3− β(Y ))(c1 − 1). (17)

Note that c1 ≥ 1 by X ∩ Y 6= ∅ and hence (3− β(Y ))(c1 − 1) ≥ 0.
If β(X) = 3, then (17) implies that d = 0 and hence X ∪ Y is D-tight.
Therefore we assume β(X) < 3. Then X and Y are connected by Lemma 7.1. We

split the proof into two cases depending on the value of β(X).
(Case 1) If β(X) = 2, then (17) implies that d ≤ 1. Since d = 0 implies the D-

tightness of X ∪Y , let us assume d = 1 and prove that X ∪Y is cyclic. If d = 1, then
the inequalities of (16) and (17) hold with equalities, and in particular c0 = 0, c1 = 1
and

|X ∩ Y | = 2|V (X ∩ Y )| − 3 + β(Y ). (18)

By c0 = 0 and c1 = 1, the number of connected components in the graph (V (X) ∩
V (Y ), X ∩Y ) is one. If β(Y ) = 2, then X ∩Y is unbalanced cyclic by (18) and hence
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Lemma 2.5(3) implies that X ∪ Y is cyclic. If β(Y ) = 0, then Y is balanced and,
again, Lemma 2.5(2) implies that X ∪ Y is cyclic. Thus X ∪ Y is D-tight.
(Case 2) If β(X) = 0, then β(Y ) = 0 and we have d ≤ 6 − 2c0 − 3c1 by (17). By

c1 ≥ 1, we have three possible pairs (c0, c1) = (0, 1), (1, 1), (0, 2). If (c0, c1) = (0, 1),
then d ≤ 3 and Lemma 2.5 implies that X ∪Y is balanced. Thus, X ∪Y is a balanced
D-tight set. If (c0, c1) = (1, 1) or (c0, c1) = (0, 2), then d ≤ 1 and Lemma 2.6 implies
that X ∪ Y is cyclic. Thus, X ∪ Y is a cyclic D-tight set.
This completes the proof.

Lemma 7.3. Let (G, φ) be a D-gain graph with G = (V,E) and X and Y be D-tight
sets with X ⊆ Y ⊆ E. For e ∈ E \Y , if fD(X) = fD(X+e), then fD(Y ) = fD(Y +e).

Proof. Since fD(X) = fD(X+e), the endvertices of e are contained in V (X), implying
V (Y +e) = V (Y ). If X or Y is not cyclic, then we have β(Y ) = β(Y +e) = 3, meaning
that fD(Y ) = fD(Y + e).
We hence assume that X and Y are cyclic, and they are connected by Lemma 7.1.

Take a spanning tree T in G[Y ] such that X ∩ T is a spanning tree of G[X ]. By
Proposition 2.3, there is an equivalent gain function φ′ to φ such that φ′(f) = id for
f ∈ T . By Lemma 2.4, there is a cyclic subgroup C of D such that φ′(f) ∈ C for every
f ∈ Y , where C is the identity group if Y is balanced. Since fD(X) = fD(X + e) and
X ⊆ Y , we have φ′(e) ∈ C̄, and hence fD(Y ) = fD(Y + e) holds.

We are ready to prove that the family of D-sparse edge subsets is a family of
independent sets of a matroid on ground-set E. We shall also characterize the rank
function of this matroid.

Theorem 7.4. Let (G, φ) be a D-gain graph with G = (V,E) and I be the family of
all D-sparse edge subsets in E. Then MD(G, φ) = (E, I) is a matroid on ground-set
E. The rank of a set E ′ ⊆ E in MD(G, φ) is equal to

min

{
t∑

i=1

fD(E
′
i) : {E

′
1, . . . , E

′
t} is a partition of E ′

}

.

Proof. For a partition P = {E ′
1, . . . , E

′
t} of E ′ ⊆ E, we denote val(P) =

∑t
i=1 fD(E

′
t).

We shall check the following independence axiom of matroids: (I1) ∅ ∈ I; (I2) for any
X, Y ⊆ E with X ⊆ Y , Y ∈ I implies X ∈ I; (I3) for any E ′ ⊆ E, maximal subsets
of E ′ belonging to I have the same cardinality.
I obviously satisfies (I1) and (I2). To see (I3), let E ′ ⊆ E and let F ⊆ E ′ be a

maximal subset of E ′ in I. Since F ∈ I we have |F | ≤ val(P) for all partitions P of
E ′. We shall prove that there is a partition P of E ′ with |F | = val(P), from which
(I3) follows.
Let J = (V, F ) denote the subgraph with the edge set F . Consider the family

{F1, F2, . . . , Ft} of all maximal D-tight sets in J . Since each edge f ∈ F forms a D-
tight set, ∪t

i=1Fi = F holds. Since Fi ∩Fj = ∅ for every pair 1 ≤ i < j ≤ t by Lemma
7.2 and the maximality, PF = {F1, F2, . . . , Ft} is a partition of F and |F | = val(PF )
follows.
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Based on PF , we construct a partition P of E ′ with val(P) = val(PF ) = |F |.
Consider an edge (u, v) = e ∈ E ′ − F . Since F is a maximal subset of E ′ in I we
have F + e 6∈ I. Hence there must be a tight set Xe in J with u, v ∈ V (Xe) and
Xe + e 6∈ I. Xe ⊆ Fi for some 1 ≤ i ≤ t. Choose such an Fi for every e ∈ E ′ − F
and define Ei = Fi ∪ {e : Fi was chosen for e}. Clearly P = {E1, E2, . . . , Et} is a
partition of E ′. By Lemma 7.3, fD(Fi) = fD(Ei) for every 1 ≤ i ≤ t and hence
val(P) = val(PF ) = |F |.

The matroid which was introduced and denoted by MD(G, φ) in Theorem 7.4 is
called the D-sparsity matroid of (G, φ).

7.2 Constructive characterization of maximum D-tight
graphs

We now present a constructive characterization of maximum D-tight graphs. Notice
that the average vertex degree in a maximum D-tight graph (G, φ) is four, which
means that G has a vertex of degree at most 3 if and only if G is not 4-regular. Thus
we shall take a special care of 4-regular D-sparse graphs.

7.2.1 0-extension, 1-extension, and loop-1-extension

Before looking at 4-regular graphs and vertices of degree four, we consider the 0-
extension, 1-extension, and loop-1-extension operations. Recall that the correspond-
ing inverse operations are called reductions. A reduction is admissible if the resulting
graph is D-sparse.

Lemma 7.5. Let (G, φ) be a D-sparse graph with G = (V,E). Applying a 0-extension,
1-extension or loop-1-extension to G results in a D-sparse graph with |V |+1 vertices
and |E|+ 2 edges.
Conversely, for any vertex v of degree 2 or 3, the 0-reduction, loop-1-reduction, or

some of the 1-reductions at v is admissible if |V | ≥ 2.

Proof. The proof of the first claim is exactly the same as the proof of Lemma 4.1.
(Indeed, we just need to change 2αS(F ) with β(F ) in the proof of Lemma 4.1.)
To see that some reduction is admissible at a vertex v of degree three, we just need

to observe that each circuit of M(g2,3) appearing in the proof of Claim 4.3 is also a
circuit in MD(G, φ). We can thus apply exactly the same proof as in Lemma 4.2 to
conclude that some reduction is admissible at v.

7.2.2 2-extension and loop-2-extension

Besides 0-extensions, 1-extensions and loop-1-extensions, we shall introduce 2-
extensions and loop-2-extensions for constructing 4-regular D-sparse graphs.
In a 2-extension, we take two existing edges e = (v1, v2) and f = (v3, v4) and pinch

them by inserting a new vertex v. More precisely, a 2-extension removes e and f ,
inserts a new vertex v with four new edges, ei from vi to v for each i = 1, . . . , 4. The
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Figure 8: 2-extensions

gain function φ is extended on E ∪ {e1, . . . , e4} so that φ(e1) · φ(e2)
−1 = φ(e), φ(e3) ·

φ(e4)
−1 = φ(f) and it is locally D-sparse, i.e., {e1, . . . , e4} is D-sparse. Depending on

the multiplicity of the vi’s we have seven cases as shown in Figure 8.
In a loop-2-extension, we remove an existing edge e = (v1, v2), insert a new vertex

v, a new loop l at v and two new edges, ei from vi to v for each i = 1, 2. φ is extended
on E ∪ {e1, e2, l} so that φ(e1) · φ(e2)

−1 = φ(e), φ(l) 6= id and it is locally D-sparse.
Depending on whether e is a loop or not, we have two cases as shown in Figure 9.
The following lemma shows that these operations preserve D-sparsity.

Lemma 7.6. Let (G, φ) be a D-sparse graph. Then, any D-gain graph (G′, φ′) ob-
tained from G by a 2-extension or a loop-2-extension is D-sparse.

Proof. Suppose that (G′, φ′) is obtained by a 2-extension. Let us denote the removed
edges by e and f and the new edges by e1, . . . , e4 as above. Suppose that there
is F ⊆ E(G′) that violates the D-sparsity condition. Let F ′ = F \ {e1, . . . , e4}.
Since {e1, . . . , e4} satisfies the D-sparsity condition, F ′ 6= ∅. Let us add e to F ′

if {e1, e2} ⊆ F and add f to F ′ if {e3, e4} ⊆ F . Observe that |F ′| ≥ |F | − 2,
|V (F )| ≥ |V (F ′)| + 1 and β(F ) ≥ β(F ′). Since |F | > fD(F ), we obtain |F ′| ≥
|F | − 2 > fD(F )− 2 = 2|V (F )| − 3+β(F )− 2 ≥ 2|V (F ′)| − 3+β(F ′) = fD(F

′). This
contradicts the D-sparsity of G since ∅ 6= F ′ ⊆ E(G). Therefore (G′, φ′) is D-sparse.
In the same manner, it can be easily checked that a loop-2-extension also preserves

D-sparsity.
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Figure 9: Loop-2-extensions.

We shall define the inverse moves of these operations. Recall that, for a vertex v
and two incoming non-loop edges e1 = (u, v) and e2 = (w, v), we denote by e1 · e

−1
2 a

new edge from u to w with gain φ(e1) · φ(e2)
−1.

Let v be a vertex of degree four, not incident to a loop, and ei = (vi, v) for i =
1, . . . , 4 be the edges incident to v, assuming that all of them are oriented to v. The
2-reduction (at v) deletes v and adds one of {e1 · e

−1
2 , e3 · e

−1
4 }, {e1 · e

−1
3 , e2 · e

−1
4 } and

{e1 · e
−1
4 , e2 · e

−1
3 }. We sometimes refer to a specific one: the 2-reduction at v through

(ei, ej) and (ek, el) deletes v and adds {ei · e
−1
j , ek · e

−1
l }.

Let v be a vertex of degree four, incident to a loop l, and ei = (vi, v) for i = 1, 2
be the non-loop edges incident to v, assuming that all of them are oriented to v. The
loop-2-reduction (at v) deletes v and adds e1 · e

−1
2 .

A 2-reduction or loop-2-reduction is said to be admissible if the resulting graph is
D-sparse.

7.2.3 Base graphs

Our main theorem asserts that these operations are sufficient to construct all 4-regular
D-sparse graphs from certain classes of D-sparse graphs. Here, the classes can be
categorized into three groups: the first group includes special small graphs as in the
conventional constructive characterizations, the second group is a class of graphs,
which are obtained from cycles by duplicating each edge, and the third one consists
of near-cyclic 4-regular graphs.
The first group consists of three types of special D-tight graphs, called trivial graphs,

fancy triangles, and fancy hats. A trivial graph is a D-sparse graph with a single vertex
and with two loops as shown in Figure 10(a). The gain function is assigned so that
the gains of two loops generate a non-cyclic group.
A fancy triangle is a D-gain graph whose underlying graph is obtained from a

triangle by adding a loop to each vertex, as shown in Figure 10(b). The gain function
is assigned so that it is D-sparse and the triangle is balanced.
A hat is a graph obtained from K2,3 by adding an edge to the class of cardinality

two, and the fancy hat is a D-gain graph obtained from the hat by adding a loop to
each degree two vertex, as shown in Figure 10(c). The gain function is assigned so
that it is D-sparse and the hat is balanced.
The second group consists of D-sparse graphs whose underlying graphs are double

cycles, where, for n ≥ 2, the double cycle C2
n is defined as the graph obtained from the
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Figure 10: Special graphs: (a) a trivial graph, (b) a fancy triangle, and (c) a fancy
hat.

cycle on n vertices by replacing each edge by two parallel edges as shown in Figure 11.
As we will see later, key properties of this group depend on whether the order of the
underlying dihedral group D is odd or even.

(a) (b)
(c)

Figure 11: Double cycles: (a)C2
2 , (b)C

2
3 , (c)C

2
6 .

The third group consists of near-cyclic graphs, which, intuitively speaking, are the
D-tight graphs closest to (2, 3)-g-tight graphs. By definition, any (2, 3)-g-tight graph
is also D-sparse. Hence, if we add a new edge with an appropriate gain to a maximum
(2, 3)-g-tight graph, we can obtain a maximum D-tight graph. The following lemma
indicates one of the easiest situations in which such an operation works.

Lemma 7.7. Let (G, φ) be a (2, 3)-g-sparse graph with G = (V,E), and suppose that
there is a cyclic subgroup C of D such that φ(e) ∈ C for all e ∈ E. If we add a new
edge e having a gain in D \ C̄, then (G+ e, φ) is D-sparse.

Proof. Suppose that (G + e, φ) is not D-sparse. Then there is a subset F ⊆ E such
that |F + e| > fD(F + e). Since F is cyclic, either (i) β(F ) = 0 or (ii) β(F ) = 2.
By Lemma 7.1(i), F is connected, and clearly the endvertices of e are contained in

V (F ). Moreover, every cycle in F + e that passes through e has a gain not contained
in C̄, as the gain of e is not in C̄. Thus, F + e contains a cycle whose gain is not
contained in C̄. This means that (i) β(F ) = 0 implies β(F + e) = 1, and (ii) β(F ) = 2
implies β(F + e) = 3. In each case, we obtain β(F + e) − β(F ) ≥ 1. Therefore,
|F | = |F + e| − 1 > fD(F + e) − 1 ≥ fD(F ), and this contradicts the D-sparsity of
(G, φ) as ∅ 6= F ⊆ E.

Motivated by this fact we say that a D-sparse graph is near-cyclic if removing an
edge results in a cyclic graph.
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7.2.4 Constructive characterizations

We are ready to state our constructive characterization of 4-regular D-sparse graphs.
We say that a 4-regular D-sparse graph is a base graph if it is a trivial graph, a fancy
triangle, a fancy hat, or a near-cyclic graph.

Theorem 7.8. Let (G, φ) be a D-gain graph. Then, (G, φ) is 4-regular and D-sparse
if and only if it can be built up from a disjoint union of base graphs and D-sparse
double cycles by a sequence of 2-extension and loop-2-extension operations.

We have proved that these operations preserve D-sparsity in Lemma 7.6. The proof
of the converse direction will be given in §9, where we will show that a 2-reduction or
a loop-2-reduction is admissible at some vertex if the graph is neither a base graph
nor a double cycle.
Combining Theorem 7.8 and Lemma 7.5, we obtain the following:

Theorem 7.9. Let (G, φ) be a D-gain graph. Then, (G, φ) is maximum D-tight if
and only if it can be built up from a disjoint union of base graphs and D-sparse double
cycles by a sequence of 0-extension, 1-extension, loop-1-extension, 2-extension and
loop-2-extension operations.

The theorems can be strengthened if the order k of D is odd, in which case every
D-sparse double cycle can be reduced to a trivial graph. To see this, let us prove the
following technical lemma.

Lemma 7.10. Let Dk be a dihedral group of odd order. Let g1, g2, g3, g4 be elements
of Dk such that

• g1, g2 and g3 are distinct non-identity elements,

• {g1, g2, g3} generates a non-cyclic group, and

• g4 = id.

Then, at least one of {g1g
−1
2 , g3g

−1
4 }, {g1g

−1
3 , g2g

−1
4 } and {g1g

−1
4 , g2g

−1
3 } generates a

non-cyclic group.

Proof. Since {g1, g2, g3} generates a non-cyclic group, we may assume that g1 is a
reflection r along a line. Suppose that {g1, g2g

−1
3 } is cyclic. Then, g2g

−1
3 = id or

g2g
−1
3 = r. Since g2 6= g3, we have g2 = rg3.
If g3 is also a reflection r′, which is different from r, then {g1g

−1
2 , g3} = {rr′r−1, r′}.

Clearly rr′r−1 6= id. If rr′r−1 = r′ or equivalently (rr′)2 = id then k has to be even
which is a contradiction. Thus {g1g

−1
2 , g3} generates a non-cyclic group.

If g3 denotes a rotation C, then {g1g
−1
3 , g2} = {rC−1, rC}. Since rC−1 and rC

are non-identity and reflections, if they generate a cyclic group, then rC−1 = rC,
implying C2 = id. This contradicts the parity of k.

Lemma 7.11. Let Dk be a dihedral group of odd order k ≥ 1, and (G, φ) be a Dk-
sparse double cycle C2

n with n ≥ 2. Then, a 2-reduction is admissible at some vertex.
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Figure 12: G′.

Proof. Let v be a vertex, and we denote the edges incident to v by ei for i = 1, . . . , 4.
Without loss of generality, we assume that all of ei are oriented to v, e1 and e2 are
parallel, and e3 and e4 are parallel.
We first perform the 2-reduction at v through (e1, e2) and (e3, e4). Then, the re-

sulting graph (G′, φ′) is, as shown in Figure 12, a path of parallel edges with loops
at its endvertices. Using the fact that each 2-cycle is unbalanced in G, it is easy to
check that |F | ≤ 2|V (F )| − 3 for any balanced F ⊆ E(G′) and |F | ≤ 2|V (F )| − 1 for
any proper subset F ⊂ E(G′). Thus, (G′, φ′) is Dk-sparse if E(G′) is not cyclic.
Suppose that E(G′) is cyclic. Then, by Lemma 2.4, we may assume that there

is a cyclic subgroup C of Dk such that all gains of E(G′) are contained in C. Let
a = φ(e1 · e

−1
2 ) and a′ = φ(e3 · e

−1
4 ). Since any 2-cycle of G is unbalanced, a and a′ are

non-identity. Moreover, φ(e1) · φ(e2)
−1 = a ∈ C and φ(e3) · φ(e4)

−1 = a′ ∈ C. Hence,
by using some elements b1, b2 ∈ Dk, we can express φ(ei) by

φ(e1) = ab1, φ(e2) = b1, φ(e3) = a′b2, φ(e4) = b2.

Let us perform the switching operation at v with b2. Then we have

φ(e1) = ab, φ(e2) = b, φ(e3) = a′, φ(e4) = id, (19)

where b = b1b
−1
2 . Notice that φ(e) ∈ C for all e ∈ E(G) \ {e1, e2}. Since (G, φ) is

maximum Dk-tight, we must have b /∈ C̄.
We now consider the remaining two possible 2-reductions at v. In each reduc-

tion, the resulting underlying graph is C2
n−1, and it can be easily checked that the

2-reduction is admissible if one of the resulting Dk-gain graphs (G1, φ1) and (G2, φ2)
is not cyclic.
To see that (G1, φ1) or (G2, φ2) is not cyclic, let gi = φ(ei) for i = 1, . . . , 4. Observe

that {g1, . . . , g4} satisfies the condition of Lemma 7.10. Since {g1 · g−1
2 , g3 · g−1

4 }
generates a cyclic group, this implies, by Lemma 7.10, that {g1 · g

−1
3 , g2 · g

−1
4 } or

{g1 · g
−1
4 , g2 · g

−1
3 } is not cyclic, implying that (G1, φ1) or (G2, φ2) is not cyclic.

Combining Theorem 7.9 and Lemma 7.11, we obtain the following constructive
characterization.

Theorem 7.12. Let Dk be a dihedral group of odd order k. Then a Dk-gain graph
(G, φ) is maximum Dk-tight if and only if it can be built up from a disjoint union of
base graphs by a sequence of 0-extension, 1-extension, loop-1-extension, 2-extension
and loop-2-extension operations.

Lemma 7.11 does not hold for dihedral groups of even order. See Figure 13 for
examples. In the next section we will see how the combinatorial properties given
in the preceeding two lemmas lead to substantial differences between the rigidity
properties of frameworks with odd or even order dihedral symmetry.
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Figure 13: Double cycles without admissible 2-reductions. (a) a D6-sparse C
2
2 , where

C denotes a 6-fold rotation and r denotes a reflection. (b) a D2-sparse C
2
6 , where Cπ

denotes a 2-fold rotation and r and r′ denote distinct reflections.

8 Combinatorial Characterization of Generic

Rigidity with Dihedral Symmetry

In this section we discuss our combinatorial characterization of symmetry-forced in-
finitesimal rigidity with dihedral symmetry. We begin with a necessary condition
based on Lemma 5.2.

Lemma 8.1. Let Dk be a dihedral group of order k ≥ 2, and (H, p) be a generic
(Dk, ρ)-symmetric framework with a free action ρ. If (H, p) is symmetry-forced in-
finitesimally rigid, then the quotient gain graph contains a spanning maximum Dk-tight
subgraph.

Proof. Let (H/Dk, φ) be the quotient gain graph of H and p̃ be a joint configuration
of the vertex orbits V (H/Dk) corresponding to p. By Theorem 5.1, it suffices to prove
that if O(H/Dk, φ, p̃) is row independent, then (H/Dk, φ) is Dk-sparse.
Since p̃ is generic, according to the exact value given in Example 5.2, we have

iso〈F 〉φ,u(p̃(F )) =







3 (if F is balanced)

1 (if F is unbalanced and cyclic)

0 (otherwise)

for any connected F ⊆ E(H/Dk) and u ∈ V (F ), where p̃(F ) = {gp̃(v) : v ∈ V (F ), g ∈
Dk}. By this and Lemma 5.2, we have that |F | ≤ fDk

(F ) for any F ⊆ E(H/Dk). In
other words, H/Dk is Dk-sparse.

In Section 8.1 we shall prove that Dk-sparsity is also sufficient for row independence
when k ≥ 3 is odd. On the other hand, in Section 8.2 we give a family of examples
showing that this implication does not always hold when k is even.
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8.1 Combinatorial characterization of symmetry-forced

rigidity with odd order dihedral symmetry

Our goal of this subsection is to prove the following characterization of symmetry-
forced infinitesimal rigidity.

Theorem 8.2. Let Dk be a dihedral group of odd order k ≥ 3, and (H, p) be a
generic (Dk, ρ)-symmetric framework with a free action ρ. Then (H, p) is symmetry-
forced infinitesimally rigid if and only if the quotient gain graph contains a spanning
maximum Dk-tight subgraph.

Necessity follows from Lemma 8.1. Therefore, by Theorem 5.1, it suffices to prove
that, for a maximum Dk-tight graph (G, φ), there is a mapping p : V (G) → R2

such that O(G, φ, p) is row independent. The proof of this claim is based on the
constructive characterization of maximum Dk-tight graphs formulated in Section 7.
By Theorem 7.12, (G, φ) can be constructed from a disjoint union of base graphs

by 0-extension, 1-extension, loop-1-extension, 2-extension, and loop-2-extension op-
erations. Therefore, what we have to prove is that (i) the orbit rigidity matrix of
each base graph is row independent and (ii) each extension preserves the row inde-
pendence of the orbit rigidity matrix by extending p appropriately. (i) will be solved
in Lemma 8.4 whereas (ii) will be solved in Lemmas 8.5 and 8.7. Note that there is
no parity condition in these lemmas.
In the rest of this section, we identify Dk with the symmetry group of a regular

k-gon, which consists of k-fold rotations around the origin and reflections along (fixed)
lines. For a line L through the origin, we denote by L⊥ the orthogonal complement of
L, that is, the line orthogonal to L and through the origin. We first note an elementary
fact from geometry.

Lemma 8.3. Let g ∈ O(R2).

• If g is the reflection along a line L, then (I2−g)p ∈ L⊥ \{0} for any p ∈ R2 \L.

• If g is a rotation, then (2I2 − g − g−1)p ∈ span{p} \ {0} for any p ∈ R2 \ {0}.

Lemma 8.4. Let (G, φ) be a base graph. Then, there is a mapping p : V (G) → R2

such that O(G, φ, p) is row independent.

Proof. (Case 1) Suppose that (G, φ) is a trivial graph. Let v be the vertex. Take
p : V (G) → R2 such that p(v) does not lie on reflection lines L in Dk and their
orthogonal complements L⊥. Then, O(G, φ, p) consists of two row vectors, which are
linearly independent by Lemma 8.3.
(Case 2) Suppose that (G, φ) is a fancy triangle. Let V (G) = {v1, v2, v3}, and let

li be the loop attached to vi. Also, we denote gi = φ(li) and pi = p(vi) for i = 1, 2, 3.
Recall that the triangle of G is balanced by definition, and hence we may assume that
φ(e) = id for all non-loop edges e. Since (G, φ) is not cyclic, there is a loop whose
gain is a reflection. Hence, without loss of generality, we may assume that g1 is the
reflection along the vertical line L. Also, since (G, φ) is not cyclic, we may assume
that g2 6= g1.
We take p : V (G) → R2 such that
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• p1 is any point not on L ∪ L⊥,

• p2 is any point on the horizontally right side of p1 such that the line through p1
and p2 is parallel to L⊥ with p2 /∈ L, and

• p3 is any point such that (i) p3 is not on the line through p2 and the origin and
(ii) the line through p2 and p3 is neither parallel nor orthogonal to any of the
reflection lines of Dk. See Figure 14.

We show that O(G, φ, p) is row independent.

L

L⊥

p1 p2

p3

Figure 14: Proof of Lemma 8.4

Let us consider any infinitesimal motion m : V (G) → R2. Since the triangle of G is
balanced, m should be a trivial infinitesimal motion of the framework (G′, p) for the
graph G′ obtained from G by removing the loops. By Lemma 8.3, m(v1) ∈ L holds
because of the row associated with l1. Similarly, since g1 6= g2, Lemma 8.3 implies that
m(v2) /∈ L. However, since p1 − p2 ∈ L⊥, if we consider the equation corresponding
to the edge (v1, v2), we have

0 = 〈m(v1)−m(v2), p1 − p2〉 = −〈m(v2), p1 − p2〉,

implying m(v2) = 0. (Hence, m is an infinitesimal rotation of (G′, p) around p2.) This
implies that m(v3) is orthogonal to p2 − p3. However, because of the row associated
with l3, m(v3) cannot be a nonzero vector orthogonal to p2 − p3. In other words,
m(v3) = 0 and hence m(v1) = 0. Since any infinitesimal motion is zero, we conclude
that O(G, φ, p) is row independent.
(Case 3) Suppose that (G, φ) is a fancy hat. The proof is exactly the same as Case

2. Indeed, we just need to replace a balanced triangle with a hat, which is balanced
by definition and also admits only a trivial infinitesimal motion when it is realized in
a generic position.
(Case 4) Suppose that (G, φ) is near-cyclic. Then there is an edge e such that G−e

is cyclic. Let C = 〈E − e〉v for a vertex v ∈ V (G), and denote ge = φ(e). We may
assume that the labels of the edges in E − e are all contained in C. Then ge /∈ C̄.
By Theorem 6.3, O(G− e, φ, p) is row independent for any Dk-generic joint config-

uration p : V (G) → R2, and the kernel space of O(G− e, φ, p) is one-dimensional.
Let m : i ∈ V (G) 7→ mi ∈ R2 be a nonzero infinitesimal motion. Also, denote

pi = p(i) for i ∈ V (G). Then either (i) C is the group of the reflection along a line L,
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in which case there is a t ∈ L such that mi = t for all i ∈ V (G), or (ii) C is a group of
rotations, in which case mi = Cπ/2pi for i ∈ V (G). We show that m does not satisfy
the equation associated with e = (i, j):

〈pi − gepj, mi − gemj〉 = 0. (20)

First suppose that C is the group of the reflection along a line L. Then (20) implies

0 = 〈pi − gepj, t− get〉 = 〈(I2 − g−1
e )pi + (I2 − ge)pj , t〉.

Thus (I2 − g−1
e )pi + (I2 − ge)pj ∈ L⊥. As p is generic, the only possible situation is

that pi = pj and ge is the reflection along L by Lemma 8.3. This however implies that
G is cyclic, a contradiction. Thus, m does not satisfy (20).
Next suppose that C is a group of rotations. If e is a loop (and hence pi = pj), then

the left side of (20) becomes

〈(I2 − ge)pi, (I2 − ge)mi〉 = 〈(I2 − ge)pi, (I2 − ge)Cπ/2pi〉.

Note that ge is a reflection by ge /∈ C̄, and thus this inner product is nonzero by
Lemma 8.3. If e is not a loop, by 〈pi − gepj , Cπ/2(pi − gepj)〉 = 0, (20) becomes

0 = 〈pi − gepj, mi − gemj〉 = 〈pi − gepj , Cπ/2pi − geCπ/2pj〉

= 〈pi − gepj , (Cπ/2ge − geCπ/2)pj〉.

Since p is generic and pi 6= pj, we have Cπ/2ge = geCπ/2. Since ge is a reflection, basic
properties of the dihedral groups imply that geCπ/2 = C−1

π/2ge. These equalities imply

Cπ/2 = C−1
π/2, a contradiction.

The next two lemmas show that loop-2-extensions and 2-extensions preserve the
independence of rigidity matrices.

Lemma 8.5. Let (G, φ) be a maximum Dk-tight graph with k ≥ 2 and (G′, φ′) a
maximum Dk-tight graph obtained from (G, φ) by a loop-2-extension. If there is a
mapping p : V (G) → R2 such that O(G, φ, p) is row independent, then there is a
mapping p′ : V (G′) → R2 such that O(G′, φ′, p′) is row independent.

Proof. We may assume that p is Dk-generic. Suppose that G′ is obtained from G by
a loop-2-extension, by removing an existing edge e, adding a new vertex v with new
non-loop edges e1 and e2 and a new loop l incident to v. (See Figure 9.) We may
assume that e1 and e2 are outgoing from v. Let ui be the other endvertex of ei and
let gi = φ′(ei) for i = 1, 2. By the definition of loop-2-extension, φ(e) = g−1

1 g2. Also,
denote h = φ′(l).
Let pi = p(ui) for i = 1, 2. Note that g1p1 6= g2p2, as G

′ is Dk-sparse and p is Dk-
generic. Let L be the line through g1p1 and g2p2. We take a point q ∈ L\{g1p1, g2p2},
and define p′ : V (G′) → R2 such that p′(w) = p(w) for w ∈ V (G) and p′(v) = q.
O(G′, φ′, p′) is then described as follows: if u1 6= u2

v u1 u2
l (2I2 − h− h−1)q 0 0 0
e1 q − g1p1 p1 − g−1

1 q 0 0
e2 q − g2p2 0 p2 − g−1

2 q 0
E(G)− e 0 O(G− e, φ, p)
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whereas, if u1 = u2 (and hence p1 = p2),

v u1
l (2I2 − h− h−1)q 0 0
e1 q − g1p1 p1 − g−1

1 q 0
e2 q − g2p1 p1 − g−1

2 q 0
E(G)− e 0 O(G− e, φ, p)

Since q ∈ L\{g1p1, g2p2}, q−gipi is a scalar multiple of g1p1−g2p2 for i = 1, 2. Hence,
as in the proof of Lemma 6.1, by multiplying the rows of e1 and e2 by appropriate
scalars and then subtracting the row of e1 from that of e2, O(G

′, φ′, p′) becomes one
of the following matrices,

v u1 u2
l (2I2 − h− h−1)q 0 0 0
e1 g1p1 − g2p2 −g−1

1 (g1p1 − g2p2) 0 0
e2 0 p1 − g−1

1 g2p2 p2 − g−1
2 g1p1 0

E(G)− e 0 O(G− e, φ, p)

v u1
l (2I2 − h− h−1)q 0 0
e1 g1p1 − g2p1 −g−1

1 (g1p1 − g2p1) 0
e2 0 (2I2 − g−1

1 g2 − g−1
2 g1)p1 0

E(G)− e 0 O(G− e, φ, p)

depending on whether u1 6= u2 or u1 = u2. The right-bottom block together with
the row of e2 forms O(G, φ, p), which is row independent. Hence, O(G′, φ′, p′) is row
independent if and only if {(2I2 − h− h−1)q, g1p1 − g2p2} is linearly independent. We
have the following sufficient condition for linear independence.

Claim 8.6. If there is no point q ∈ L\{g1p1, g2p2} such that {(2I2−h−h
−1)q, g1p1−

g2p2} is linearly independent, then either

(1) u1 = u2 and h is the reflection along the line orthogonal to L with h = g2g
−1
1 , or

(2) u1 = u2, h is a rotation, and g2g
−1
1 is the 2-fold rotation.

Proof. We split the proof into two cases.
Suppose that h is the reflection along some line R through the origin. By

Lemma 8.3, (2I2 − h − h−1)q is orthogonal to R. This means that, if {(2I2 − h −
h−1)q, g1p1−g2p2} is dependent, L is orthogonal to R. Since p is Dk-generic, L cannot
be orthogonal to reflection line R if p1 6= p2. Thus, p1 = p2 (and hence u1 = u2), and
h = g2g

−1
1 as p is Dk-generic.

Suppose that h is a rotation. By Lemma 8.3, (2I2−h−h
−1)q is a scalar multiple of

q. Hence, if {(2I2 − h− h−1)q, g1p1 − g2p2} is dependent for any q ∈ L \ {g1p1, g2p2},
L passes through the origin. Since p is Dk-generic, L passes through the origin if and
only if p1 = p2 (and hence u1 = u2) and g2p1 is the antipodal point of g1p1. Observe
that g2p1 is the antipodal point of g1p1 if and only if g2g

−1
1 is the 2-fold rotation as p

is Dk-generic.
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By Claim 8.6 we may focus on cases (1) and (2) of Claim 8.6.
Case (1). Suppose that u1 = u2 and h is the reflection along R with h = g2g

−1
1 ,

where R is the line orthogonal to L and through the origin. Note that φ(e) = g−1
1 g2 is

a reflection since g2g
−1
1 is a reflection. (A conjugate of a reflection is also a reflection.)

We take a point x ∈ R2\(L∪R) and redefine p′ : V (G′) → R2 such that p′(w) = p(w)
for w ∈ V (G) and p′(v) = x. Then, the orbit rigidity matrix becomes

v u1
l (I2 − h)x 0 0
e1 x− g1p1 p1 − g−1

1 x 0
e2 x− g2p1 p1 − g−1

2 x 0
E(G)− e 0 O(G− e, φ, p)

By subtracting the row of e1 from that of e2, it changes to

v u1
l (I2 − h)x 0 0
e1 x− g1p1 −g−1

1 (x− g1p1) 0
e2 g1p1 − g2p1 g−1

1 x− g−1
2 x 0

E(G)− e 0 O(G− e, φ, p)

By Lemma 8.3, (I2 − h)x is orthogonal to R. Since R is orthogonal to L, we deduce
that (I2−h)x is a scalar multiple of g1p1−g2p1. Thus, by subtracting a scalar multiple
of the first row, the row of e2 is changed to the following form:

v u1
e2 0 g−1

1 x− g−1
2 x 0

Moreover, g−1
1 x−g−1

2 x = (I2−g
−1
2 g1)g

−1
1 x = (I2−φ(e))g

−1
1 x, which is a scalar multiple

of (2I2−φ(e)−φ(e)
−1)p1 by Lemma 8.3 (using the fact that φ(e) is a reflection). Thus,

by multiplying the row of e2 by another scalar, the matrix is changed to

v u1
l (I2 − h)x 0 0
e1 x− g1p1 −g−1

1 (x− g1p1) 0
e2 0 (2I2 − φ(e)− φ(e)−1)p1 0

E(G)− e 0 O(G− e, φ, p)

where the right-bottom block together with the row of e2 forms O(G, φ, p), which is
row independent, and the left-top block is also row independent as (I2 − h)x ∈ R⊥

and x− g1p1 /∈ R⊥ by x /∈ L and g1p1 ∈ L. Thus, O(G′, φ′, p′) is row independent.
Case (2). Suppose that u1 = u2, h is a rotation, and g2g

−1
1 is the 2-fold rotation.

We redefine p′ : V (G′) → R2 such that p′(w) = p(w) for w ∈ V (G) and p′(v) = 0. Let
us consider the rank of O(G′, φ′, p′). Since p′(v) = 0, the row of l is a zero vector in
O(G′, φ′, q′). We hence imaginary put d ∈ R2 in place of (2I − h − h−1)p′(v), where
d is a vector linearly independent from (g2 − g1)p1. The resulting matrix, denoted by
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Ō(G′, φ′, p′), can be written in the following way:

v u1
l d 0 0
e1 −g1p1 p1 0
e2 −g2p1 p1 0

E(G)− e 0 O(G− e, φ, p)

We first compute the rank of Ō(G′, φ′, p′). To do this first we recall that g2g
−1
1 is the

2-fold rotation. This means that L contains the origin, and g1p1 + g2p1 = 0. Also,
since φ(e) = g−1

1 g2 is a rotation, p1 is proportional to (2I2 − φ(e) − φ(e)−1)p1 by
Lemma 8.3. Therefore, by appropriate row operations, Ō(G′, φ′, p′) will look like this:

v u1
l d 0 0
e1 (g2 − g1)p1 0 0
e2 0 (2I2 − φ(e)− φ(e)−1)p1 0

E(G)− e 0 O(G− e, φ, p)

where the right-bottom block together with the row of e2 forms O(G, φ, p), which is
row independent, and the left-top block is also row independent by the choice of d.
Thus, Ō(G′, φ′, p′) is row independent.
To avoid the situation where p′(v) = 0, we continuously perturb p′(v) in the di-

rection of d. To see the perturbation more precisely, for each t ∈ R, let us define
p′t : V ∪ {v} → R2 by p′t(v) = td and p′t(u) = p′(u) for u ∈ V . Then, observe that
for all t ∈ R \ {0} the row of l in O(G′, φ′, p′t) is a nonzero scalar multiple of that
of l in Ō(G′, φ′, p′) by Lemma 8.3. Therefore, rank O(G′, φ′, p′t) = rank Ō(G′, φ′, p′t)
for all t ∈ R \ {0}. Since Ō(G′, φ′, p′0) = Ō(G′, φ′, p′) and the latter matrix is row
independent, it follows that Ō(G′, φ′, p′t) is row independent for almost all t. This in
turn implies that O(G′, φ′, p′t) is row independent for almost all t ∈ R \ {0}.
This complete the proof of the lemma.

Lemma 8.7. Let (G, φ) be a maximum Dk-tight graph with k ≥ 2 and (G′, φ′) a
maximum Dk-tight graph obtained from (G, φ) by a 2-extension. If there is a mapping
p : V (G) → R2 such that O(G, φ, p) is row independent, then there is a mapping
p′ : V (G′) → R2 such that O(G′, φ′, p′) is row independent.

Proof. We may assume that p is Dk-generic. Suppose that G
′ is obtained from G by a

2-extension, by removing two existing edges e and f and adding a new vertex v with
new non-loop edges e1, e2, e3, e4 incident to v. (See Figure 8.) We may assume that
ei is outgoing from v, and e = e−1

1 · e2 and f = e−1
3 · e4. Let ui be the other endvertex

of ei and let gi = φ′(ei). We then have φ(e) = g−1
1 g2 and φ(f) = g−1

3 g4.
Let pi = p(ui) for i = 1, . . . , 4, L be the line through g1p1 and g2p2, and L

′ be the
line through g3p3 and g4p4. We have the following elementary geometric observation.

Claim 8.8. (i) No three points among {gipi : i = 1, . . . , 4} are colinear.
(ii) If L and L′ are parallel, then the following holds:
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• L 6= L′,

• u1 = u2 and u3 = u4, and

• g2g
−1
1 is the reflection along L⊥ with g2g

−1
1 = g4g

−1
3 .

Proof. The first claim follows from the proof of Claim 6.2.
For the second claim, suppose that L and L′ are parallel. Without loss of generality,

we have the following four cases: (i) p1 /∈ {p2, p3, p4}, (ii) p1 = p2 = p3 = p4, (iii)
p1 = p2 6= p3 = p4, and (iv) p1 = p3 6= p2 = p4.
In case (i), the Dk-genericity of p implies that g1p1 has no relation to the other

three points, and hence L and L′ intersect at a point.
In case (ii), g1p1, . . . , g4p4 lie on a circle C. Moreover, since u1 = u2 = u3 = u4, e

and f are loops attached to a vertex (i.e., the 2-extension is type (g) of Figure 8). This
implies that the group generated by {g−1

1 g2, g
−1
3 g4} is not cyclic by the Dk-sparsity of

G.
Now, L is the line through g1p1 and g2p1 while L

′ is the line through g3p1 and g4p1.
We have two subcases depending on whether g2g

−1
1 is a reflection or a rotation.

(ii-1) If g2g
−1
1 is a reflection, then it is the reflection along the bisector L⊥ of g1p1

and g2p1. If L and L′ are parallel, then this reflection also sends g3p3 to g4p4. This
means that g2g

−1
1 is the reflection along L⊥ with g2g

−1
1 = g4g

−1
3 , which implies the

statement.
(ii-2) If g2g

−1
1 is a rotation, g1p1 and g2p1 are vertices of a regular k-gon inscribing

C. Since p is generic, if L′ is parallel to L, g3p1 and g4p1 are also vertices of this
regular k-gon, and hence g4g

−1
3 is also a rotation. Since a conjugate of a rotation is

also a rotation, we deduce that g−1
1 g2 and g−1

3 g4 are rotations as well. This however
contradicts the fact that 〈g−1

1 g2, g
−1
3 g4〉 is not cyclic.

In case (iii), L is the line through g1p1 and g2p1 while L
′ is the line through g3p3 and

g4p3. Observe that, if g2g
−1
1 is a rotation, the line L can have any slope, by moving

p1. Therefore, if L and L′ are parallel for generic p, then g2g
−1
1 and g4g

−1
3 are both

reflections. When g2g
−1
1 is a reflection, it is the reflection along the bisector L⊥ of g1p1

and g2p1. As g4g
−1
3 is a reflection and L and L′ are parallel, g4g

−1
3 is the reflection

along L⊥, which implies the statement.
In case (iv), L is the line through g1p1 and g2p2 and L′ is the line through g3p1

and g4p2. Also, u1 = u3 6= u2 = u4 implies that {e, f} forms a 2-cycle in G′ (i.e, the
2-extension is type (f) in Figure 8). Hence, φ(e) 6= φ(f), and equivalently, g−1

1 g2 6=
g−1
3 g4. This implies

g1g
−1
3 6= g2g

−1
4 . (21)

We prove that L and L′ cannot be parallel if p is generic.
Let C be the circle whose center is the origin and which passes through g1p1 (and

hence through g3p1). We split the proof into two cases depending on whether g3g
−1
1

is the 2-fold rotation Cπ or not.
(iv-1) Suppose that g3g

−1
1 6= Cπ. Let C ′ be a circle whose center is the origin and

the diameter is much larger than that of C. We shall relocate g2p2 on C ′ such that
g2p2 is on the line through g1p1 and the origin as shown in Figure 15(a). Then, if L
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g1p1

g2p2

g3p1

q
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L′

q′
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g1p1

g3p1

g2p2

L′

L

q′

q

CC ′

(b)

Figure 15: Proof of case (iv) in Claim 8.8.

and L′ are parallel, we have only two possible locations q and q′ for g4p2 (as shown in
Figure 15(a)). Since the diameter of C ′ can be arbitrarily large, Dk has no element
that sends g2p2 to q or q′. In other words, if p is generic, L and L′ are not parallel.
(iv-2) Suppose that g3g

−1
1 = Cπ. Then g3p1 is the antipodal point of g1p1 in C as

shown in Figure 15(b). Let C ′ be a circle whose center is the origin and the diameter is
slightly larger than that of C. We shall relocate g2p2 on C

′ such that L is the tangent
of C at g1p1 (see Figure 15(b)). Then, we have only two possible locations q and q′

for g4p2 as L and L′ are parallel and g4p2 is on C ′, where q is the antipodal point of
g2p2 with respect to the origin and q′ is the reflection of q2p2 along the line parallel to
L and through the origin. When p is generic, L is not parallel to any reflection lines
in Dk, implying g4p2 6= q′. Hence, g4p2 = q. This means that g4g

−1
2 is also the 2-fold

rotation Cπ.
Recall that Cπ is in the center of O(R2), i.e., gCπ = Cπg for any g ∈ O(R2). Thus,

by g3g
−1
1 = Cπ, we have g−1

1 g3 = g−1
1 Cπg1 = Cπ. Symmetrically, by g4g

−1
2 = Cπ,

we have g−1
2 g4 = Cπ. This however implies that g−1

1 g3 = g−1
2 g4, which contradicts

(21).

Following the statement of Claim 8.8, we shall split the proof into two cases.
(Case 1) Suppose that L and L′ are not parallel. Let q be the intersection of L and

L′. By Claim 8.8(i), we have q 6= gipi. We define p′ : V (G′) → R2 by p′(w) = p(w) for
w ∈ V (G) and p′(v) = q for the added vertex v. Then, O(G′, φ′, p′) can be written as
follows:

v V (G)
e1 q − g1p1 ∗
e2 q − g2p2 ∗
e3 q − g3p3 ∗
e4 q − g4p4 ∗

E(G)− e− f 0 O(G− e− f, φ, p)

where O(G− e− f, φ, p) is the matrix obtained from O(G, φ, p) by removing the rows
of e and f . Consider the rows associated with e1 and e2. Since q is on L, q − gipi is
a scalar multiple of g1p1 − g2p2, and hence these two rows can be transformed to the
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following form by row operations: if u1 6= u2

v u1 u2
e1 g1p1 − g2p2 −p1 + g−1

1 g2p2 0 0
e2 0 p1 − g−1

1 g2p2 p2 − g−1
2 g1p1 0

and, if u1 = u2,

v u1
e1 g1p1 − g2p2 −p1 + g−1

1 g2p2 0
e2 0 (2I2 − g−1

1 g2 − g−1
2 g1)p1 0

Notice that, in each case, the row of e2 is converted to that of e in O(G, φ, p). In a
symmetric manner, the rows of e3 and e4 can be converted to the above form, simply
by replacing 1 and 2 with 3 and 4, respectively. Thus, O(G′, φ′, p′) is converted to

v
e1 g1p1 − g2p2 ∗
e3 g3p3 − g4p4 ∗

E(G) 0 O(G, φ, p)

The right-bottom block O(G, φ, p) is row independent while the left-top block is also
row independent since L and L′ are not parallel. In other words, O(G′, φ′, p′) is row
independent.
(Case 2) Suppose that L and L′ are parallel. By Claim 8.8, L 6= L′, p1 = p2,

p3 = p4, and g
−1
1 g2 and g−1

3 g4 are reflections. Let q be any point on L with q 6= g1p1
and q 6= g2p1. We define p′ : V (G′) → R2 by p′(w) = p(w) for w ∈ V (G) and p′(v) = q
for the new vertex v. Then, the orbit rigidity matrix is described as follows:

v u1 u3 V (G)
e1 q − g1p1 p1 − g−1

1 q 0 0
e2 q − g2p1 p1 − g−1

2 q 0 0
e3 q − g3p3 0 p3 − g−1

3 q 0
e4 q − g4p3 0 p3 − g−1

4 q 0
E(G)− e− f 0 O(G− e− f, φ, p)

Since q is on the line L, q− gipi is a scalar multiple of (g1 − g2)p1 for i = 1, 2. Hence,
the rows of e1 and e2 can be converted to

v u1
e1 (g1 − g2)p1 −g−1

1 (g1 − g2)p1 0
e2 (g1 − g2)p1 −g−1

2 (g1 − g2)p1 0

and then to
v u1

e1 (g1 − g2)p1 −(I2 − g−1
1 g2)p1 0

e2 0 (2I2 − g−1
1 g2 − g−1

2 g1)p1 0
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Since g−1
1 g2 is a reflection, we have g−1

1 g2 = g−1
2 g1. Hence, by adding the half of the

second row to the first row, we obtain

v u1
e1 (g1 − g2)p1 0 0
e2 0 (2I2 − g−1

1 g2 − g−1
2 g1)p1 0

Next we consider the rows of e3 and e4. By subtracting the row of e3 from that of e4,
we obtain

v u1 u2
e4 (g3 − g4)p3 0 (g−1

3 − g−1
4 )q 0

Since L and L′ are parallel, {(g1 − g2)p1, (g3 − g4)p3} is linearly dependent. Thus, by
subtracting the row of e1 from that of e4, we have

v u1 u2
e4 0 0 (g−1

3 − g−1
4 )q 0

Moreover, since g−1
4 g3 is a reflection, Lemma 8.3 implies that (I2 − g−1

4 g3)g
−1
3 q is

a scalar multiple of (I2 − g−1
4 g3)p3, and hence (g−1

3 − g−1
4 )q is a scalar multiple of

(I2 − g−1
4 g3)p3. Therefore, by using g−1

3 g4 = g−1
4 g3, the row of e4 can be converted by

a scalar multiplication to

v u1 u2
e4 0 0 (2I2 − g−1

3 g4 − g−1
4 g3)p3 0

In total, O(G′, φ′, p′) is changed to the following form by row-operations:

v u1 u3 V (G)
e1 (g1 − g2)p1 0 0 0
e3 q − g3p3 p3 − g−1

3 q 0 0
e2 0 (2I2 − g−1

1 g2 − g−1
2 g1)p1 0 0

e4 0 0 (2I2 − g−1
3 g4 − g−1

4 g3)p3 0
E(G)− e− f 0 O(G− e− f, φ, p)

The right-bottom block together with the rows of e2 and e4 forms O(G, φ, p), which
is row independent. Also, since q is on L, but not on L′, {(g1 − g2)p1, q − g3p3} is
linearly independent. Therefore, O(G′, φ′, p) is row independent.

Combining Theorem 7.12, Lemma 6.1, Lemma 8.1, Lemma 8.4, Lemma 8.5, and
Lemma 8.7, we can now complete the proof of Theorem 8.2.

8.2 Symmetric infinitesimal motions with even order dihe-
dral symmetry

Notice that all the lemmas given in the last subsection are independent of the parity
of the order k. Therefore, we obtain the following statement even for a dihedral
group Dk of even order k: for a generic (Dk, ρ)-symmetric framework (H, p) with
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even order k and a free action ρ, (H, p) is symmetry-forced infinitesimally rigid if
the quotient gain graph can be constructed from a disjoint union of base graphs
by 0-extensions, 1-extensions, loop-1-extensions, 2-extensions and loop-2-extensions.
However, as we have seen in Figure 13, there are infinitely many gain graphs that
cannot be constructed from base graphs. By Theorem 7.9, minimal examples are Dk-
sparse double cycles C2

n. Below, we show that some of them indeed have symmetric
infinitesimal motions.
For C2

n, the vertex set is denoted by {1, . . . , n} and the edges of the 2-cycle between
i and i+ 1 (mod n) are denoted by ei,1 and ei,2 for i = 1, . . . , n.

Theorem 8.9. Let D2 be the dihedral group of order 2, which consists of the identity
I2, the 2-fold rotation Cπ, and two reflections r and r′. Let (G, φ) be a D2-sparse C

2
n

such that

• φ(ei,1) = id and φ(ei,2) = r′ for i = 1, . . . , n− 1;

• φ(en,1) = Cπ and φ(en,2) = r.

Then, for any D2-generic p : V (G) → R2, rankO(G, φ, p) = 2n if and only if n is
odd.

Proof. Let p : i ∈ V (G) 7→ (xi, yi) ∈ R2 be a D2-generic mapping. Then Cπp(i) =
(−xi,−yi), rp(i) = (−xi, yi), r

′p(i) = (xi,−yi). The rows of O(G, φ, p) are as follows,

i i+ 1 i i+ 1
ei,1 0 xi − xi+1 xi+1 − xi 0 0 yi − yi+1 yi+1 − yi 0
ei,2 0 xi − xi+1 xi+1 − xi 0 0 yi + yi+1 yi+1 + yi 0

and
n 1 n 1

en,1 0 xn + x1 x1 + xn 0 0 yn + y1 y1 + yn 0
en,2 0 xn + x1 x1 + xn 0 0 yn − y1 y1 − yn 0

where the left and the right half sides correspond to x- and y-coordinates, respectively.
For each i, we subtract the first row from the second row and then multiply the first
row by an appropriate scalar. We then have, for each i = 1, . . . , n− 1,

i i+ 1 i i+ 1
ei,1 0 1 −1 0 0 ∗ ∗ 0
ei,2 0 0 0 0 0 yi+1 yi 0

and
n 1 n 1

en,1 0 1 1 0 0 ∗ ∗ 0
en,2 0 0 0 0 0 y1 yn 0
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Cπ

rr′

id

id

r

(a)

idr

Cπ

r′

rid

id

r

(b)

Figure 16: Examples of symmetric frameworks given in Theorem 8.9. (b) has a
symmetric infinitesimal motion, but (a) does not.

In other words, O(G, φ, p) is converted to the following form,

1 −1
1 −1

. . .
. . . ∗
1 −1

1 1
y2 y1

y3 y2

0 . . .
. . .

yn yn−1

yn y1

The determinant of this matrix is 2(1− (−1)n−1)
∏n

i=1 yi, which is equal to zero if and
only if n is even.

See Figure 16 for examples of frameworks given in Theorem 8.9. For n = 2, the
covering graph is K4,4 and the corresponding framework is known as Bottema’s mech-
anism (see [27, Section 7.2.1]).

9 Proof of Theorem 7.8

In this section we prove Theorem 7.8. For simplicity, a D-gain graph satisfying the
conditions of Theorem 7.8 is called essential, i.e., D-sparse, 4-regular, not a base graph,
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and not a double cycle. Lemma 7.6 shows that 2-extensions and loop-2-extensions
preserve D-sparsity, and hence what we have to prove is the following theorem.

Theorem 9.1. Any essential graph (G, φ) has a vertex at which a 2-reduction or a
loop-2-reduction is admissible.

For simplicity, in the subsequent discussion we omit gain functions φ when referring
to gain graphs if it is clear from the context. Also an edge (u, v) from u to v is simply
denoted by uv, and a D-tight set is called a tight set.
The proof of Theorem 9.1 consists of four parts. In §9.1, we shall prove useful

lemmas for subsequent discussion. In §9.2, we prove Theorem 9.1 for the following
graphs,

• graphs consisting of only special vertices (Lemma 9.5), where a vertex is called
special if it is incident with a loop or two parallel classes of edges;

• graphs that are not 2-connected (Lemma 9.6),

• “almost” near-cyclic graphs (Lemma 9.8), defined below,

• graphs that are not essentially 4-edge-connected (Lemma 9.9),

• graphs having a vertex v with |N(v)| = 2.

In §9.3 we discuss graphs not belonging to the above classes. In §9.4 we put everything
together to complete the proof of Theorem 9.1.

9.1 Preliminary facts

The following fundamental properties of 4-regular graphs will be frequently used.

• A 4-regular graph is Eulerian. Hence, a 4-regular connected graph is 2-edge-
connected.

• Let G = (V,E) be a graph with maximum degree at most 4. Then, for any
X ⊆ V , iG(X) ≤ 2|X| − ⌊dG(X)/2⌋, where iG(X) denotes the number of edges
induced by X . In particular, if G is 4-regular, iG(X) = 2|X| − dG(X)/2.

The next lemma asserts that if the maximum degree is at most 4, then D-sparsity
is equivalent to the following simpler properties:

(C1) |F | ≤ 2|V (F )| − 3 for every nonempty balanced set F ⊆ E;

(C2) G is not cyclic for some v ∈ V .

Lemma 9.2. Let G = (V,E) be a D-gain graph with maximum vertex degree at most
4. If G is connected, then G is D-sparse if and only if

(i) G is not 4-regular and condition (C1) is satisfied, or
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(ii) G is 4-regular and conditions (C1) and (C2) are satisfied.

If G is not connected, G is D-sparse if and only if each connected component is D-
sparse.

Proof. If the maximum degree is at most 4, |F | ≤ 2|V (F )| for any F ⊆ E. In
particular, if G is connected, we have |F | ≤ iG(V (F )) ≤ 2|V (F )| − ⌊dG(V (F ))/2⌋ ≤
2|V (F )| − 1 for any F ⊆ E with V (F ) 6= V . Therefore, |F | ≥ 2|V (F )| holds if and
only if G is 4-regular and F = E.

Thus, to prove Theorem 9.1, we shall investigate whether (C1) and (C2) are satisfied
after the reductions. The next lemma will be used when (C2) is not satisfied. We
say that (G, φ) is almost near-cyclic if there are two incident edges e and f such that
G− e− f is cyclic.

Lemma 9.3. Let (G, φ) be a connected 4-regular D-sparse graph with G = (V,E) and
v be a vertex in G that is not incident to a loop. Let e1, e2, e3, e4 be the edges incoming
to v, and suppose that G− v + e1 · e

−1
2 + e3 · e

−1
4 is connected and cyclic. Then, there

is an equivalent gain function φ′ to φ and a cyclic subgroup C of D such that

• φ′(e) ∈ C for every e ∈ E \ {e3, e4}, and

• φ′(e3) /∈ C̄ and φ′(e4) /∈ C̄.

In particular, G is almost near-cyclic.

Proof. Let G′ = G − v + e1 · e
−1
2 + e3 · e

−1
4 . Since G′ is connected and cyclic, by

Lemma 2.4, there are an equivalent gain function φ′ to φ and a cyclic subgroup C of D
such that φ′(e) ∈ C for all e ∈ E(G′). Let a = φ′(e1 ·e

−1
2 ) ∈ C and a′ = φ′(e3 ·e

−1
4 ) ∈ C.

Then, by using some elements b1, b2 ∈ D, we can express φ′(ei) by

φ′(e1) = ab1, φ′(e2) = b1, φ′(e3) = a′b2, φ′(e4) = b2.

We further perform the switching operation at v with b1. We consequently have an
equivalent gain function φ′ to φ such that

φ′(e1) = a, φ′(e2) = id, φ′(e3) = a′b, φ′(e4) = b,

where b = b2b
−1
1 . Notice that φ′(e) ∈ C for all e ∈ E \ {e3, e4}. Since G is not cyclic,

we must have b /∈ C̄, implying that φ′(e3) /∈ C̄ and φ′(e4) /∈ C̄.

The following technical lemma is one of the key observations. A vertex in a 4-
regular graph is called special if it is incident with a loop or two parallel classes of
edges with |N(v)| = 2.

Lemma 9.4. Let (G, φ) be a connected 4-regular D-sparse graph with G = (V,E), v
be a vertex in G that is not special, and e1, e2, e3, e4 be the edges incoming to v. If
G− e3 − e4 or G− v + e1 · e

−1
2 + e3 · e

−1
4 is connected and cyclic, then at least one of

the following holds
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(a) G is near-cyclic.

(b) G− v + e1 · e
−1
3 + e2 · e

−1
4 is D-sparse.

(c) v is a cut-vertex in G and G− v + e1 · e
−1
3 + e2 · e

−1
4 is connected.

Proof. For simplicity, we denote ei,j = ei · e
−1
j for i, j ∈ {1, 2, 3, 4}. We assume that

(a) does not occur and show that (b) or (c) holds.
We claim that there are an equivalent gain function φ′ to φ and a cyclic subgroup

C of D such that φ′(e) ∈ C holds for e ∈ E \ {e3, e4} and φ′(e3) /∈ C̄ and φ′(e4) /∈ C̄.
To see this, first observe that if G− v + e1 · e

−1
2 + e3 · e

−1
4 is connected and cyclic,

then Lemma 9.3 implies the claim. On the other hand, if G − e3 − e4 is connected
and cyclic, then by Lemma 2.4, there is an equivalent φ′ to φ and a cyclic subgroup C
of D such that φ′(e) ∈ C for e ∈ E \ {e3, e4}. Since G is neither cyclic nor near-cyclic,
we have φ′(e3) /∈ C̄, and φ′(e4) /∈ C̄.
Note that φ′(e1,3) /∈ C̄ and φ′(e2,4) /∈ C̄.
Let us consider G−v. Since G−v is cyclic with |E(G−v)| = 2|V (G−v)|−2, G−v

is (2, 3)-g-sparse. Applying Lemma 7.7 with φ′(e1,3) /∈ C̄, we deduce that G− v + e1,3
is D-sparse. Let G′ = G−v+e1,3+e2,4. We now show that, if G′ is not D-sparse (i.e.,
(b) does not hold), then (c) holds. To see this, let us assume that G′ is not D-sparse.
By Lemma 9.2, G′ (or a connected component of G′) violates (C1) or (C2).
Case 1: If (C1) is violated, then G− v + e1,3 contains a balanced tight set F such

that V (F ) contains the endvertices of e2,4 and F + e2,4 is balanced. Let s and t be
the endvertices of e2,4, which are possibly the same vertex. By Lemma 7.1, if |F | > 1,
F contains a path from s to t that does not pass through e1,3. Recall that the gain
of each edge in this path is included in C, and the concatenation of the path and e2,4
forms an unbalanced closed walk in F + e2,4, contradicting that F + e2,4 is balanced.
Therefore, |F | = 1 holds; in particular, since s, t ∈ V (F ) and F + e2,4 is balanced, it
follows that F = {e1,3} and {e1,3, e2,4} forms a balanced 2-cycle in G′. This implies
that v is special in G, contradicting the assumption of the lemma.
Case 2: We next consider the case when (C2) is violated in G′. Suppose that v is

not a cut-vertex. Note that, since |E(G− v)| = 2|V (G− v)| − 2, G − v contains an
unbalanced cycle C, whose gain is included in C. Let s and t be the endvertices of
e2,4, which are possibly the same vertex. Since G− v is connected, there is a path P
from s to a vertex in V (C). We consider a closed walk W1 that first passes through
P starting at s, then goes around C, and comes back to s through P−1. We then
have φ′(W1) ∈ C. Also, since G − v is connected, G − v has a path P ′ connecting s
and t. The concatenation of P ′ with e2,4 forms a closed walk W2 starting at s with
φ(W2) /∈ C̄. Thus, {φ′(W1), φ

′(W2)} generates a non-cyclic group. Hence, G′ satisfies
(C2), a contradiction. Thus, v is a cut-vertex in G.
Suppose that G′ is not connected. Then, by the 4-regularity of G, G′ consists of two

connected components, denoted G′
1 and G′

2 with e1,3 ∈ E(G′
1) and e2,4 ∈ E(G′

2). We
have already seen that G−v+e1,3 is D-sparse, and hence its subgraph G′

1 is D-sparse.
However, since G′

1 is 4-regular, G′
1 is indeed maximum D-tight. By the symmetry

between e1,3 and e2,4, G
′
2 is also maximum D-tight, and thus G′ is maximum D-tight,

a contradiction. Thus (c) must hold.
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9.2 Special cases

Recall that a vertex is special if it is incident with a loop or two parallel classes
of edges. A graph which consists of only special vertices is called a special graph.
Special graphs are classified into the following three classes C2

n, C
◦
n and P 2

n for n ≥ 2
(Figure 17): As defined in § 7.2, C2

n is the graph obtained from the cycle of n vertices
by replacing each edge by two parallel copies; C◦

n is the cycle of n vertices, each of
which is incident to a loop; P 2

n is the graph obtained from a path of n vertices by
replacing each edge by two parallel copies and adding one loop to each endvertex of
the path.

(a) (b)

(c)

Figure 17: Special graphs: (a)C2
6 , (b)C

◦
8 , (c)P

2
4 .

Lemma 9.5. Let (G, φ) be an essential D-gain graph whose underlying graph G =
(V,E) is special. Then there is a vertex at which a 2-reduction or a loop-2-reduction
is admissible.

Proof. Since (G, φ) is essential, the underlying graph is either P 2
n or C◦

n.
Suppose that the underlying graph is P 2

n . We perform the loop-2-reduction at a
vertex incident to a loop l. The resulting graph is P 2

n−1 and clearly it satisfies (C1).
If it does not satisfy (C2), then the resulting graph is cyclic and there is a cyclic
subgroup C of D such that the gain of every cycle in G except for the loop l is in
C. This in turn implies that G − l is cyclic, contradicting the assumption that G is
essential.
Suppose that the underlying graph is C◦

n. We may assume n ≥ 3 since C◦
2 = P 2

2 .
We perform the 2-reduction at a vertex incident to a loop l. The resulting D-gain
graph, denoted G′, has the underlying graph C◦

n−1.
If G′ does not satisfy (C2), then the gain of each cycle in G except for the loop l

is included in a cyclic subgroup C of D, which again contradicts the fact that G is
essential.
It can be easily observed that G′ satisfies (C1) if n > 3. For n = 3, (C1) is violated

if the 2-cycle of G′ is balanced, but in such a case the triangle in the original graph
G is balanced, and G turns out to be a fancy triangle, contradicting the fact that G
is essential.

The next lemma solves the case when the graph can be disconnected by removing
one vertex.

Lemma 9.6. Let G = (V,E) be a connected essential D-gain graph with |V | ≥ 2.
Suppose that G is not 2-connected. Then a 2-reduction is admissible at some vertex.
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Proof. By Lemma 9.5, we may assume that G is not equal to P 2
|V |. Then G has a

cut-vertex v which is not special. We show that a 2-reduction at v is admissible.
Note that G− v consists of two connected components by the 4-regularity of G. Let
e1, e2, e3, e4 be the edges incident to v, all of them are directed to v. ¿From the 2-edge-
connectivity of G, we can assume, without loss of generality, that the endvertices of
e1 and e3 are included in a connected component of G − v while those of e2 and e4
are included in the other component.
Consider the 2-reduction at v through (e1, e2) and (e3, e4). Let G

′ be the resulting
graph. Note that G′ is connected. Let us check that G′ satisfies (C1). To see this,
recall that any balanced tight set consisting of more than one edge is 2-connected
by Lemma 7.1. Note also that e3 · e

−1
4 is not parallel to e1 · e

−1
2 as v is not special.

Since the endvertices of e3 · e
−1
4 belong to different connected components in G − v

and e1 · e
−1
2 is the bridge in G− v+ e1 · e

−1
2 , G− v+ e1 · e

−1
2 has no balanced tight set

F such that V (F ) contains both endvertices of e3 · e
−1
4 . This implies that G′ satisfies

(C1).
Therefore, if G′ satisfies (C2), then G′ is D-sparse by Lemma 9.2, and a 2-reduction

is admissible at v. Suppose that G′ does not satisfy (C2). Then, G′ is connected and
cyclic. To apply Lemma 9.4, we next consider the 2-reduction at v through (e1, e3)
and (e2, e4). The resulting graph, denoted by G′′, is disconnected. Lemma 9.4 thus
implies that G′′ is D-sparse.

Thus, in the subsequent discussion, we may focus on 2-connected graphs. The next
lemma solves the case when G has a special vertex not incident to a loop.

Lemma 9.7. Let G = (V,E) be a 2-connected essential D-gain graph. Suppose that G
has a special vertex not incident to a loop. Then, G has a vertex at which a 2-reduction
is admissible.

Proof. Let w be a special vertex not incident to a loop. By definition of special
vertices, |N(w)| = 2 and w is incident to two parallel classes of edges. Since G 6= C2

n,
G contains two adjacent vertices u and v such that v is not special and u is special
not incident to a loop (where u is possibly equal to w). Depending on the size of
N({u, v}), we have two possible cases as shown in Figure 18.

v

a

b = c

u

v

a

c

u
b

Figure 18: Proof of Lemma 9.7.

Let us denote the edges incident to u by e1, e2, e3, e4, where e1 and e2 are linking
from v to u and e3 and e4 are linking from a vertex in V \{u, v} to u. We perform the
2-reduction at u through (e1, e2) and (e3, e4). Since both new edges are unbalanced
loops and adding unbalanced loops does not violate (C1), the resulting graph G′
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satisfies (C1). Therefore, if the 2-reduction is not admissible at u, then G′ does not
satisfy (C2), and hence G− e1 − e2 is cyclic by Lemma 9.3.
Let a, b, c ∈ V such that N(v) = {u, a, b} and N(u) = {v, c}. Since |N(u)| = 2

with v ∈ N(u), without loss of generality we may assume a /∈ N(u) (where b = c
possibly holds). Recall that G − e1 − e2 is connected and cyclic, and hence we can
apply Lemma 9.4 to deduce that the 2-reduction at v through (bv, e1) and (av, e2)
is admissible. Indeed, since G is not near-cyclic and v is neither a cut-vertex nor a
special vertex, Lemma 9.4 implies that this 2-reduction at v is admissible.

The next lemma solves the case when G is almost near-cyclic.

Lemma 9.8. Let G = (V,E) be a 2-connected essential D-gain graph with at least
two vertices. Suppose that G is almost near-cyclic. Then a 2-reduction or a loop-2-
reduction is admissible at some vertex in G.

Proof. Since G is almost near-cyclic, there are two edges e1 and e2 for which e1 and
e2 are incident to a vertex v and G− e1 − e2 is cyclic.
Suppose that v is not special. Then, since v is not a cut-vertex, a 2-reduction is

admissible at v by Lemma 9.4. Therefore, let us consider the case when v is special.
If v is not incident to a loop, then Lemma 9.7 directly implies the claim. We can thus
assume that v is incident to a loop.
Suppose that both e1 and e2 are non-loop edges. By Lemma 2.4, we may assume

that the label of each edge in G − e1 − e2 is contained in a cyclic subgroup C of D.
By further performing a switching operation at v with φ(e1), φ is converted such that
φ(e1) = id and φ(e) ∈ C for all edges e not incident to v. This implies that if we
remove e2 and the loop incident to v from G, the resulting graph is cyclic. In other
words, it suffices to consider the case when e1 or e2 is a loop.
We hence assume that e1 is the loop incident to v. Let e3 be the remaining non-loop

edge incident to v, where φ(e3) ∈ C. Observe that the gain of the non-loop edge e2 is
not included in C̄, since otherwise G−e1 becomes cyclic, contradicting the assumption
that G is essential. Therefore, φ(e2 · e

−1
3 ) /∈ C̄, and the loop-2-reduction at v adds the

edge e2 · e
−1
3 to the cyclic (2, 3)-g-sparse graph G − v. By Lemma 7.7, the resulting

gain graph is D-sparse.

By using Lemma 9.8, we can now prove an important consequence for graphs that
are not essentially 4-edge-connected.

Lemma 9.9. Let G = (V,E) be a 2-connected essential D-gain graph with |V | = n ≥
4. Suppose that G is not essentially 4-edge-connected. Then, G has a vertex at which
a 2-reduction or a loop-2-reduction is admissible.

Proof. Since G is 2-edge-connected and is not essentially 4-edge-connected, there ex-
ists a subset X of V for which |X| > 1, |V \ X| > 1 and dG(X) = 2. Since G is
not C◦

n, we can suppose that B(X) contains a vertex v not incident to a loop, where
B(X) denotes a set of vertices of X adjacent to some vertices of V \ X . By the
2-connectivity, v is not a cut-vertex. Hence, denoting the four edges incident to v by
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e1, ..., e4, we may assume that e1, e2, e3 are included in the subgraph induced by X
while e4 is not.
Note that v is a vertex of degree 3 in G − e4, and hence, by Lemma 7.5, a 1-

reduction at v is admissible in G − e4. Without loss of generality, we may assume
that G− v + e1 · e

−1
2 (obtained by a 1-reduction at v in G− e4) is D-sparse.

We now consider adding e3 · e
−1
4 to G− v + e1 · e

−1
2 to complete the 2-reduction at

v. Let G′ = G − v + e1 · e
−1
2 + e3 · e

−1
4 , and suppose that G′ does not satisfy (C1).

Since any balanced tight set F is 2-edge-connected if |F | > 1, there is no balanced
tight set F for which V (F ) contains both endvertices of e3 · e

−1
4 unless |F | = 1. If

G − v + e1 · e
−1
2 has a balanced set F such that |F | = 1 and V (F ) contains both

endvertices of e3 · e
−1
4 , then the edge in F , denoted by f , is incident to e3 and e4 and

connects between X and V \X . However, since dG(X) = 2, |X| > 1 and |V \X| > 1,
the vertex incident to e4 and f turns out to be a cut-vertex of G, contradicting the
2-connectivity of G. Thus, G′ satisfies (C1).
If G′ does not satisfy (C2), it is cyclic. By Lemma 9.3, G is almost near-cyclic,

and we can apply Lemma 9.8 to conclude that a 2-reduction or a loop-2-reduction is
admissible at some vertex v.

The final special case is when G has a vertex v with |N(v)| = 2.

Lemma 9.10. Let G = (V,E) be a 2-connected essential D-gain graph. Suppose that
G has a vertex v with |N(v)| = 2 that is not incident to a loop. Then, there is a vertex
at which a 2-reduction is admissible.

Proof. If v is special, Lemma 9.7 implies the claim.
If v is not special, then there are three parallel edges between v and a neighbor

of v. By the 4-regularity, if |V | ≥ 4, G is not essentially-4-edge-connected, and thus
Lemma 9.9 implies the statement.
If |V | = 3, G is equal to the graph (shown in Figure 20) of three vertices V =

{u, v, w}, three parallel edges e1, e2, e3 between u and v, a loop l attached to w, and
two remaining edges uw and vw, denoted by f1 and f2, respectively. We may assume
φ(f1) = φ(f2) = id. Let C be the subgroup generated by φ(l). Since G is not cyclic,
there is an unbalanced cycle whose gain is not included in C̄.
If a triangle, say e1f1f2 has a gain not included in C̄, then the 2-reduction at u

through (e1, f1) and (e2, e3) results in a D-sparse P 2
2 . Otherwise, removing e2 and e3

results in a cyclic graph. Then G is almost near-cyclic, and Lemma 9.8 implies the
statement.

9.3 The remaining cases

In a graph G, the star of a vertex v means the subgraph of G whose vertex set is
N(v) ∪ {v} and the edge set is the set of edges incident to v. A hat subgraph is a
balanced subgraph whose underlying graph is a hat. See Figure 19 for an example.
The following claim, together with the previous lemmas, will complete the proof of
Theorem 9.1.
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id

id

id id

id

idid

Figure 19: A hat subgraph.
Figure 20: The special graph given in
the proof of Lemma 9.10.

Theorem 9.11. Let G = (V,E) be 2-connected, essentially 4-edge-connected, and
essential graph with |V | ≥ 3. Suppose also that G is not almost near-cyclic. Then, for
every vertex v ∈ V that is not incident to a loop with |N(v)| ≥ 3, either a 2-reduction
at v is admissible or the star of v is contained in a hat subgraph.

In §9.3.1, we focus on the case of |N(v)| = 4. Lemma 9.12 says that if the 2-
reduction is not admissible then G has an obstacle around v. We will investigate
intersection properties of obstacles. The corresponding results for the case of |N(v)| =
3 will be given in §9.3.2. In §9.3.3, we prove Theorem 9.11 based on the intersection
properties of obstacles.
In the rest of this section, clD denotes the closure operator of the underlying matroid

MD(G, φ).

9.3.1 Obstacles around a vertex v with |N(v)| = 4

Throughout §9.3.1, (G, φ) denotes a D-gain graph satisfying the assumptions of The-
orem 9.11, v denotes a vertex with |N(v)| = 4, N(v) = {a, b, c, d}, and Ev denotes
the set of edges incident to v.
An edge subset F is called sub-tight if |F | = 2|V (F )| − 4 and F is balanced. We

first make a simple observation which describes the situation where 2-reductions are
not admissible.

Lemma 9.12. Suppose that the 2-reduction through (av, vb) and (cv, vd) is not ad-
missible. Then there is an edge subset F ⊆ E \ Ev satisfying one of the following
properties:

(i) F is balanced tight with a, b ∈ V (F ) and av · vb ∈ clD(F );

(ii) F is balanced tight with c, d ∈ V (F ) and cv · vd ∈ clD(F );

(iii) F is sub-tight with a, b, c, d ∈ V (F ), F + av · vb is balanced tight, and cv · vd ∈
clD(F + av · vb).

Proof. Let us first consider the graph G′ = G−v+av ·vb. If G′ is not D-sparse, then,
by Lemma 9.2, E\Ev has a balanced tight set F with a, b ∈ V (F ) and av ·vb ∈ clD(F ),
which satisfies property (i).
Hence, let us assume that G′ is D-sparse. If G′+cv ·vd is cyclic, Lemma 9.3 implies

that G is almost near-cyclic, contradicting the assumption that G is not almost near-
cyclic. Therefore, G′ + cv · vd satisfies (C2). By Lemma 9.2, there exists a balanced
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tight set F ′ ⊆ E \Ev∪{av ·vb} with c, d ∈ V (F ′) and cv ·vd ∈ clD(F
′). Depending on

whether av · vb ∈ F ′ or not, we find a desired subset of the statement; if av · vb 6∈ F ′

then F ′ is the one satisfying property (ii); otherwise F ′ − av · vb satisfies property
(iii). (We remark that, in the latter case, V (F ′ − av · vb) contains a, b, c, d since F ′ is
2-edge-connected.)

Since the first and the second cases of the statement of Lemma 9.12 are symmetric,
we basically have two types of obstacles: for a vertex v and N(v) = {a, b, c, d},
F ⊆ E \ Ev is called an obstacle of type 1 (for the 2-reduction through (av, vb) and
(cv, vd)) if F satisfies (i) or (ii) of Lemma 9.12; F is called an obstacle of type 2 if F
satisfies (iii).
As noted above, we have three possible ways for a 2-reduction at v, through (av, vb)

and (cv, vd), through (av, vc) and (bv, vd), and through (av, vd) and (bv, vc). By
Lemma 9.12, if none of them are admissible, E \ Ev contains three corresponding
obstacles X, Y, Z. We now investigate properties of these obstacles.
We begin with a property of type 2 obstacles.

Lemma 9.13. Suppose that X is an obstacle of type 2 for the 2-reduction through
(av, vb) and (cv, vd). Then, the following holds for X:

• |X ∪ Ev| = 2|V (X ∪ Ev)| − 2;

• There is an equivalent gain function φ′ to φ such that φ′(e) = id for e ∈ X ∪
{va, vb}, and φ′(vc) = φ′(vd) 6= id;

• X ∪ Ev is cyclic.

Proof. By definition, |X| = 2|V (X)| − 4, and hence |X ∪ Ev| = 2|V (X ∪ Ev)| − 2 by
N(v) ⊆ V (X).
Since cv · vd ∈ clD(X + av · vb) and X + av · vb is balanced, X + av · vb + cv · vd

is also balanced. Hence, by Lemma 2.4, there is an equivalent gain function φ′ to
φ such that φ′(e) = id for e ∈ X and φ′(av · vb) = φ′(cv · vd) = id. We thus have
φ′(av) = φ′(bv) = g and φ′(cv) = φ′(dv) = g′ for some g, g′ ∈ D. By performing a
switching operation at v with g if necessary, we may assume that φ′(av) = φ′(bv) = id

and φ′(cv) = φ′(dv) = g′g−1. If g′g−1 = id, X ∪ Ev becomes a balanced set with
|X ∪ Ev| > 2|V (X ∪ Ev)| − 3, contradicting the D-sparsity of G. Thus, φ′(cv) =
φ′(dv) 6= id, and X ∪ Ev is cyclic.

In the same manner we also have the following technical lemma.

Lemma 9.14. Let X and Y be obstacles for the 2-reduction through (av, vb) and
(cv, vd) and through (av, vc) and (bv, vd), respectively. Suppose that X is type 2 and
X ∪ Y is cyclic. Then, X ∪ Y ∪ Ev is cyclic.

Proof. Since X is balanced and X∪Y is cyclic, for some cyclic subgroup C of D, there
is an equivalent gain function φ′ to φ such that φ′(e) = id for every e ∈ X and φ′(e) ∈ C
for every e ∈ Y by Lemma 2.4. Moreover, since X + av · vb and X + av · vb+ cv · vd
are balanced, we have φ′(av · vb) = φ′(cv · vd) = id. As in the previous proof, by
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applying a switching operation at v, we may assume that φ′(va) = φ′(vb) = id and
φ′(vc) = φ′(vd).
By the definition of the obstacles (whether type 1 or type 2), Y+ Y + av · vc or

Y + bv · vd is connected and balanced. Hence φ′(av · vc) ∈ C̄ or φ′(bv · vd) ∈ C̄, which
implies φ′(vc) = φ′(vd) ∈ C̄. Thus, every label of X ∪ Y ∪ Ev is included in C̄.

The following lemmas describe different relations among obstacles.

Lemma 9.15. Let X and Y be obstacles for the 2-reduction through (av, vb) and
(cv, vd) and through (av, vc) and (bv, vd), respectively. If X ∩ Y 6= ∅, then X ∪ Y is
not a balanced set.

Proof. Suppose for a contradiction that X ∪ Y is a balanced set with X ∩ Y 6= ∅.
(Case 1) If both X and Y are of type 1, X ∪ Y is tight by Lemma 7.2 and hence

|X ∪ Y | = 2|V (X ∪ Y )| − 3. Without loss of generality, we may assume that a, b, c ∈
V (X ∪Y ), av · vb ∈ clD(X) and av · vc ∈ clD(Y ). Since X ∪Y is balanced, there is an
equivalent gain function φ′ to φ such that φ′(e) = id for e ∈ X ∪ Y . Moreover, since
av · vb ∈ clD(X) and av · vc ∈ clD(Y ), we have φ′(av) = φ′(bv) = φ′(cv). This implies
that X ∪ Y ∪ {av, bv, cv} is a balanced set. However, since |X ∪ Y ∪ {av, bv, cv}| >
2|V (X ∪ Y ∪ {av, bv, cv})| − 3, the existence of such a balanced set contradicts the
D-sparsity of G.
(Case 2) Let us consider the case when X is type 2. By definition of obstacles

(whether type 1 or type2), Y +av · vc or Y + bv · vd is balanced and 2-edge-connected.
Without loss of generality, we assume that Y +av·vc is balanced and 2-edge-connected.
By Lemma 9.13, there exists an equivalent gain function φ′ to φ such that φ′(e) = id

for e ∈ X ∪ {va, vb} and φ′(vc) = φ′(vd) 6= id. Moreover, since X ∪ Y is balanced, we
may assume that φ′(e) = id for e ∈ Y . Since φ′(av · vc) 6= id but φ′(e) = id for e ∈ Y ,
Y + av · vc is unbalanced, a contradiction.

Lemma 9.16. Let X and Y be obstacles for the 2-reductions through (av, vb) and
(cv, vd) and through (av, vc) and (bv, vd), respectively. If |X| > 1 and |Y | > 1, then
X ∩ Y 6= ∅.

Proof. Without loss of generality, we assume a ∈ V (X) ∩ V (Y ). Recall that each
balanced tight set is 2-connected if the size is more than one. By the 4-regularity of
G, each vertex of N(v) has degree three in G− v. Hence, if X and Y are type 1 with
|X| > 1 and |Y | > 1, then X ∩ Y contains an edge incident to a.
If X is type 2, then X + av · vb is balanced tight with a, b, c, d ∈ V (X + av · vb) by

definition. Hence, if Y is type 1, then X ∩ Y contains an edge incident to c or d.
If both X and Y are type 2, then X ∩ Y contains an edge incident to d.

Lemma 9.17. Let X, Y , Z be obstacles for the 2-reductions through (av, vb) and
(cv, vd), through (av, vc) and (bv, vd), and through (av, vd) and (bv, vc), respectively.
If there is no hat subgraph containing the star of v, then X ∩ Y 6= ∅, Y ∩ Z 6= ∅ or
Z ∩X 6= ∅ holds.
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Proof. Note that a type 2 obstacle consists of more than one edge. If two of X, Y and
Z are not singleton sets, then the lemma follows from Lemma 9.16. Hence we may
assume that |Y | = |Z| = 1, and denote Y = {ey} and Z = {ez}. Clearly, ey 6= ez.
(Case 1) Let us first consider the case when X is also a singleton set. Let X = {ex}.

Depending on the relative position of ex, ey and ez, we have two situations: (I) ex, ey
and ez share a vertex or (II) ex, ey and ez form a triangle.
In case (I), the star of v is included in a hat subgraph. Indeed, if denoting without

loss of generality ex = ab, ey = ac, and ez = ad, {ex, ey, ez, va, vb, vc, vd} forms a
hat if it is balanced. Since X, Y and Z are obstacles, we have φ(ex) = φ(av · vb),
φ(ey) = φ(av · vc) and φ(ez) = φ(av · vd), and hence this subgraph is indeed balanced.
In case (II), without loss of generality, we assume ex = ab, ey = bc and ez = ca.

Then {ex, ey, ez, va, vb, vc} forms K4. Since φ(ex) = φ(av · vb), φ(ey) = φ(bv · vc) and
φ(ez) = φ(cv · va), this K4 does not have any unbalanced cycle. Therefore, Case (II)
cannot happen because of the D-sparsity of G, as a balanced K4 is not D-sparse.
(Case 2) Next, we consider the case when |X| > 1. We further split the proof into

two subcases depending on whether X is type 1 or type 2.
If X is type 2, then |X ∪ Ev| = 2|V (X ∪ Ev)| − 2 by Lemma 9.13. Also, by

Lemma 9.13, there exists an equivalent gain function φ′ to φ such that φ′(e) = id for
e ∈ X ∪ {va, vb} and φ′(vc) = φ′(vd) 6= id. Denote φ′(vc) by g. Since Y and Z are
obstacles, we have φ′(ey) = φ′(ez) = g, which in particular implies ey, ez 6∈ X . By
N(v) ⊆ V (X) and ey 6= ez, |X ∪ Y ∪ Z ∪Ev| = 2|V (X ∪ Y ∪ Z ∪Ev)|, which in turn
implies E = X ∪ Y ∪Z ∪Ev. Notice that the label of each edge in X ∪ Y ∪Z ∪Ev is
either the identity or g. In other words, X ∪ Y ∪ Z ∪ Ev is cyclic, contradicting the
D-sparsity of G.
The remaining case is when X is type 1. Without loss of generality we assume

a, b ∈ V (X). By |X| > 1 and Lemma 7.1, dX(a) ≥ 2 and dX(b) ≥ 2. Since ey is either
ac or bd and ez is either ad or bc, it suffices to consider the following two cases by
symmetry: (i)(ey, ez) = (ac, ad), and (ii)(ey, ez) = (ac, bc).
In subcase (i), X ∩ Y or X ∩ Z contains an edge incident to a as dX(a) ≥ 2 and

dG−v(a) = 3.
In subcase (ii), notice that, {av, bv, cv, ey, ez, av · vb} is a circuit of the underlying

D-sparsity matroid since it forms a balanced K4. By av · vb ∈ clD(X), we have
cv ∈ clD(X + av + bv + ey + ez) ⊆ clD(E − cv), contradicting the independence of E.
Therefore, this case does not occur and the proof is complete.

9.3.2 Obstacles around a vertex v with |N(v)| = 3

In this subsection we shall investigate obstacles for a 2-reduction at a vertex v with
|N(v)| = 3. Most of the arguments are similar to the previous subsection. Throughout
§9.3.2, (G, φ) denotes a D-gain graph satisfying the assumptions of Theorem 9.11, v
denotes a vertex with |N(v)| = 3, N(v) = {a, b, c}, and Ev denotes the set of edges
incident to v. Without loss of generality, we assume that there are parallel edges e1
and e2 between v and a, and we denote Ev = {e1, e2, vb, vc}.
We again have three possible ways for a 2-reduction at v. In each case, there exists

an obstacle if the operation is not admissible. The proof of the following claim is
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identical to that of Lemma 9.12 and hence is omitted.

Lemma 9.18. Suppose that the 2-reduction through (e1, vb) and (e2, vc) is not ad-
missible. Then there is an edge subset F ⊆ E \ Ev satisfying one of the following
properties:

(i) F is balanced tight with a, b ∈ V (F ) and e1 · vb ∈ clD(F );

(ii) F is balanced tight with a, c ∈ V (F ) and e2 · vc ∈ clD(F );

(iii) F is sub-tight with a, b, c ∈ V (F ), F + e1 · vb is balanced tight, and e2 · vc ∈
clD(F + e1 · vb).

For the 2-reduction through (e1, e2) and (bv, vc), we encounter an even simpler
situation.

Lemma 9.19. Suppose that the 2-reduction through (e1, e2) and (bv, vc) is not ad-
missible. Then there is a balanced tight set F ⊆ E \ Ev with b, c ∈ V (F ) and
bv · vc ∈ clD(F ).

Proof. Note that e1·e
−1
2 is a loop. G−v+e1 ·e

−1
2 is D-sparse by Lemma 9.2 since adding

an unbalanced loop does not affect (C1). Note that G−v+e1 ·e
−1
2 +bv ·vc is connected.

If G− v + e1 · e
−1
2 + bv · vc does not satisfy (C2), then Lemma 9.3 implies that G is

almost near-cyclic, which contradicts our assumption on G. If G− v+ e1 · e
−1
2 + bv · vc

does not satisfy (C1), then G − v + e1 · e
−1
2 contains a balanced tight set F with

b, c ∈ V (F ) and bv · vc ∈ clD(F ). Since a balanced tight set does not contain a loop
by Lemma 7.1, we have F ⊆ E \ Ev.

According to Lemmas 9.18 and 9.19, we can define the type of an obstacle as in the
previous subsection. Lemma 9.19 also says that we only encounter type 1 obstacles for
the 2-reduction through (e1, e2) and (bv, vc). The next two lemmas are counterparts
of Lemmas 9.14 and 9.15, respectively, with identical proofs, which are omitted.

Lemma 9.20. Let X and Y be obstacles for distinct 2-reductions at v. If X is type
2 and X ∪ Y is cyclic, then X ∪ Y ∪ Ev is cyclic.

Lemma 9.21. Let X and Y be obstacles for distinct 2-reductions at v. Then, if
X ∩ Y 6= ∅, then X ∪ Y is balanced.

To prove the counterpart of Lemma 9.17, we need the following two additional
lemmas.

Lemma 9.22. Suppose that Z is an obstacle of type 1 for the 2-reduction through
(e1, e2) and (bv, vc). Then, there is an equivalent gain function φ′ to φ such that
φ′(e) = id for e ∈ Z ∪ {vb, vc}.

Proof. Z + bv · vc is balanced. Hence, by Lemma 2.4, there is an equivalent gain
function φ′ to φ such that φ′(e) = id for e ∈ Z + bv · vc. By performing a switching
operation at v with φ′(bv) if necessary, we may assume that φ′(bv) = φ′(vc) = id.
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Lemma 9.23. Let X be an obstacle of type 2 for the 2-reduction through (e1, vb) and
(e2, vc). Suppose further that there is no obstacle of type 1 for the 2-reduction through
(e1, vb) and (e2, vc). Then dX(a) + dX(b) + dX(c) ≥ 5 holds.

Proof. LetX ′ = X+e1 ·vb. By definition, X ′ is balanced tight with a, b, c ∈ V (X ′) and
|X ′| > 1. Such a balanced tight set is 2-connected and essentially 3-edge-connected
by Lemma 7.1. We thus have dX′(u) ≥ 2 for u ∈ {a, b, c}.
Suppose that dX′(a) = dX′(b) = 2. Since X ′ is essentially 3-edge-connected and

e1 · vb is incident to a and b, X ′ must be a triangle on a, b, c. This means that
X contains an edge linking from a to c, denoted by e′. Recall that X ′ + e2 · vc is
balanced by definition of type 2 obstacles. However, since e′ and e2 · vc are parallel,
for X ′ + e2 · vc to be balanced, {e′, e2 · vc} has to be a balanced 2-cycle, that is, {e′}
is a type 1 obstacle for the 2-reduction through (e1, vb) and (e2, vc), contradicting the
assumption of the lemma.
Therefore, dX′(a) ≥ 3 or dX′(b) ≥ 3, implying dX′(a) + dX′(b) + dX′(c) ≥ 7. Since

X ′ = X + e1 · vb, we obtain dX(a) + dX(b) + dX(c) ≥ 5.

Lemma 9.24. Let X, Y , Z be obstacles for the 2-reductions through (e1, vb) and
(e2, vc), through (e1, vc) and (e2, vb), and through (e1, e2) and (bv, vc), respectively.
Then, X ∩ Y 6= ∅, Y ∩ Z 6= ∅, or Z ∩X 6= ∅ holds.

Proof. We split the proof into two cases depending on whether a type 1 obstacle exists
for the 2-reduction through (e1, vb) and (e2, vc).
(Case 1) Suppose that there is no type 1 obstacle for the 2-reduction through (e1, vb)

and (e2, vc). Then, X is type 2. By Lemma 9.23, dX(a) + dX(b) + dX(c) ≥ 5 holds. If
dX(a) ≥ 2, then X∩Y contains an edge incident to a since dG−v(a) = 2 and dY (a) ≥ 1.
If dX(a) = 1, then we have dX(b) ≥ 2 and dX(c) ≥ 2. Since dG−v(b) = dG−v(c) = 3,
|Z| = 1 holds if X ∩ Z = ∅. However, in this case, we have dX∪Z(b) = dX∪Z(c) = 3,
and thus X ∩ Y or Y ∩ Z contains an edge incident to b or c.
In a symmetric manner, we are done in the case when a type 1 obstacle does not

exist for the 2-reduction through (e1, vc) and (e2, vb).
(Case 2) We now consider the case when both X and Y are type 1. If |X| > 1

or |Y | > 1, then X or Y is 2-connected, and hence X ∩ Y contains an edge incident
to a as dG−v(a) = 2. We thus assume |X| = |Y | = 1 and X 6= Y . Let us denote
X = {ex} and Y = {ey}. Without loss of generality, we assume that ex connects from
a to b. Also, by Lemma 9.22, we may assume φ(e) = id for e ∈ Z ∪ {vb, vc}. Since
e1 · vb ∈ clD(X), we have φ(ex) = φ(e1 · vb) = φ(e1). The proof is completed by a
further case analysis: (i) ey connects from a to c or (ii) ey connects from a to b (see
Figure 21).
In case (i), we have e1 · vc ∈ clD(Y ) by definition. Therefore, φ(ey) = φ(e1 ·

vc) = φ(e1). Notice that {e1, vb, vc, ex, ey, bv · vc} forms a K4 without unbalanced
cycles by φ(ey) = φ(e1) = φ(ex). Moreover, since bv · vc ∈ clD(Z), we obtain e1 ∈
clD({vb, vc, ex, ey, bv · vc}) ⊆ clD(E − e1). This contradicts the independence of E in
the underlying D-sparsity matroid.
Let us consider case (ii). If |Z| > 1, then X ∩Z or Y ∩Z contains an edge incident

to b as Z is type 1 and dZ(b) ≥ 2. Suppose that |Z| = 1, X ∩ Y = ∅, X ∩ Z = ∅ and
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Y ∩Z = ∅. Then X ∪ Y ∪Z ∪Ev induces a subgraph in which v, a and b have degree
four. So, if |V | > 4, then c becomes a cut-vertex, contradicting the 2-connectivity of
G. On the other hand, if |V | = 4, then G becomes the graph shown in Figure 21(ii’).
In this case removing e2 and ey results in a cyclic graph (where any cycle except
the loop is balanced by φ(e1) = φ(ex)). This means that G is almost near-cyclic, a
contradiction.

9.3.3 Proof of Theorem 9.11

Proof of Theorem 9.11. Suppose that no 2-reduction is admissible at v. Then we have
three obstacles X , Y and Z for the three possible 2-reductions at v. Suppose further
that the star of v is not contained in a hat subgraph. Then, by Lemma 9.17 and
Lemma 9.24, we may assume without loss of generality that X ∩ Y 6= ∅ holds.
If |X ∪ Y | ≥ 2|V (X ∪ Y )| − 1, then V (X ∪ Y ) ∪ {v} = V must hold since G is

essentially 4-edge-connected. We then have |X ∪ Y ∪ Ev| ≥ 2|V | + 1, contradicting
the D-sparsity of G.
Therefore we have

|X ∪ Y | ≤ 2|V (X ∪ Y )| − 2. (22)

To derive a contradiction, we next show that the number of connected components
in (V (X) ∩ V (Y ), X ∩ Y ) is equal to two. To see this, let c0 be the number of trivial
connected components (i.e., singleton vertex components) in (V (X) ∩ V (Y ), X ∩ Y )
while let c1 be the number of nontrivial connected components in it. Then,

|X|+ |Y | ≥ 2|V (X)| − 4 + 2|V (Y )| − 4 = 2|V (X ∪ Y )|+ 2|V (X ∩ Y )|+ 2c0 − 8,
(23)

|X ∩ Y | ≤ 2|V (X ∩ Y )| − 3c1, (24)

where the last inequality comes from |F | ≤ 2|V (F )|−3 for any non-empty F ⊆ X∩Y .
¿From (22)(23)(24), we obtain 2c0 + 3c1 ≤ 6. On the other hand by X ∩ Y 6= ∅ we
also have c1 ≥ 1. Hence we get c1+ c2 ≤ 2, and the number of connected components
in the graph (V (X) ∩ V (Y ), X ∩ Y ) is at most two.
If the number of connected components in (V (X)∩V (Y ), X∩Y ) is one, then, since

X and Y are connected and balanced, Lemma 2.5(1) implies that X ∪ Y is balanced,
which contradicts Lemmas 9.15 and 9.21.
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Thus the number of connected components in (V (X)∩ V (Y ), X ∩ Y ) is two. Then
2c0 + 3c1 ≥ 5. Hence by (23) and (24) we have

|X ∪ Y | ≥ 2|V (X ∪ Y )| − 3. (25)

Also by Lemma 2.6 X ∪ Y is cyclic. This implies that X ∪ Y is not tight, as X ∪ Y
cannot be cyclic tight by (22).
If both X and Y are type 1, then X ∪ Y is tight by Lemma 7.2, which does not

happen. Hence X or Y is type 2, and Lemmas 9.14 and 9.20 imply that X ∪ Y ∪ Ev

is also cyclic. Also by (25) and N(v) ⊆ X ∪ Y (as X or Y is type 2) we obtain
|X ∪ Y ∪Ev| ≥ 2|V (X ∪ Y ∪Ev)| − 1. Thus, due to the essential 4-edge-connecitivity
of G, |V (X ∪ Y ∪ Ev)| ≥ |V | − 1 must hold.
If V (X ∪ Y ∪Ev) = V , then |X ∪ Y ∪Ev| = |E| − 1, and hence G is near cyclic, as

X ∪ Y ∪Ev is cyclic. On the other hand, if V (X ∪ Y ∪Ev) = V − u for some u ∈ V ,
then u is incident to a loop and two non-loop edges by the 4-regularity. Observe that
removing this loop and one of the two non-loop edges results in a cyclic graph. This
means that G is almost near-cyclic.
In both cases G turns out to be almost near-cyclic, which contradicts the assumption

on G. This completes the proof.

9.4 Proof of the Main Theorem

We are now ready to prove Theorem 9.1, which also completes the proof of Theo-
rem 7.8.

Proof of Theorem 9.1. By Lemmas 9.5, 9.6, 9.8 and 9.9, we may assume that G is 2-
connected, essentially 4-edge-connected, not special, and not almost near-cyclic. Also,
by Lemma 9.10, we may assume that every vertex v with N(v) = 2 is incident to a
loop.
Since G is not special, G has a vertex v that is not incident to a loop. Then

|N(v)| ≥ 3. By Theorem 9.11, either the 2-reduction at v is admissible or the star of
v is contained in a hat subgraph H . Suppose the latter holds. We denote the vertices
of H by a1, a2, b1, b2, b3, and assume that a1 and a2 have degree four in H (and hence
a1 or a2 is v). Since H is balanced, we may assume that all labels in H are identity.
Moreover, since G is not a fancy hat, we may assume that b1 is not incident to a loop.
We prove that some 2-reduction at b1 is admissible. Suppose that no 2-reduction is

admissible at b1. Then, by Theorem 9.11, the star of b1 is contained in a hat subgraph
H ′. Note that H ′ is different from H .
We claim that H ′ contains a triangle on b1, ai, bj for some i ∈ {1, 2} and j ∈ {2, 3}.

To see this first suppose that a1a2 /∈ E(H ′). Then, since each vertex has degree at
least 2 in H ′, we have a1b2 ∈ E(H ′) or a1b3 ∈ E(H ′) by NG(a1) = {a2, b1, b2, b3}
and a1a2 6∈ E(H ′). This also implies b1b2 ∈ E(H ′) or b1b3 ∈ E(H ′), respectively, as
b1 is incident to all the vertices of H ′. Thus H ′ has a triangle on b1, a1, bj for some
j ∈ {2, 3}.
If a1a2 ∈ E(H ′), then H ′ contains a triangle on b1, a1, a2. In a hat subgraph, two

vertices of each triangle have degree four, which implies N(ai) ⊆ V (H ′) for some
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i ∈ {1, 2}. Therefore, aib2 ∈ E(H ′) and b1b2 ∈ E(H ′), and hence b1b2ai forms a
triangle.
Consequently, without loss of generality, we may assume that H ′ contains a triangle

on b1, b2, a1. Recall that a hat subgraph is balanced. Since φ(a1b1) = φ(a1b2) = id,
we obtain φ(b1b2) = id as H ′ contains a triangle on a1, b1, b2. Observe then that
{a1, a2, b1, b2} induces aK4 in which the label of each edge is identity. This contradicts
the D-sparsity of G. Consequently, the 2-reduction at b1 is admissible.

10 Concluding Remarks

The main results of this paper (Theorems 6.3 and 8.2) give rise to efficient algorithms
for testing generic symmetric rigidity with cyclic or odd-order dihedral symmetry.
This can be done by computing the rank of the quotient graphs in the corresponding
matroids M(g2,3) or MD(G, φ).
Here we briefly describe the main algorithmic ideas and show that testing indepen-

dece in these matroids can be done in polynomial time. We omit the proofs and a
detailed and improved running time analysis.
Let (G, φ) be a gain graph with G = (V,E). First consider M(g2,3), in which E

is independent if and only if (i) G is (2, 1)-sparse and (ii) every nonempty balanced
subset F ⊆ E is (2, 3)-sparse, c.f. Lemma 3.1. There exist efficient algorithms for
testing (k, l)-sparsity for any pair of integers k, l, see e.g. [2, 19], so checking (i) is
easy. Observe that G satisfies (ii) if and only if every minimally non-(2, 3)-sparse
graph (also called a (2, 3)-circuit or an M-circuit) is unbalanced. Suppose that G
satisfies (i) and consider one of its M-components, i.e. a subgraph H of G induced
by a connected component of the (2, 3)-sparsity matroid of G (see [2, 12] for more
details on M-components). Each (2, 3)-circuit is a subgraph of some M-component,
so we may deal with them separately. The key observation is that within H the
complements of the (2, 3)-circuits are pairwise edge-disjoint. Since theM-components
are pairwise edge-disjoint, this shows that the number of (2, 3)-circuits in G is O(n)
and they can easily be enumerated. Then it remains to test whether each of these
circuits is unbalanced, which can be done by switching and using Lemma 2.4. (Similar
arguments are given in [1].)
Next consider MD(G, φ). the odd-order dihedral case, in which E is independent if

and only if (i) G is (2, 0)-sparse and (ii) every cyclic subset F ⊆ E is (2, 1)-sparse, and
(iii) every balanced subset F ⊆ E is (2, 3)-sparse. As above, testing (2, 0)-sparsity is
easy. We can again observe that G satisfies (ii) if and only if every minimally non-
(2, 1)-sparse graph (a (2, 1)-circuit) is non-cyclic. Suppose that G satisfies (i). Then
it is easy to see that these circuits are edge-disjoint, which shows that we have O(n)
circuits to check. As above, they can easily be enumerated, and we can use switching
and Lemma 2.4 to see whether they are all non-cyclic. So suppose G satisfies (ii) as
well. As above, it remains to check whether every (2, 3)-circuit is unbalanced. Let
H be an M-component of G. It is not hard to see that H − e is (2, 1)-sparse for all
e ∈ E(H). Thus, by using the arguments above, it follows that we have O(n2) circuits
to enumerate and test, which can also be done efficiently by the same techniques.
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