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Robust tensegrity polygons

János Geleji and Tibor Jordán?

Abstract

A tensegrity polygon is a planar cable-strut tensegrity framework in which
the cables form a convex polygon containing all vertices. The underlying edge-
labeled graph, in which the cable edges form a Hamilton cycle, is an abstract
tensegrity polygon. It is said to be robust if every convex realization as a
tensegrity polygon has an equilibrium stress which is positive on the cables
and negative on the struts. It is called stable if every convex realization is
infinitesimally rigid.

We characterize the robust as well as the stable abstract tensegrity polygons
on n vertices with n−2 struts, answering a question of B. Roth and W. Whiteley
from 1981 and solving an open problem of R. Connelly from 2008.

1 Introduction

A tensegrity graph T = (V ;B,C, S) is an edge-labeled simple undirected graph with
vertex set V = {v1, v2, ..., vn} whose edge-set is partitioned (labeled) into pairwise
disjoint sets B,C, and S, referred to as bars, cables, and struts, respectively. Elements
of E = B ∪ C ∪ S are the members of T . A two-dimensional tensegrity framework
(T, p) is a tensegrity graph T = (V ;B,C, S) together with a map p : V → R2. We say
that (T, p) is a realization of T in R2. We can also view (T, p) as a geometric graph in
the plane in which the lengths of the bars are fixed, cables do not increase in length,
and struts do not decrease in length. Rigidity properties of tensegrity frameworks are
important in mathematics as well as in engineering and have been studied by several
researchers. In this paper we shall focus on the infinitesimal rigidity and the existence
of nowhere-zero equilibrium stresses in special tensegrity frameworks, motivated by
questions posed by Ben Roth and Walter Whiteley in 1981 [10] and Robert Connelly
in 2008 [6].

Let (T, p) be a tensegrity framework. An proper equilibrium stress, or proper stress,
for short, on (T, p) is an assignment of scalars ωij to the members for which ωij ≥ 0
if vivj ∈ C and ωij ≤ 0 if vivj ∈ S and such that for each vi ∈ V∑

j|vivj∈E

ωij(p(vi)− p(vj)) = 0.

?Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, 1117 Bu-
dapest, Hungary. e-mail: jordan@cs.elte.hu, janos@geleji.hu.
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We say that the stress is non-trivial if it is non-zero on at least one member. A strict
proper stress on (T, p) is a proper stress satisfying ωij > 0 if vivj ∈ C and ωij < 0 if
vivj ∈ S. (In some papers stress and proper stress are used instead of proper stress
and strict proper stress, respectively.)

Let q : V (T ) → R2 be a map, assigning infinitesimal velocities to the vertices of
T . We say that q is an infinitesimal motion of (T, p) if the scalar product (p(vi) −
p(vj))(q(vi) − q(vj)) is zero (resp. non-positive, non-negative) for all bars vivj ∈ B
(resp. cables vivj ∈ C, struts vivj ∈ S) of T . The framework (T, p) is infinitesmally
rigid in R2 if the vector space of the infinitesimal motions is three-dimensional, i.e.
it contains the trivial infinitesimal motions only, arising from translations and rota-
tions of the whole framework. See [10] for more details. A key result, establishing a
connection between proper stresses and infinitesimal rigidity is as follows.

Theorem 1.1. [10, Theorem 5.2] Let (T, p) be a tensegrity framework. Then (T, p)
is infinitesmally rigid if and only if (T̄ , p) is infinitesimally rigid and there is a strict
proper stress on (T, p), where (T̄ , p) denotes the underlying bar framework obtained
from (T, p) by replacing all members by bars.

A tensegrity polygon (T, p) is a tensegrity framework in R2 with the following prop-
erties:
(i) the vertices of (T, p) are distinct and form the set of vertices of a strictly convex
polygon P in the plane,
(ii) the cables of (T, p) are the edges of P ,
(iii) the set of bars is empty.

Thus every strut of a tensegrity polygon is a diagonal of P , i.e. it runs through the
interior of P .

The existence of a non-trivial or strict proper stress in a tensegrity polygon (T, p)
can be used to show different forms of rigidity in tensegrity frameworks and other
structures, see Subsection 1.2 for related results.

An abstract tensegrity polygon is a tensegrity graph T = (V ;C, S) with no bars in
which the cables form a Hamilton cycle H of the underlying graph. This cycle of
cables will be called the boundary cycle of T . We shall assume that the numbering
of the vertices follows the cyclic ordering induced by H. A planar realization of an
abstract tensegrity polygon T in which the boundary cycle forms a convex polygon
will be called a convex realization of T . Thus every convex realization of an abstract
tensegrity polygon is a tensegrity polygon, and every tensegrity polygon is a convex
realization of some abstract tensegrity polygon.

Figure 1: A tensegrity polygon on four vertices.
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Figure 2: The Grünbaum polygon on five vertices. In each figure we shall use filled
circles to mark those vertices which are incident with at least two struts.

Examples. The most well-studied families of (abstract) tensegrity polygons are the
Cauchy polygons (in which the struts are of the form vivi+2, 1 ≤ i ≤ n − 2) and the
Grünbaum polygons (in which the struts are v1v3 plus v2vi, 4 ≤ i ≤ n). See Figure
1, which is the smallest Cauchy and Grünbaum polygon at the same time, and also
Figure 2 and the first two polygons on Figure 3. Roth and Whiteley [10] consider
generalized Grünbaum polygons, too, in which two adjacent vertices are chosen along
the boundary cycle and every other vertex is joined by a strut to exactly one of these
vertices in such a way that each of the chosen vertices becomes incident with at least
one strut. Note that in all these examples we have |V | − 2 struts and hence 2|V | − 2
members in total.

We call an abstract tensegrity polygon T strong if every convex realization (T, p) has
a non-trivial proper stress. It is said to be robust if every convex realization (T, p) has
a strict proper stress. It is stable if every convex realization (T, p) is infinitesimally
rigid. Roth and Whiteley (see the proof of [10, Theorem 6.3]) prove that abstract
(generalized) Grünbaum polygons are robust (and hence also strong) and stable.

There exist tensegrity polygons without strict, or even non-trivial proper stress. It
is not hard to construct examples in the case when the underlying abstract tensegrity
polygon has a separating vertex pair (see Section 5). Other examples include (specific
convex realizations of) the abstract tensegrity polygons of Figure 4, see also [10,
Section 6].

Roth and Whiteley [10, p.441] note that “little seems to be known about what
distinguishes cabling schemes which give infinitesimally rigid tensegrity polygons1 for
all convex realizations from those that do not”. R. Connelly [6] asked (see also [7,
Section 10.2]) whether there is a good combinatorial characterization of the family of
robust abstract tensegrity polygons T = (V ;C, S), at least in the special case when
|S| = |V |−2. Our main result is a characterization of those tensegrity polygons where
these properties (infinitesimal rigidity, the existence of a non-zero or a strict proper
stress) depend only on T and are independent of the choice of p. As we shall see,
strong, robust, and stable are all the same.

1In their polygons the boundary cycle consists of struts, and the diagonals are cables. However,
interchanging the cables and struts of a tensegrity framework preserves infinitesimal rigidity and also
the existence of a strict proper stress.
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Figure 3: The Cauchy polygon, the Grünbaum polygon, and a generalized Grünbaum
polygon on six vertices. They are all robust and stable.

1.1 Basic definitions and the main theorem

Let T = (V ;C, S) be a cable-strut tensegrity graph. We use dS(v) to denote the
number of struts incident with a vertex v ∈ V and call this number the strut-degree of
v. The tensegrity graph (V ;S) on the same vertex set but containing only the struts
of T is the strut graph of T . A connected component of the strut graph is a strut
component.

Let T = (V ;C, S) be an abstract tensegrity polygon with boundary cycle H. H
defines a cyclic ordering of V . An interval I in T is a maximal set of vertices satisfying
that (i) each vertex in I has strut-degree at least two, and (ii) the vertices in I are
consecutive, i.e. they induce a subpath of H. A leaf is a strut uv ∈ S with dS(v) = 1.
Two struts u1v1, u2v2 cross each other if they are crossing diagonals of the boundary
cycle H. (Incident struts do not cross.) Suppose that two leaves incident with the
same interval I cross. Then we say the crossing pair of leaves is admissible with
respect to I if their end-vertices on I are consecutive, i.e. they are connected by a
cable.

We say that T satisfies the unique interval property if:
(a) T has exactly one interval I,
(b) either |I| = 1 and T is an abstract Grünbaum polygon or |I| ≥ 2 and one end-
vertex of each leaf belongs to I,
(c) each pair of vertices of I whose distance is two along H is connected by a strut
and there are no other struts induced by I,
(d) each pair of crossing leaves is admissible with respect to I.

It is easy to check, from the algorithmic point of view, whether a given abstract
tensegrity polygon satisfies the unique interval property.

Note that (iii) is equivalent to saying that the strut subgraph on the vertices of I
is the union of two disjoint paths, whose union is I, and whose vertices alternate on
the boundary cycle. It is easy to check if T satisfies the unique interval property then
its underlying graph is 3-connected and it has at most |V | − 2 struts. Furthermore,
if |S| = |V | − 2 holds then each vertex in V − I is incident with a leaf. For example,
the Cauchy and the generalized Grünbaum polygons all satisfy the unique interval
property. The polygons in Figure 4 do not. The abstract tensegrity polygon on four
vertices (Figure 1) has no interval.

Our main result is as follows.
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Figure 4: Non-robust tensegrity polygons on six vertices.

Theorem 1.2. Let T = (V ;C, S) be an abstract tensegrity polygon with |V | ≥ 5 and
|S| = |V | − 2. Then the following are equivalent:
(i) T is strong,
(ii) T is robust,
(iii) T is stable,
(iv) T satisfies the unique interval property.

In Section 2 we verify some basic properties of (abstract) tensegrity polygons. In
Section 3 we consider strong polygons and prove that (i) implies (iv) in Theorem 1.2.
We show that (iv) implies (ii) and (iii) in Section 4. Since (iii) implies (ii) and (ii)
implies (i), this will complete the proof of Theorem 1.2. We make some concluding
remarks in Section 5.

1.2 Previous work

In the rest of this section we give a brief summary of some selected previous work on
tensegrity polygons and their applications. Connelly [4] proved that Cauchy polygons
are infinitesimally rigid and used this fact in the proof of his main result, saying that
any triangulated convex surface is rigid. In [2] he proved that Cauchy polygons, and
in fact all tensegrity polygons (T, p) with a non-trivial proper stress are universally
rigid, which means that every realization of T with the same edge lengths, in any
dimension d ≥ 2, is congruent to (T, p). Note that a universally rigid framework is
clearly rigid, that is, it has no non-trivial continuous flexes.

Connelly and Whiteley [8] introduced the concepts of prestress stability and second-
order rigidity for tensegrity frameworks and show that infinitesimal rigidity implies
prestress stability, which implies second-order rigidity, which implies rigidity. They
also verified the reverse implications for certain tensegrity polygons. See also [5, 7, 9,
10] for related results.

2 Preliminaries

In this section we prove some preliminary results which are valid for abstract tensegrity
polygons with an arbitrary number of struts.
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First we recall a useful technical lemma which can be used to analyse the signs of
the stress coefficients at a vertex.

Lemma 2.1. [10, Lemma 6.2] Suppose pj ∈ R2−{0} and ωj ∈ R−{0} for 1 ≤ j ≤ n.
If

∑n
j=1 ωjpj = 0 then there does not exist a line through the origin such that {pj :

ωj > 0} is contained in one open half space determined by the line and {pj : ωj < 0}
is contained in the other open half space.

By repeated applications of Lemma 2.1 we obtain:

Lemma 2.2. Let (T, p) be a tensegrity polygon and let ω be a non-trivial proper stress
on (T, p). Then ω is non-zero on every cable of T and every vertex is incident with a
strut.

We shall frequently rely on the next key lemma in our proofs.

Lemma 2.3. Let T be a strong abstract tensegrity polygon and suppose that vv1 and
vv2 are incident cables of T such that there is no strut between v1 and v2. Then the
abstract tensegrity polygon T ′ obtained from T by deleting v and adding a new cable
v1v2 is also strong.

Proof: First note that since there is no strut between v1 and v2, T ′ is indeed an
abstract tensegrity polygon. Let (T ′, p) be a convex realization of T ′. We shall prove
that there is a non-trivial stress on (T ′, p). Consider a sequence (T, pk), k ≥ 1, of
convex realizations of T satisfying that pk(u) = p(u) for all u ∈ V − {v} and k ≥ 1,
and that pk(v) converges to the midpoint of the segment [p(v1), p(v2)]. Since T is
strong, (T, pk) has a non-trivial proper stress ωk for all k ≥ 1. By multiplying some of
the stresses, if necessary, we may suppose that max{|ωk(e)| : e ∈ C ∪S} = 1 holds for
all k ≥ 1. Since all the stress values are between −1 and 1, we can find a subsequence
ωl, l ≥ 1, for which ωl(e) converges to some number ωlim(e) for all members e of T .
It is easy to see that ωlim is a proper stress on the limit framework (T, plim).

Now we define a proper stress ω on (T ′, p). For all members e of T ′, except for v1v2,
we let ω(e) = ωlim(e), while we define ω(v1v2) = 1

2
ωlim(vv1). Since plim(v1), plim(v2)

and plim(v) are collinear, we must have ωlim(vvx) = 0 for all struts vvx incident with
v. Moreover, ωlim(vv1) = ωlim(vv2). These facts imply that ω is indeed a proper stress
on (T ′, p).

We can also observe that ω is non-trivial, since the absolute value of the stress on
at least one member is equal to 1 for every ωk, and hence also for every ωl. •

We say that a vertex v is strut-covered if there is a strut between the cable-
neighbours of v. The operation of Lemma 2.3, which deletes a vertex v, which is
not strut-covered, and adds a new cable connecting its cable-neighbours, is called a
reduction at v.

Lemma 2.4. Let T be an abstract tensegrity polygon with at least three strut compo-
nents. Then T is not strong.
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Proof: For a contradiction suppose that T is strong. By applying reductions as long
as possible we may assume, by Lemma 2.3, that for each vertex v we have that either v
is strut-covered (and hence no reduction is possible at v) or a reduction at v decreases
the number of strut components to two.

Suppose that we have a sequence of at least two vertices along the boundary cycle
whose vertices belong to the same strut component. Consider a maximal sequence
of this type. It is easy to check that the first vertex v of this interval cannot be
strut-covered and a reduction at v does not decrease the number of strut components.
This contradicts our previous assumption.

Hence any two consecutive vertices along the boundary cycle belong to different
strut components and therefore we must have three consecutive vertices belonging to
different strut components. The middle vertex v of this consecutive triple cannot be
strut-covered, so, by our assumption, a reduction at v should decrease the number of
strut components. However, this number can decrease only if v is a singleton compo-
nent in the strut graph of T , which contradicts the fact that T is strong by Lemma
2.2. This completes the proof of the lemma. •

Lemma 2.4 implies that every strong (and hence every robust) abstract tensegrity
polygon on vertex set V has at least |V | − 2 struts.

Lemma 2.5. Let T be a strong abstract tensegrity polygon with two strut components.
Suppose that v is a cut-vertex in one of the strut components. Then v is strut-covered.

Proof: Suppose v is not strut-covered and perform a reduction at v. By Lemma 2.3
the resulting abstract tensegrity polygon T ′ is strong. On the other hand, since v is
a cut-vertex in a strut component, the number of strut components of T ′ is at least
three. This implies that T ′ is not strong by Lemma 2.4, a contradiction. •

3 Strong polygons with |V | − 2 struts

In this section we first summarize some useful properties of strong abstract tensegrity
polygons with |V | − 2 struts and then prove that such polygons satisfy the unique
interval property.

Lemma 3.1. Let T = (V ;C, S) be a strong abstract tensegrity polygon with |S| =
|V | − 2. Then
(i) the strut graph of T is a forest with two components,
(ii) if |V | ≥ 5 then T has at least one interval,
(iii) if v ∈ V belongs to some interval then v is strut-covered,
(iv) for an interval I of T we have |I| ≤ |V | − 4,
(v) the four vertices on the boundary cycle next and second-next to I have strut-degree
one, and the second-next vertices are not strut-covered,
(vi) if |V | ≥ 6 and I = {w} is a singleton interval then dS(w) ≥ 3.
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Proof: (i) Lemma 2.4 implies that T has at most two strut components. Since
|S| = |V | − 2 this is possible only if the strut graph is a forest with two components.

(ii) If T has no interval then each vertex v has dC(v) = 2 and dS(v) = 1, which
implies that the underlying graph is three-regular. With 2|V | − 2 members this can
happen only if |V | = 4.

(iii) Since the strut graph is a forest, each vertex v with dS(v) ≥ 2 is a cut-vertex
in its strut component. Thus Lemma 2.5 implies that all vertices of an interval are
strut-covered.

(iv) Consider an interval I. Since dS(v) ≥ 1 for all v ∈ V by Lemma 2.2, we have

2|S| = 2|V | − 4 =
∑
v∈V

dS(v) ≥ 2|I|+ |V | − |I|,

and hence |I| ≤ |V | − 4 follows.
(v) Let a, b denote the vertices next and second-next to I on the boundary cycle at

some end of I. By the maximality of I we have dS(a) = 1. Since each vertex of I is
strut-covered, the strut incident with a is the one that covers the vertex of I next to
a. Thus b cannot be strut-covered, since this strut covering b would also be incident
with a. This implies dS(b) = 1 by (iii).

(vi) Suppose that dS(w) = 2 for some vertex w which forms an interval by itself.
Let a and a′ be the cable-neighbours of w and let b, b′ be the vertices second-next
to w on the boundary cycle (with b the other cable-neighbour of a, say). Since w is
strut-covered, aa′ ∈ S holds. By (v) b is not strut-covered. If a and a′ are both strut-
covered then apply a reduction at b, which leads to a strong tensegrity polygon by
Lemma 2.3. But this reduction creates two strut components of size two (consisting
of the struts aa′ and wb′, respectively), and hence at least three strut-components in
total, when |V | ≥ 6. This contradicts Lemma 2.4. So we may suppose that a is not
strut-covered. Now a reduction at a makes the strut-degree of a′ zero, a contradiction
by Lemmas 2.2, 2.3. •

Lemma 3.2. Let T = (V ;C, S) be a strong abstract tensegrity polygon with boundary
cycle H and with |S| = |V | − 2 Suppose that T has exactly one interval I. Then:
(i) if |I| = 1 then T is an abstract Grünbaum polygon,
(ii) if |I| ≥ 2 then one end-vertex of each leaf belongs to I,
(iii) each pair of vertices of I whose distance is two along H is connected by a strut
and there are no other struts induced by I.

Proof: (i) If there is only one vertex w ∈ V with strut-degree at least two then
the strut graph must be the union of a star and an edge by Lemma 3.1(i). Since
w is strut-covered by Lemma 3.1(iii), this implies that T is an abstract Grünbaum
polygon.

(ii) Let xy be a leaf with dS(x) = 1. If x is a vertex next to I then the leaf incident
with it must be the strut that covers the last vertex of I by Lemma 3.1(iii). Since
|I| ≥ 2, this gives y ∈ I. Now consider the case when x is not next to I and, for a
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contradiction, suppose that y /∈ I. Then dS(y) = 1 and hence we may also assume
that y is not next to I. Observe that if x is strut-covered, say, then the strut covering
x is also a leaf with both end-vertices having strut-degree one. This means the strut
graph has at least three components, a contradiction by Lemma 2.4. Thus we may
perform a reduction at x, which makes the strut-degree of y zero. This contradicts
Lemmas 2.2,2.3.

(iii) By Lemma 3.1(iii) each vertex of I is strut-covered. Thus each pair of vertices
of I whose distance is two along H is connected by a strut. This implies that the
strut subgraph on I has at most two components, since it contains two disjoint paths,
whose union is I and whose vertices alternate along the boundary cycle. If there is
an additional strut within this subgraph then either we have a strut cycle (which is
impossible by Lemma 3.1(i)) or all vertices in this subgraph belong to the same strut
component. This would mean, by (ii), that the strut graph is connected, a contradic-
tion. •

Lemma 3.3. Let T be a strong abstract tensegrity polygon with |S| = |V | − 2 and
|V | ≥ 5. Then T has exactly one interval I.

Proof: Lemma 3.1(ii) implies that T has at least one interval. Suppose, for a con-
tradiction, that T has at least two intervals. Let us perform reductions at vertices of
strut-degree one as long as possible preserving the existence of at least two intervals.
By Lemma 2.3 the resulting abstract tensegrity polygon T ′ is also strong. We may
assume that T ′ has at least six vertices, since otherwise it cannot have two vertices
of strut-degree two. Consider T ′ and choose an interval I of T ′. Let a, b be the next
and second-next vertices to I, respectively, at one of its ends. By Lemma 3.1(v) we
have dS(b) = 1 and b is not strut-covered. This means that we may apply a reduction
at b - however, by the choice of T ′, a reduction at b would lead to a polygon with one
interval. Let bx be the strut incident with b.

Since the intervals in T ′ are separated from each other by at least two vertices along
the boundary cycle, by Lemma 3.1(iv), the reduction at b, which may decrease the
strut-degree of x only, can decrease the number of intervals only if there is an interval
consisting only of vertex x, and dS(x) = 2. But Lemma 3.1(vi) shows that the vertex
of a singleton interval has strut degree at least three, a contradiction. •

Lemma 3.4. Let T be a strong abstract tensegrity polygon with |S| = |V | − 2 and
|V | ≥ 5 and let I be an interval of T . Then each pair of crossing leaves is admissible
with respect to I.

Proof: By Lemma 3.3 I is the only interval in T . Suppose, for a contradiction, that
there is a pair of crossing leaves which is non-admissible with respect to I. Let us
perform reductions at vertices of strut-degree one as long as possible preserving the
existence of a non-admissible crossing pair with respect to the unique interval of the
polygon. By Lemma 2.3 the resulting abstract tensegrity polygon T ′ is also strong.
Consider T ′ and its interval I. We can use Lemma 3.2 and the fact that there are
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Section 4. Robust polygons with |V | − 2 struts 10

no crossing leaves with respect to the interval of a Grünbaum polygon to deduce that
|I| ≥ 2 and all leaves of T ′ are incident with I. In fact, we must have |I| ≥ 3, since
otherwise all crossings must be admissible.

Let a, b be the next and second-next vertices to I, respectively, at one of its ends.
By Lemma 3.1(v) we have dS(b) = 1 and b is not strut-covered. Hence we may apply a
reduction at b. However, by the choice of T ′, a reduction at b would lead to a polygon
without non-admissible pairs of crossing leaves. Let bx be the strut incident with b.
We have x ∈ I. By Lemma 3.2(iii) it follows that the reduction at b cannot decrease
the strut-degree of the inner vertices of I to one. Furthermore, the strut-degree of an
end-vertex v of I is decreased to one (and hence the interval becomes shorter) if and
only if dS(v) = 2 and x = v hold. In this case v is eliminated from I, i.e. the interval
of the reduced polygon is I − {v}.

Suppose first that bx is not part of a non-admissible pair of crossing leaves in T ′.
Then the reduction at b preserves the existence of a non-admissible crossing pair. This
follows by observing that if I remains the same then the set of non-admissible pairs
of crossing leaves cannot change. If I gets shorter then we must have dS(v) = 2 and
x = v for an end-vertex v of I. However, no strut incident with v can be part of
a non-admissible crossing pair (as one of them is bv and the other is the strut that
covers the vertex next to v in I), and again the set of non-admissible pairs of crossing
leaves remains the same. This contradicts the choice of T ′.

So it remains to consider the case when bx is part of a non-admissible pair of cross-
ing leaves in T ′. Then a cannot be strut covered and hence we may apply a reduction
at a. By Lemma 2.3 the polygon obtained by the reduction at a is strong, and hence it
has exactly one interval by (i). Since the strut ay incident with a is the strut covering
the last vertex of I, and |I| ≥ 3, the vertex set of the interval does not change by
the reduction. Since ay cannot be in a non-admissible pair of crossing leaves in T ′,
this implies that non-admissible pairs remain non-admissible after the reduction at a.
This contradicts the choice of T ′, which completes the proof. •

The results of this section show that if an abstract tensegrity polygon T is strong
then it satisfies the unique interval property. Namely, Lemmas 3.3, 3.2, and 3.4 imply
properties (a), (b) and (c), and (d), respectively.

4 Robust polygons with |V | − 2 struts

In this section we show that if T satisfies the unique interval property then T is robust.

Lemma 4.1. Let T = (V ;C, S) be an abstract tensegrity polygon with |S| = |V | − 2
and |V | ≥ 6. Suppose that T satisfies the unique interval property and the interval I
of T has at least two vertices. Let vk−1, vk be the last two vertices of I at one of its
ends and let a, b be the next and second-next vertex to I on the boundary cycle. Then
(i) there is exactly one strut incident with b, which is either vkb or vk−1b,
(ii) if vkb ∈ S then b is not strut-covered and a reduction at b preserves the unique
interval property,
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Section 4. Robust polygons with |V | − 2 struts 11

(iii) if vk−1b ∈ S then a is not strut-covered and a reduction at a preserves the unique
interval property.

Proof: (i) As we noted earlier, the unique interval property and |S| = |V |−2 implies
that each vertex in V − I is incident with exactly one strut. Since vk is the last vertex
of I, at most one strut leads from v to another vertex in I and hence vk is incident
with a leaf vky. Now either b = y and hence vkb is a strut, or the strut incident with
b and vky cross with respect to I. In the latter case, by the unique interval property,
vk−1b must be a strut, for otherwise this crossing pair would be non-admissible with
respect to I.

(ii) Suppose vkb ∈ S. The unique interval property implies that vk−1a is a strut,
hence b cannot be strut-covered. Let T ′ be obtained from T by a reduction at b.
The strut-degrees do not change, except at vk, where it is decreased by one. If its
strut-degree in T ′ is at least two, the interval of T ′ is identical to I, in which case it is
easy to see that properties (a)-(d) are all maintained. If the strut-degree of vk drops
to one by the reduction, then the interval of T ′ is I minus vk. If the interval of T ′

is a single vertex, then the unique interval property of T can be used to deduce that
T ′ is an abstract Grünbaum polygon. If the interval of T ′ is of size at least two then
again, it is easy to see that properties (a)-(d) are all maintained.

(iii) Suppose vk−1b ∈ S. In this case a cannot be strut-covered. The unique interval
property implies that the strut incident with a is vk−1a. Let T ′ be obtained from T
by a reduction at a. If |I| ≥ 3 then, by using the unique interval property, we have
vk−3vk−1 ∈ S. Since vk−1b ∈ S, it follows that in this case the strut-degree of vk−1
is at least two in T ′. Hence the interval of T ′ is identical to I, in which case it is
easy to see that properties (a)-(d) are all maintained. If |I| = 2 then either the strut
degree of vk−1 is at least two in T ′, in which case we are done as above, or we have
dS(vk−1) = 2 in T . In the latter case the unique interval property of T implies that
T ′ is a Grünbaum polygon. This completes the proof. •

In the next proof we shall use the following operation. Suppose that we have two
tensegrity frameworks (T1, p1) and (T2, p2), possibly with overlapping sets of vertices,
and corresponding stresses ω1 and ω2. Then we can define a stress ω on the (underlying
bar framework of the) union of the two frameworks by first extending each stress by
zeros on the members of the other frameworks, and then taking their sum. We say
we superimpose the stresses when we apply this operation.

Theorem 4.2. Let T be an abstract tensegrity polygon with |S| = |V |−2 and |V | ≥ 5.
Suppose that T satisfies the unique interval property. Then T is robust and stable.

Proof: The proof is by induction on |V |. If |V | = 5 then T is an abstract Grünbaum
polygon, which is known to be robust and stable. So suppose that |V | ≥ 6 and
consider a convex realization (T, p) of T . We shall construct a strict proper stress
on (T, p) and show that it is infinitesimally rigid by superimposing (the strict proper
stresses of) two smaller tensegrity polygons.

Since T satisfies the unique interval property and Grünbaum polygons are robust
and stable, we may suppose that |I| ≥ 2. Let vk−1, vk be the last two vertices of I at
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Section 4. Robust polygons with |V | − 2 struts 12

one of its ends and let a, b be the next and second-next vertex to I on the boundary
cycle. By Lemma 4.1(i) there is exactly one strut incident with b, which is either vkb
or vk−1b. We shall deal with these two cases separately.

Case 1. vkb is a strut.

Create a smaller tensegrity polygon (T ′, p′) by deleting a, replacing the strut vkb by a
cable and adding a new strut vk−1b, without changing the vertex positions. Let (K4, p)
be a tensegrity polygon on four vertices p(vk−1), p(vk), p(a), p(b) with struts vk−1a and
vkb. Observe that the underlying abstract tensegrity polygon T ′ is isomorphic to
the one obtained from T by a reduction at b. Thus T ′ satisfies the unique interval
property by Lemma 4.1. Hence, by induction, it is robust and stable. So is the small
tensegrity polygon. Thus both (T ′, p′) and (K4, p) have a strict proper stress and are
infinitesimally rigid. By scaling the stresses, if necessary, we may assume that the
sum of the stresses on the strut vk−1b and on the cable vk−1b in the corresponding
frameworks is zero. Now consider the superimposed stress ω on the union of the two
frameworks, see Figure 5.

By our assumption ω is non-zero only on the members of (T, p) and its sign is
consistent with the labeling of T except, possibly, on the member vkb, where we
take the sum of two numbers of opposite signs. However, since ω is positive on the
members of the boundary cycle of T and vkb is the only other member incident with b,
it follows that the ω is negative on vkb. Therefore ω is a strict proper stress on (T, p),
as required. Furthermore, since (T ′, p′) and (K4, p) are both infinitesimally rigid, we
can use [10, Theorem 6.1] to deduce that (T̄ , p) is infinitesimally rigid. This fact, the
existence of ω, and Theorem 1.1 imply that (T, p) is infinitesimally rigid.

vk−1

vk a

bvk−1

vk

b vk−1

vk a

b

Figure 5: Superimposing the (stresses of the) two polygons in Case 1.

Case 2. vk−1b is a strut.

By Lemma 4.1(iii) a is not strut-covered. Create a smaller tensegrity polygon
(T ′, p′) by reducing T at a, without changing the vertex positions. Let (K4, p) be
the polygon on four vertices p(vk−1), p(vk), p(a), p(b) with struts vk−1a and vkb. By
Lemma 4.1(iii) T ′ also satisfies the unique interval property. Hence, by induction, it is
robust and stable. So is the small tensegrity polygon. Thus both (T ′, p′) and (K4, p)
have a strict proper stress and are infinitesimally rigid. By scaling the stresses, if
necessary, we may assume that the sum of the stresses on the strut vkb and on the
cable vkb in the corresponding frameworks is zero. Now consider the superimposed
stress ω on the union of the two frameworks, see Figure 6.

By our assumption ω is non-zero only on the members of (T, p) and its sign is
consistent with the labeling of T except, possibly, on the member vk−1b, where we
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take the sum of two numbers of opposite signs. However, since ω is positive on the
members of the boundary cycle of T and vk−1b is the only other member incident
with b, it follows that ω is negative on vk−1b. Therefore ω is a strict proper stress
on (T, p), as required. Furthermore, since (T ′, p′) and (K4, p) are both infinitesimally
rigid, we can use [10, Theorem 6.1] to deduce that (T̄ , p) is infinitesimally rigid. This
fact, the existence of ω, and Theorem 1.1 imply that (T, p) is infinitesimally rigid.
This completes the proof. •

vk−1

vk a

bvk−1

vk

b vk−1

vk a

b

yy

Figure 6: Superimposing the (stresses of the) two polygons in Case 2.

We are now ready to prove the main result.

Proof: (of Theorem 1.2) Let T = (V ;C, S) be an abstract tensegrity polygon with
|V | ≥ 5 and |S| = |V |−2. First suppose that T is strong. Then T satisfies the unique
interval property by Lemmas 3.2, 3.3, and 3.4. Thus (i) implies (iv).

Next suppose that T satisfies the unique interval property. Then T is robust and
stable by Theorem 4.2. This shows that (iv) implies (iii) and (ii). Finally, we can see
that (iii) implies (ii) by Theorem 1.1 and (ii) implies (i) by definition. This completes
the proof. •

5 Concluding remarks

Let T = (V ;C, S) be a robust (or stable) abstract tensegrity polygon with |V | − 2
struts. The proof of Theorem 4.2 shows that T can be reduced to the abstract tenseg-
rity polygon on four vertices by reductions. Therefore the underlying undirected graph
G of T can be obtained from K4 by repeated applications of the (unlabeled) inverse
operation of reduction. This operation, which is called 1-extension (or edge-splitting),
builds up a 3-connected, generically redundantly rigid, and generically globally rigid
graph from K4, see [1, 3]. Thus G satisfies each of these properties.

Let T = (V ;C, S) be an abstract tensegrity polygon which is not strong. It may
be interesting to verify this by constructing a tensegrity polygon (T, p) which has no
non-trivial proper stress. If T is not 3-connected then it is not difficult. Let {vi, vj}
be a separating vertex pair in T . Build a convex realization (T, p) of T in such a way
that all struts leaving the vertex set R = {vi+1, vi+2, ..., vj} go up and left, while all
cables leaving R go up and right. See Figure 7, where R is the set below the line. Let
ω be a proper stress on (T, p). The stress signs, the directions of the members leaving
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R, and the equilibrium conditions imply that ω must be zero on all members leaving
R. In particular, the stress is zero on the cables leaving R. Thus ω is the zero stress
by Lemma 2.3.

vi+1

vi

vj

vj+1

Figure 7: A tensegrity polygon without non-trivial proper stresses. The separating
vertex pair is {vi, vj}.

There is a different argument (suggested by Bob Connelly) for showing that (i)
implies (iii) in Theorem 1.2, which uses the “averaging method” and the fact that a
tensegrity polygon (T, p) with a non-zero proper stress in universally rigid (mentioned
in the Introduction). Suppose q is a non-trivial infinitesimal motion of a convex
realization (T, p) of a strong abstract tensegrity polygon T . Then (T, p + q) and
(T, p − q) are equivalent, but not congruent convex realizations of T , assuming that
q is properly scaled. But these realizations also have a non-zero proper stress, and
hence they are universally rigid, a contradiction.

A straightforward open problem is to extend the combinatorial characterization
of this paper to abstract tensegrity polygons with more struts and/or to investigate
whether the properties of being strong, robust, and stable remain equivalent for more
dense tensegrity polygons.
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