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Minimax Theorems in Graph Connectivity
Augmentation

Tibor Jordán?

Abstract

This survey paper on polynomial-time solvable versions of graph connec-
tivity augmentation problems, and on the corresponding minimax theorems,
was written in August 2001 and has not been published earlier. Some of the
references have been updated but the text is unchanged. For more recent de-
velopments the reader is referred to [29, 75].

1 Introduction

The problem of economically improving a network to meet given survivability condi-
tions occurs in a number of areas. A straightforward problem of this type is concerned
with creating more connections in a telephone or computer network so that it survives
the failure of a given number of cables or terminals [43]. Similar problems arise in
graph drawing [64], statics [3], and data security [65]. Graph theory provides a gen-
eral framework to attack this type of questions. The general problem of this part of
graph theory, called graph connectivity augmentation, is the following optimization
problem.

General Problem: Let G = (V,E) be a (directed) graph and let r : V × V → Z+

be a function. Find a smallest (or cheapest) set F of new edges (arcs) such that
λ(u, v;G′) ≥ r(u, v) (or κ(u, v;G′) ≥ r(u, v) holds for all u, v ∈ V in G′ = (V,E ∪ F ).

Here λ(u, v;H) (κ(u, v;H)) denotes the local edge-connectivity (local vertex-connec-
tivity, respectively) in graph H, that is, the maximum number of pairwise edge-
disjoint (vertex-disjoint) paths from u to v in H. The general problem includes several
different subproblems, depending on whether G is undirected or not, and whether the
requirements r(u, v) are imposed for edge- or vertex-connectivity. When the goal is to
find a cheapest set of new edges, this is meant with respect to a given weight function
on the set of possible new edges.

This chapter is a survey on graph connectivity augmentation problems. We shall
focus on the efficiently solvable variants of the problem, for which polynomial-time
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algorithms and minimax theorems are known. Thus, since most of the weigthed cases
are NP-hard, we shall be interested in finding augmenting sets of minimum size. For
a survey on NP-hard versions and approximation algorithms see Khuller [66]. The
unweighted case alone is so rich of interesting results that we decided to focus on
minimax theorems only and omit the details of the corresponding algorithms. For
more on the algorithmic side see the recent survey of Nagamochi [72]. We shall also
omit the detailed discussion of graph synthesis problems, which deal with the problem
of constructing a graph with as few edges as possible from scratch, satisfying given
connectvity requirements. These are special cases of the general problem with E = ∅.

Most of the theorems in this paper are less than ten years old, showing that this is
a relatively new and active area of graph theory where substantial progress has been
made in the last decade. The reader is referred to an earlier survey article of Frank
[27] for more details on older results as well as for several other versions not treated
in this chapter.

2 Edge-connectivity augmentation of graphs

The first papers on graph connectivity augmentation appeared in 1976, when Eswaran
and Tarjan [20] and independently Plesnik [77] solved the 2-edge- (and 2-vertex-
)connectivity augmentation problem. Although several graph synthesis problems
(that is, augmentation problems where the starting graph has no edges) had been
solved earlier (see e.g. Gomory and Hu [42], Frank and Chou [36]), these papers were
the first to provide minimax theorems for arbitrary starting graphs.

Let G = (V,E) be a graph which is not 2-edge-connected. A 2-component G′ of G
is a maximal 2-edge-connected subgraph of G. A 2-component G′ with dG(V (G′)) = 1
is a leaf. (We use dH(X) to denote the degree of a subset X of vertices in graph H.)
Note that the 2-components are pairwise disjoint. Let l(G) denote the number of
leaves and let c′(G) denote the number of those connected components of G which
are 2-edge-connected. The leaves and these connected components are also pairwise
disjoint. Since every new edge can increase the degree of at most two leaves or 2-edge-
connected components (by one), it follows that at least dl(G)/2e + c′(G) new edges
are needed to make G 2-edge-connected.

Theorem 2.1. [20, 77] The minimum number of new edges which make G = (V,E)
2-edge-connected equals dl(G)/2e+ c′(G).

By contracting each of the 2-components of G, we may assume that the starting
graph G is a forest. It is also easy to reduce the problem to the case when G is a
tree without vertices of degree 2 and with an even number of leaves. There exist a
number of methods to find a smallest set F which makes such a tree 2-edge-connected.
For example, connecting the end-vertices of a longest path and then contracting the
resulting cycle reduces the number of leaves by two. Hence by repeating this procedure
as long as possible, we obtain an (optimal) augmenting set of size dl(G)/2e. Another
solution is to number the leaves of G according to a DFS search and then connect
“opposite” pairs of vertices.
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Section 2. Edge-connectivity augmentation of graphs 3

Kajitani and Ueno [63] solved the k-edge-connectivity augmentation problem for
every k ≥ 1, provided the starting graph is a tree. For arbitrary starting graphs we
can extend the lower bound used in Theorem 2.1 as follows. A subpartition of V is
a family of pairwise disjoint non-empty subsets of V . Let G = (V,E) be a graph and
k ≥ 2. Let

α(G, k) = max{
t∑
1

(k − d(X)) : X1, X2, ..., Xt is a subpartition of V }. (1)

and let γ(G, k) be the size of a smallest augmenting set of G with respect to k-edge-
connectivity. Every augmenting set must contain at least k − d(X) edges entering
X for every X ⊂ V and every new edge can decrease this “deficiency” of at most
two sets in any subpartition. Thus γ(G, k) ≥ Φ(G, k), where Φ(G, k) = dα(G, k)/2e.
Theorem 2.1 implies that γ(G, k) = Φ(G, k) for k = 2. Watanabe and Nakamura [84]
solved the k-edge-connectivity augmentation problem and proved that this minimax
equality is valid for every k ≥ 2.

Theorem 2.2. [84] Let G = (V,E) be a graph and let k ≥ 2. Then γ(G, k) = Φ(G, k).

Watanabe and Nakamura construct an increasing sequence of augmenting sets
F1, F2, ..., Fk such that for all 1 ≤ i ≤ k the set Fi is an optimal augmenting set
of G with respect to i.

A different method was employed by Cai and Sun [11] (and suggested already by
Plesnik [77] for k = 2). This method is based on edge splitting. Let H = (V +s, E) be
a graph with a designated vertex s. By splitting off a pair of edges su, sv we mean
the operation that replaces su, sv by a new edge uv. The resulting graph is denoted
by Huv. A complete splitting at s is a sequence of splittings which isolates s. A
complete splitting exists only if dH(s) is even. The splitting off method adds a new
vertex s to the starting graph and constructs the augmenting set by splitting off edges
from s. Frank [26] simplified and extended this method and showed that “generalized
polymatroids” are in the background of this method. For more details on the use of
polymatroids we refer to [26, 27, 34]. Here we describe Frank’s algorithmic proof for
Theorem 2.2 in terms of graphs.

Let G = (V,E) be a graph. An extension G′ = (V +s, E ′) of G is obtained from G
by adding a new vertex s and a set of new edges, such that every new edge is incident
with s. An extension G′ is said to be (k, s)-edge-connected if λ(x, y;G′) ≥ k holds
for every pair x, y ∈ V . G′ is minimally (k, s)-edge-connected if G′−e is no longer
(k, s)-edge-connected for every edge e incident with s.

It follows from Menger’s theorem that in a minimally (k, s)-edge-connected ex-
tension G′ = (V + s, E ′) every neighbour of s is contained by a set X ⊂ V with
dG′(X) = k. Frank [26] proved that there exists a subpartition {X1, ..., Xt} of
V consisting of sets of degree k which cover all neighbours of s in G′, and hence
dG′(s) =

∑t
1(k − dG(Xi)) holds. Since dG′(s) ≥

∑
X∈X (k − dG(X)) for any subparti-

tion X of V , this implies that if G′ is a minimally (k, s)-edge-connected extension of
G then

dG′(s) = α(G, k). (2)
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Section 2. Edge-connectivity augmentation of graphs 4

This fact and the following result of Lovász [68] gives rise to a simple algorithmic
proof of Theorem 2.2. Let H = (V + s, E) be a (k, s)-edge-connected graph. We say
that splitting off two edges us, sv is k-admissible if Huv is also (k, s)-edge-connected.
A complete k-admissible splitting at s is a sequence of k-admissible splittings
which isolates s. Note that the graph on vertex set V , obtained from H by a complete
k-admissible splitting, is k-edge-connected.

Theorem 2.3. [68] Let H = (V + s, E) be a (k, s)-edge-connected graph for some
k ≥ 2 and suppose that dH(s) is even. Then (a) for every edge su there exists an edge
sv such that the pair su, sv is k-admissible; (b) there exists a complete k-admissible
splitting at s in H.

Note that (b) follows by dH(s)/2 repeated applications of (a). We can summarize
Frank’s algorithm as follows.

Frank’s algorithm

(PHASE 1) Given a graph G = (V,E) and an integer k ≥ 2, create a minimally
(k, s)-edge-connected extension G′ = (V + s, E ′) of G.

(PHASE 2) If dG′(s) is odd, add a new edge sv for some arbitrary v ∈ V . Split off
k-admissible pairs of edges incident to s in arbitrary order. When s becomes isolated,
delete s.

It is clear that a (k, s)-edge-connected extension of G exists (say, by adding k parallel
edges from s to each vertex of V will do). A minimally (k, s)-edge-connected extension
G′ = (V + s, E ′) can be obtained by a greedy deletion procedure. In the second phase
every edge incident to s can be split off by Theorem 2.3. The resulting graph is an
optimal k-edge-connected augmentation of G since after the first phase γ(G, k) ≥
dG′(s)/2 by (2). This proves Theorem 2.2.

Frank [26] showed that, although finding an augmenting set with minimum to-
tal weigth is NP-hard, the k-edge-connectivity augmentation problem with vertex-
induced edge weights can be solved in polynomial time. In this version we are given
a weigth function w : V → Z+ on the vertices and the weight of an edge uv equals
w(u) + w(v). He also solved several degree constrained versions of the problem. For
example, he proved the following characterisation.

Theorem 2.4. [26] Let G = (V,E) be a graph, k ≥ 2 and integer, and let f ≤ g
be two non-negative integer-valued functions on V . Then G can be made k-edge-
connected by adding a set F of new edges so that f(v) ≤ dF (v) ≤ g(v) holds for
every v ∈ V if and only if k − d(X) ≤ g(X) for every ∅ 6= X ⊂ V and there is
no partition P = {X0, X1, ..., Xt} of V , where only X0 may be empty, and such that
f(X0) = g(X0), g(Xi) = k − d(Xi) for 1 ≤ i ≤ t, and g(V ) is odd.

Naor, Gusfield and Martel [76] came up with yet another proof (and algorithm)
for Theorem 2.2. Their algorithm increases the edge-connectivity one by one and is
based on the concept of extreme sets from [84]. A set X ⊂ V is extreme in a graph
G = (V,E) if d(Y ) > d(X) for every Y ⊂ X. Extreme sets form a laminar family (in
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Section 2. Edge-connectivity augmentation of graphs 5

fact, every extreme set is an edge-connectivity component of G, see [27]), and hence
they can be represented by a tree.

It is easy to see that the sets Xi maximizing Φ(G, k) in Theorem 2.2 can be chosen
to be extreme. The family of extreme sets suffices to compute γ(G, k) for all k ≥ 2
and, with some extra efforts, to find a smallest augmenting set as well. Benczúr and
Karger [8] show how the extreme set tree can be used to find a minimally (k, s)-edge-
connected extension G′ of G and a complete k-admissible splitting in G′.

Naor, Gusfield and Martel use the Gomory-Hu tree of G to find the extreme sets.
They also show how to employ the cactus representation of minimum edge cuts [18]
to find a smallest set F which increases the edge-connectivity by one.

Let us return to the splitting off method, which enabled Frank [26] to solve the
local edge-connectivity augmentation problem as well. A function r : V × V → Z+ is
called a local requirement function on V . Let r be a local requirement function
on V , let G = (V,E) be a graph and let G′ = (V + s, E ′) be an extension of G. We
call G r-edge-connected if λ(x, y;G) ≥ r(x, y) for every x, y ∈ V . We say G′ is
(r, s)-edge-connected if λ(x, y;G′) ≥ r(x, y) for every x, y ∈ V . Splitting off us, sv
is r-admissible in G′ if λ(x, y;G′uv) ≥ r(x, y) for all x, y ∈ V . In the local edge-
connectivity augmentation problem the goal is to find a smallest set F which makes
the input graph G = (V,E) r-edge-connected for a given local requirement function
r.

Let function R : 2V → Z+ be defined by letting R(∅) = R(V ) = 0 and

R(X) = max{r(x, y) : x ∈ X, y ∈ V −X} for all ∅ 6= X ⊂ V. (3)

By Menger’s theorem an augmented graph G′ is r-edge-connected if and only if
dG′(X) ≥ R(X) for every X ⊆ V . Let q(X) = R(X) − dG(X) for sets ∅ 6= X ⊂ V
and let

α(G, r) = max{
t∑
i=1

q(Xi) : X1, X2, . . . , Xt is a subpartition of V } (4)

An argument analogous to the uniform case shows that γ(G, r) ≥ Φ(G, r), where
γ(G, r) is the size of a smallest augmenting set and Φ(G, r) = dα(G, r)/2e. Theorem
2.2 claims that this lower bound is achievable if r ≡ k ≥ 2. In the local version this
does not necessarily hold. For example, consider a graph with four vertices and no
edges and let r ≡ 1. The exceptional cases, however, can be dealt with as follows. Let
C ⊂ V be the vertex-set of a component of G = (V,E). We say that C is a marginal
component (with respect to r) if q(C) ≤ 1 and q(X) = 0 for every proper subset of
C. If G has a marginal component, we can reduce the problem as follows.

Theorem 2.5. [26] Let G = (V,E) be a graph and let C be a marginal component of
G with respect to r, where r is a local requirement function on V . Let r′ denote the
restriction of r to V − C. Then γ(G, r) = q(C) + γ(G− C, r′).

The proof of Theorem 2.5 shows how to find a smallest augmentation for G if a
smallest augmenting set for G − C (with respect to r′) is available. Thus we can
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Section 2. Edge-connectivity augmentation of graphs 6

assume that G has no marginal components. In this case Φ(G, r) turns out to be
sufficient to characterise γ(G, r). The proof follows the steps of Frank’s algorithm:
first construct a minimally (r, s)-edge-connected extension G′ = (V + s, E ′) of G. It
can be seen that this graph has dG′(s) = α(G, r) [26]. Then, possibly after adding
an edge sv to make dG′(s) even, perform a complete r-admissible splitting at s in G′.
The set of split edges is a smallest augmenting set.

The fact that a complete r-admissible splitting exists in G′ follows from Mader’s
[69] deep result, which entends Theorem 2.3 to local edge-connectivities.

Let H = (V + s, E) be a graph. Let rλ(x, y) = λ(x, y;H) be a special requirement
function, defined on pairs x, y ∈ V .

Theorem 2.6. [69] Let H = (V + s, E) be a graph with d(s) is even and suppose that
there is no cut-edge incident to s. Then there is a complete rλ-admissible splitting at
s.

Observe that if G has no marginal components with respect to r then there is no cut-
edge incident to s in G′. Thus, since we have dG′(s) = α(G, r) and γ(G, r) ≥ Φ(G, r),
Theorem 2.6 completes the proof of Frank’s theorem.

Theorem 2.7. [26] Let G = (V,E) be a graph and let r be a local requirement function
on V . If G has no marginal components with respect to r then γ(G, r) = Φ(G, r).

We say that an increasing sequence of local requirements (r1, r2, ..., rt) on V has the
successive augmentation property if, for any starting graph G = (V,E), there
exists an increasing sequence F1 ⊆ F2 ⊆ ... ⊆ Ft of sets of edges such that G + Fi
is an optimal augmentation of G with respect to ri, for all 1 ≤ i ≤ t. The proof
of Theorem 2.2 by Watanabe and Nakamura [84] (and also Naor et al. [76]) implies
that any increasing sequence of uniform requirements has the successive augmentation
property in the edge-connectivity augmentation problem. By using an entirely differ-
ent approach, Cheng and Jordán [13] generalised this to sequences with the following
property:

ri+1(u, v)− 1 = ri(u, v) ≥ 2, for all u, v ∈ V, 1 ≤ i ≤ t− 1 (5)

The proof is based on the fact that if G′ = (V + s, E ′) (G′′ = (V + s, E ′′)) is a
minimally ri−1-edge-connected (minimally ri-edge-connected, respectively) extension
of G such that G′ is a subgraph of G′′, then any ri−1-admissible splitting su, sv in G′

is ri-admissible in G′′.

Theorem 2.8. [13] Every increasing sequence (r1, r2, ..., rt) of local requirements sat-
isfying (5) has the successive augmentation property in the edge-connectivity augmen-
tation problem.

A mixed graph D = (V,E ∪ A) has edges as well as arcs. Bang-Jensen, Frank,
and Jackson [2] extended Theorem 2.6 and to mixed graphs and with the splitting
off method, they generalised Theorem 2.7 to the case when the edge-connectivity of
a mixed graph is to be increased by adding undirected edges. See also [27] for a list
of theorems of this type.
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Section 3. Edge-connectivity of digraphs 7

3 Edge-connectivity of digraphs

Let γ(D, k) denote the size of a smallest set F of new arcs which makes a given
directed graph D k-edge-connected. The first result on digraph augmentation is due
to Eswaran and Tarjan [20], who solved the strong connectivity augmentation problem
and gave the following minimax formula for γ(D, 1).

Let D = (V,A) be a digraph. By contracting the strongly connected components of
D we may assume that D is acyclic. A vertex v with ρ(v) = 0 (δ(v) = 0) is a source
(sink, respectively). For a set X ⊂ V let X+ and X− denote the set of sources in
X and the set of sinks in X, respectively. Clearly, to make D strongly connected we
need at least |V +| (|V −|) new arcs. For acyclic digraphs these bounds are sufficient
to characterize γ(D, 1).

Theorem 3.1. [20] Let D = (V,A) be an acyclic digraph. Then γ(D, 1) =
max{|V +|, |V −|}.

It follows that for arbitrary starting graphs γ(D, 1) equals the maximum number
of pairwise disjoint sets X1, ..., Xt in D with ρ(Xi) = 0 for all 1 ≤ i ≤ t (or δ(Xi) = 0
for all 1 ≤ i ≤ t).

Kajitani and Ueno [63] solved the problem when D is a directed tree and k ≥
1 is arbitrary. The solution for arbitrary starting digraphs is due to Frank [26],
who adapted the splitting off method to directed graphs and showed that, as in the
undirected case, γ(D, k) can be characterised by a subpartition-type lower bound. For
a digraph D = (V,A) let

αin(D, k) = max{
t∑
1

(k − ρ(Xi)) : X1, ..., Xt is a subpartition of V },

αout(D, k) = max{
t∑
1

(k − δ(Xi)) : X1, ..., Xt is a subpartition of V }

Clearly, γ(D, k) ≥ Φ(D, k), where Φ(D, k) = max{αin(D), αout(D)}. An exten-
sion D′ = (V + s, A′) of a digraph D = (V,A) is obtained from D by adding a new
vertex s and a set of new arcs, such that each new arc leaves or enters s. A digraph
H = (V +s, A) with a designated vertex s is (k, s)-edge-connected if λ(x, y;H) ≥ k
for every x, y ∈ V . H is minimally (k, s)-edge-connected if it is (k, s)-edge-
connected but H − e is no longer (k, s)-edge-connected for any arc e incident to s.
Splitting off two arcs us, sv means replacing the arcs us, sv by a new arc uv. Splitting
off two edges su, vs is k-admissible in a (k, s)-edge-connected digraph H if Huv is
also (k, s)-edge-connected.

Frank proved that if D′ is a minimally (k, s)-
edge-connected extension of D then we have
max{ρD′(s), δD′(s)} = Φ(D, k). Suppose that D′ has ρD′(s) = δD′(s) = Φ(D, k)
(this can be achieved by adding some extra edges incident to s). Then a complete
k-admissible splitting, if exists, results in an (optimal) augmenting set on V of size
Φ(D, k). The next theorem, due to Mader [70], guarantees that such a complete
splitting always exists.
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Theorem 3.2. [70] Let D = (V +s, A) be a (k, s)-edge-connected digraph with ρ(s) =
δ(s). Then (a) for every arc su there exists an arc vs such that the pair su, vs is
k-admissible, (b) there is a complete k-admissible splitting at s.

This proves the minimax theorem for the directed k-edge-connectivity augmentation
problem.

Theorem 3.3. [26] Let D = (V,A) be a directed graph and let k ≥ 1. Then γ(D, k) =
Φ(D, k).

Frank [26] solved the weighted version with vertex-induced weight function as well
as some degree constrained versions. Cheng and Jordán [13] proved that the successive
augmentation property holds for any increasing sequence of uniform requirements in
the directed edge-connectivity augmentation problem as well.

The local edge-connectivity augmentation problem in directed graphs is NP-hard,
even if r(u, v) ∈ {0, 1} for all u, v ∈ V [26]. Bang-Jensen, Frank, and Jackson [2]
generalised Theorem 3.3 to mixed graphs and special classes of local requirements.
For instance, they showed that the local version is solvable for Eulerian digraphs (that
is, for digraphs where ρ(v) = δ(v) for all v ∈ V ). The proofs of these results rely on
an edge splitting theorem, which is a common extension of Theorem 3.2 and a result
of Frank [23] and Jackson [54] on splitting off edges in Eulerian digraphs preserving
local edge-connectivities.

There is a different generalisation of Theorem 3.3, which is also tractable, although
with entirely different techniques. Let D = (V,A) be a digraph and let S, T ⊂ V be
two (possibly intersecting) non-empty subsets. We say that D is k-edge-connected
from S to T if there are k edge-disjoint paths from every vertex of S to every vertex
of T . This corresponds to k-edge-connectivity when S = T = V . We say that a family
X of subsets of V is (S, T )-independent if for every pair s ∈ S, t ∈ T , the arc st
enters at most one set in X .

Theorem 3.4. [30] A digraph D = (V,A) can be made k-edge-connected from S to
T by adding at most γ new arcs with tails in S and heads in T if and only if

t∑
j=1

(k − %(Xj)) ≤ γ

holds for every (S, T )-independent family X = {X1, X2, ..., Xt} of subsets of V with
T ∩Xj 6= ∅ and S −Xj 6= ∅ for all Xj ∈ X .

The proof of Theorem 3.4 is different from that of Theorem 3.3. It follows from a
more general result (Theorem 7.10). No direct proof for Theorem 3.4 and no com-
binatorial algorithm for the k-ST -edge-connectivity augmentation problem is known,
except when k = 1. For this special case Enni [19] gave a direct proof.

A different version of the mixed graph augmentation problem was investigated by
Gusfield [44].
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4 Constrained edge-connectivity augmentation

problems

In each of the augmentation problems considered so far it was allowed to add (an
arbitrary number of parallel copies of) any edge (or arc) connecting two vertices of
the input graph. It is natural to consider (and in some cases the applications give
rise to) variants where the set of new edges must meet certain additional constraints.
In general, this variant is NP-hard. Frederickson and Jaja [37] proved that, given a
tree T = (V,E) and a set J of edges on V , it is NP-hard to find a smallest set F ⊆ J
for which T ′ = (V,E ∪ F ) is 2-edge-connected. This problem remains NP-hard even
if J is the edge-set of a cycle on the leaves of T [14]. For some types of constraints,
however, the edge-connectivity augmentation problem remains tractable. This section
contains extensions of some of the previous unconstrained theorems in this direction.

Motivated by a question in statics, Bang-Jensen, Gabow, Jordán, and Szigeti [3]
solved the “partition-constrained” problem. Let G = (V,E) be a graph an let P =
{P1, P2, ..., Pr}, r ≥ 2, be a partition of V . In the partition-constrained k-edge-
connectivity augmentation problem the goal is to find a smallest set F of new edges,
such that every edge in F joins two distinct members of P and G′ = (V,E ∪ F ) is k-
edge-connected. If G is a bipartite graph with bipartition V = A∪B and P = {A,B}
then the problem is to augment a bipartite graph, preserving bipartiteness. By a
theorem of Bolker and Crapo [10] this corresponds to increasing the rigidity of a
square grid framework by adding a smallest set of extra diagonal rods. For the statics
background see [3] and [78].

Let γ(G, k,P) denote the size of a smallest augmenting set with respect to k and
the given partition P . Clearly, γ(G, k,P) ≥ γ(G, k). The case k = 1 is easy, hence
we assume k ≥ 2. For i = 1, 2, ..., r let

βi = max{
∑
Y ∈Yj

(k − d(Y )) : Yj is a subpartition of Pi} (6)

Since no new edge can join vertices in the same member Pi of P , it follows that βi
is a lower bound for γ(G, k,P) for all 1 ≤ i ≤ r. By combining this bound and the
lower bound of the unconstrained problem we obtain γ(G, k,P) ≥ Φ(G, k,P), where

Φ(G, k,P) = max{dα(G, k)/2e, β1, . . . , βr} (7)

Simple examples show that γ ≥ Φ + 1 may hold. Consider a four-cycle C4 and let
P be the natural bipartition of C4. Here we have Φ(C4, 3,P) = 2 and γ(C4, 3,P) = 3.
Now consider a six-cycle C6 and let P = {P1, P2, P3}, where the members of P contain
pairs of opposite vertices. For this graph and partition we have Φ(C6, 3,P) = 3 and
γ(C6, 3,P) = 4.

On the other hand, Bang-Jensen et al. [3] proved that γ ≤ Φ + 1 and characterised
all graphs with γ = Φ + 1. The proof employed the splitting off method. The first
step was a complete solution of the corresponding constrained edge splitting problem.
Let H = (V + s, E) be a (k, s)-edge-connected graph and let P = {P1, P2, ..., Pr} be a
partition of V . We say a splitting su, sv is allowed if it is k-admissible and respects
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Section 4. Constrained edge-connectivity augmentation problems 10

the partition constraints, that is, u and v belong to distinct members of P . If k is
even, the following extension of Theorem 2.3(b) is not hard to prove.

Theorem 4.1. [3] Let H = (V +s, E) be a (k, s)-edge-connected graph, for some even
integer k, let P = {P1, P2, ..., Pr} be a partition of V , and suppose that d(s) is even.
There exists a complete allowed splitting at s if and only if d(s, Pi) ≤ d(s)/2 for all
1 ≤ i ≤ r.

For k odd, however, there exist more complicated “obstacles” that prevent a com-
plete allowed splitting at s. Let S denote the set of neighbours of s.

A partition A1∪A2∪B1∪B2 of V is called a C4-obstacle if it satisfies the following
properties in H for some index i, 1 ≤ i ≤ r:

(i) d(A1) = d(A2) = d(B1) = d(B2) = k;

(ii) d(A1, A2) = d(B1, B2) = 0;

(iii) S ∩ (A1 ∪ A2) = S ∩ Pi or S ∩ (B1 ∪B2) = S ∩ Pi;

(iv) d(s, Pi) = d(s)/2.

C4 obstacles exist only for k odd. It is not difficult to see that if H contains a C4-
obstacle, then there exists no complete allowed splitting at s. A more special family
of obstacles, called C6-obstacles, can be defined when r ≥ 3, k is odd, and d(s) = 6,
see [3]. These two families suffice to characterise when there is no complete allowed
splitting. Note that in the bipartition constrained case only C4-obstacles may exist.

Theorem 4.2. [3] Let H = (V + s, E) be a (k, s)-edge-connected graph with d(s)
even and let P = {P1, P2, ..., Pr} be a partition of V . There exists a complete allowed
splitting at vertex s in G if and only if

(a) d(s, Pi) ≤ d(s)/2 for 1 ≤ i ≤ r,

(b) H contains no C4- or C6-obstacle.

Bang-Jensen et al. [3] show that there exists a (k, s)-edge-connected extension
G′ = (V + s, E ′) of G = (V,E) with d(s) = 2Φ(G, k,P) for which Theorem 4.2(a)
holds. If G′ satisfies Theorem 4.2(b), as well, a complete allowed splitting at s yields
an optimal augmenting set (of size Φ(G, k,P)). Since γ ≤ Φ + 1, it remains to
characterise the exceptions, that is, those starting graphs G for which any extension
G′ with d(s) = 2Φ(G, k,P) contains an obstacle (and hence γ(G, k,P) = Φ(G, k,P)+1
holds).

Let G = (V,E) be a graph. A partition X1, X2, Y1, Y2 of V is a C4-configuration
if it satisfies the following properties in G:

(i) d(A) < k for A = X1, X2, Y1, Y2;

(ii) d(X1, X2) = d(Y1, Y2) = 0;
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(iii) There exist subpartitions F1,F2,F ′1,F ′2 of X1, X2, Y1, Y2 respectively, such that
for A ranging over X1, X2, Y1, Y2 and F the corresponding subpartition of A,
k− d(A) =

∑
U∈F(k− d(U)). Furthermore for some i ≤ r, Pi contains every set

of either F1 ∪ F2 or F ′1 ∪ F ′2.

(iv) (k − d(X1)) + (k − d(X2)) = (k − d(Y1)) + (k − d(Y2)) = Φ(G, k,P).

As with C4-obstacles, k must be odd in a C4-configuration. A C6-configuration
is more specialized, since it only exists in graphs with r ≥ 3 and Φ = 3, see [3].

Theorem 4.3. [3] Let k ≥ 2 and let G = (V,E) be a graph with a partition P =
{P1, . . . , Pr}, r ≥ 2 of V . Then γ(G, k,P) = Φ(G, k,P) unless G contains a C4- or
C6-configuration, in which case γ(G, k,P) = Φ(G, k,P) + 1.

If each member of P is a single vertex then we are back at Theorem 2.2. The
following special case solves the rigidity problem mentioned above. Let G = (V,E)
be a bipartite graph with bipartition V = A ∪B, let P = {A,B}, and let

β′1 =
∑
v∈A

max{0, k − d(v)},

β′2 =
∑
v∈B

max{0, k − d(v)},

Θ(G, k,P) = max{dα(G, k,P)/2e, β′1, β′2}.

Theorem 4.4. [3] Let G = (V,E) be a bipartite graph with bipartition V = A ∪ B
and let P = {A,B}. Then γ(G, k,P) = Θ(G, k,P) unless k is odd and G contains a
C4-configuration, in which case γ(G, k,P) = Θ(G, k,P) + 1.

As we shall see, the phenomenon of minimax theorems with exceptions will occur
in other constrained augmentation (or edge splitting) problems as well.

The variant of the above problem, where the edges of the augmenting set F must
lie within members of a given partition, is NP-hard [3]. The status of this variant is
open if the number r of partition members is fixed, even if r = 2. The corresponding
edge splitting problem, for r = 2, has been solved in [6].

A different application of Theorem 4.2 is concerned with permutation graphs. A
permutation graph Gπ of a graph G is obtained by taking two disjoint copies of G
and adding a matching joining each vertex v in the first copy to π(v) in the second
copy, where π is a permutation of V (G). Thus G has several permutation graphs. The
edge-connectivity of any permutation graph of G is at most δ(G) + 1, where δ(G) is
the minimum degree of G. When does G have a k-edge-connected permutation graph
for k = δ(G) + 1?

Creating a permutation graph of G corresponds to performing a complete biparti-
tion constrained splitting in G′, where G′ is obtained from 2G by adding a new vertex
s and precisely one edge from s to each vertex of 2G. (For some graph H we use
2H to denote the graph consisting of two disjoint copies of H.) If G is simple, it can
be seen that G′ is (k, s)-edge-connected. Thus Theorem 4.2 leads to the following
characterisation, due to Goddard, Raines, and Slater [41].
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Theorem 4.5. [41] Let G be a simple graph without isolated vertices and let k =
δ(G) + 1. Then there is a k-edge-connected permutation graph of G unless G = 2Kk,
and k is odd.

The fact that constrained edge splitting results, such as Theorem 4.2, may lead
to solutions of constrained augmentation problems, such as Theorem 4.3, motivated
Jordán [61] to introduce a general method for solving constrained edge splitting prob-
lems. Let G = (V + s, E) be a (k, s)-edge-connected graph (k ≥ 2) and suppose
that the goal is to decide if there is a complete k-admissible splitting at s, where the
split edges satisfy some additional property Π. This property defines the constraint
graph D(G, s,Π) on N(s), the neighbour-set of s. Two distinct vertices u, v ∈ N(s)
are adjacent in D(G, s,Π) if and only if uv satisfies Π.

The non-admissibility graph B(G, s) of G (with respect to s) is also defined on
N(s). Two distinct vertices u, v ∈ N(s) are adjacent in B(G, s) if and only if the pair
su, sv is not k-admissible in G. Clearly, there is a k-admissible splitting satisfying Π
if and only if D(G, k,Π) is not a subgraph of B(G, s). If, for some property Π, the
constraint graph can never be a subgraph of the non-admissibility graph, it follows
that there is always a complete k-admissible splitting satisfying Π. In some case this
can be shown to hold by using the following general structural properties of non-
admissibility graphs.

A complete (subgraph of a) graph will be called a clique. The union of two cliques
with precisely one vertex in common is a double clique.

Theorem 4.6. [61] Let G = (V +s, E) be (k, s)-edge-connected and suppose that d(s)
is even and |N(s)| ≥ 2. Then (a) if k is even then B(G, s) is disconnected and each
component of B(G, s) is a clique, (b) if k is odd then each component of B(G, s) is
either a clique, or a double clique, or two disjoint cliques connected by a path, or a
cycle of length at least four.

Those graphs G = (V + s, E) for which B(G, s) is 2-edge-connected are of special
interest. An example for this case is a wheel of size at least five, where s is the center,
and k = 3. Here B(G, s) is a cycle (corresponding to the rim of the wheel). This
example can easily be extended to a family of “wheel-like” graphs, called round,
see [61] for the definition. Round graphs exist for every odd k ≥ 3 and their non-
admissibility graphs are cycles.

Theorem 4.7. [61] Let G = (V + s, E) be (k, s)-edge-connected for some k ≥ 2 and
suppose that d(s) is even and |N(s)| ≥ 2. Then B(G, s) is 2-edge-connected if and
only if B(G, s) is a cycle of length d(s), k is odd, d(s) ≥ 4, and G is round.

We illustrate the non-admissibility graph method by the planarity-preserving k-
edge-connectivity augmentation problem. In this problem we are given a planar graph
G = (V,E) and the goal is to find a smallest set F of new edges for which G′ =
(V,E ∪ F ) is k-edge-connected and planar. The complexity of this problem is still
open, even for k = 2. (Note that the corresponding problem for 2-vertex-connectivity
is NP-hard, see [64].)
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Consider the corresponding edge splitting problem. Let H = (V + s, E) be a (k, s)-
edge-connected planar graph H = (V + s, E) with d(s) even. Call a k-admissible
splitting su, sv non-crossing if Huv is also planar. It is easy to decide whether H has
a non-crossing splitting at s, but how can we decide if there is a complete non-crossing
splitting at s? Nagamochi and Eades [73] investigated this problem and pointed out
that a complete non-crossing splitting does not always exist if k ≥ 5 is odd.

Suppose now that k is even. Let us fix a planar embedding of H. This embedding
determines a cyclic ordering C of the neighbours of s. Clearly, a k-admissible splitting
su, sv for which u and v are consecutive in C is non-crossing (and a planar embed-
ding of Huv can be obtained without reembedding H − {su, sv}). We may assume
|N(s)| ≥ 3. Then the constraint graph D(H, s,ΠC), defined by the property ΠC of
being consecutive in C, is a cycle on N(s) corresponding to C. Thus to see that a
non-crossing splitting exists at s it is enough to prove that (∗) D(H, s,ΠC) cannot
be a subgraph of B(G, s). This is straightforward from Theorem 4.6(a), since the
constraint graph is connected.

Even though N(s) as well as B(H, s) and D(H, s,ΠC) may change after a non-
crossing splitting is performed, (∗) remains valid. Thus there exists a complete non-
crossing splitting at s. Hence we have proved the first half of the following theorem
of Nagamochi and Eades [73].

Theorem 4.8. [73] Let H = (V + s, E) be a planar graph with d(s) even and suppose
that H is (k, s)-edge-connected, where k is either even or k = 3. Then there exists a
complete non-crossing splitting at s.

The case when k = 3 can also be proved by this method, using the fact that
D(H, s,ΠC) is 2-edge-connected. By Theorem 4.6(b) and Theorem 4.7 this im-
plies that if there is no consecutive spliting at s then H is round. Then a com-
plete non-crossing splitting can be identified directly, using structural properties of
round graphs, see [61]. It remains an open problem to characterise those (k, s)-edge-
connected graphs H = (V + s, E), for odd k ≥ 5, which do not have complete
non-crossing splittings at s.

If G = (V,E) is outer-planar, any extension of G is planar. Thus, by using Theorem
4.8, the second phase of Frank’s algorithm can be executed in such a way that the
resulting graph is planar, provided k is even or k = 3. This proves the following result
of Nagamochi and Eades [73]. For k = 2 it was proved earlier by Kant [64].

Theorem 4.9. [73] Let G = (V,E) be outer-planar and let k be even or k = 3. Then
G can be made k-edge-connected and planar by adding Φ(G, k) edges.

Non-admissibility graphs turn out to be useful in the following augmentation prob-
lem as well: given two graphs G1 = (V,E) and G2 = (V, I), and two integers k, l ≥ 2,
find a smallest set F of new edges for which G′1 = (V,E ∪F ) is k-edge-connected and
G′2 = (V, I ∪ F ) is l-edge-connected. We call this the simultaneous edge-connectivity
augmentation problem.

As in the previous constrained problems, first we consider the corresponding edge
splitting problem. Let H1 = (V +s, E) be (k, s)-edge-connected and let H2 = (V +s, I)
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be (l, s)-edge-connected, and suppose that the sets of edges incident to s are common
in H1 and H2. A splitting su, sv is legal if it is k-admissible in H1 and l-admissible
in H2. To show that a legal splitting exists we need to verify that the complement
of the non-admissibility graph of H2 is not a subgraph of the non-admissibility graph
of H1. This does not always hold but with Theorems 4.6 and 4.7 one can show the
following.

Theorem 4.10. [61]. Let H1 = (V + s, E) and H2 = (V + s, I) be (k, s)-edge-
connected and (l, s)-edge-connected, respectively, for k, l ≥ 2. Suppose that d(s) =
dH1(s) = dH2(s) is even. Then (a) if d(s) ≥ 6 then there exists a legal splitting at s,
(b) if k and l are both even then there exists a complete legal splitting at s.

A subpartition-type lower bound for the size γ(G1, G2, k, l) of a smallest simulta-
neous augmentating set is easy to find. Let

α(G1, G2, k, l) = max{
r∑
1

(k − dG1(Xi)) +
t∑

r+1

(l − dG2(Xi)}, (8)

where the maximum is taken over all subpartitions {X1, ..., Xt} of V , 0 ≤ r ≤ t.
Clearly, γ(G1, G2, k, l) ≥ Φ(G1, G2, k, l), where Φ(G1, G2, k, l) = dα(G1, G2, k, l)/2e.
With the help of generalised polymatroids, Jordán [61] proved that there exists a pair
of extensions G′1 and G′2 for which the sets of edges incident to s are the same and
d(s) = α(G1, G2, k, l). A more direct proof of this claim can be found in [74]. Using
this fact and Theorem 4.10, the splitting off method yields the following near optimal
solution for the simultaneous augmentation problem.

Theorem 4.11. [61] Let G1 = (V,E) and G2 = (V, I) be two graphs and let k, l ≥ 2
be two integers. Then Φ(G1, G2, k, l) ≤ γ(G1, G2, k, l) ≤ Φ(G1, G2, k, l) + 1. If k and
l are both even then γ(G1, G2, k, l) = Φ(G1, G2, k, l) holds.

The status of the simultaneous augmentation problem is still open in the case when
k or l is odd. One approach for attacking this problem would be to complete Theorem
4.10 and characterise those pairs H1, H2 for which there is no complete legal splitting
at s for a given pair k, l. This could lead to a minimax theorem with exceptions,
as in the partition constrained problem. Note, however, that the simultaneous edge
splitting problem, even if l is even, contains the partition-constrained edge splitting
problem as a special case [61].

A recent result of Ishii and Nagamochi [50] solves a similar simultaneous augmen-
tation problem where the goal is to make G1 and G2 k-edge-connected and 2-vertex-
connected, respectively.

A natural constrained augmentation problem, which has been investigated by sev-
eral authors, is the simplicity preserving k-edge-connectivity augmentation problem:
given a simple graph G = (V,E), find a smallest set F of new edges for which
G′ = (V,E ∪ F ) is k-edge-connected and simple. Frank and Chou [36] solved this
problem (even with local requirements) in the special case where the starting graph G
has no edges. Some papers on arbitrary starting graphs G but with small target value

EGRES Technical Report No. 2012-14



Section 4. Constrained edge-connectivity augmentation problems 15

k followed. Let us denote the size of a smallest simplicity-preserving augmenting set
F by γ(G, k, S). Clearly, we have γ(G, k, S) ≥ γ(G, k). Following the algorithmic
proof of Theorem 2.1, it can be checked that if G is simple, so is the augmented graph
G′. This proves γ(G, k, S) = γ(G, k) for k = 2. Watanabe and Yamakado [82] proved
that γ(G, k, S) = γ(G, k) holds for k = 3 as well. Taoka, Takafuji and Watanabe [80]
pointed out that γ(G, k, S) ≥ γ(G, k)+1 may hold if k ≥ 4, even if the starting graph
G is (k − 1)-edge-connected. On the other hand, they showed that for (k − 1)-edge-
connected starting graphs one has γ(G, k, S) ≤ γ(G, k) + 1 for k = 4, 5. Moreover, in
these special cases, we have γ(G, k, S) = γ(G, k), provided γ(G, k) ≥ 4. For general
k, it was observed [76] that γ(G, k, S) = γ(G, k) if G is (k − 1)-edge-connected and
the minimum degree of G is at least k.

Jordán [60] settled the complexity of the problem by proving that the simplicity-
preserving k-edge-connectivity augmentation problem is NP-hard, even if the starting
graph is (k − 1)-edge-connected. For k fixed, however, the problem is solvable in
polynomial time. This result of Bang-Jensen and Jordán [5] is based on the fact that
if γ(G, k) is large compared to k then γ(G, k, S) = γ(G, k) holds. The proof of this
equality employed the splitting off method.

Let H = (V + s, E) be (k, s)-edge-connected and suppose that H − s is simple. A
k-admissible splitting su, sv is feasible if it does not create parallel edges, that is, if
Huv − s is also simple.

Theorem 4.12. [5] Let G = (V,E) be a simple graph and let G′ = (V + s, E ′) be a
minimally (k, s)-edge-connected extension of G with dG′(s) even. If dG′(s) ≥ 3k4 then
there exists a complete feasible splitting at s.

Theorem 4.12 was obtained by extending the second phase of Frank’s algorithm.
Together with (2) this edge splitting result proves the above mentioned equality. The
proofs are algorithmic and show that if γ(G, k) is large then an optimal simplicity-
preserving set can be found in polynomial time, even if k is part of the input.

Theorem 4.13. [5] Let G = (V,E) be a simple graph. If γ(G, k) ≥ 3k4/2 then
γ(G, k, S) = γ(G, k).

The solution for graphs with small γ(G, k) value uses two additional results [5].
First, for any graph G we have γ(G, k, S) ≤ γ(G, k) + 2k2. Second, if γ(G, k) is small,
then there exists a small subset T ⊆ V , which can be found efficiently, and for which
there exists an optimal augmenting set containing edges on T only. These facts make
an exhaustive search on T possible and lead to an O(n4) algorithm for k fixed. Most
of these results have been extended to the local version of the simplicity-preserving
edge-connectivity augmentation problem [5].

The “opposite” of the simplicity-preserving augmentation problem is the “reinforce-
ment” problem. In the latter problem we are given a connected graph G = (V,E)
and an integer k ≥ 2, and the goal is to find a smallest set F of new edges for which
G′ = (V,E ∪ F ) is k-edge-connected and every edge of F is parallel to some edge in
E. This problem is also NP-hard [60].

In the rest of this section we consider constrained augmentation problems of di-
rected graphs. The partition constrained k-edge-connectivity augmentation problem
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has been investigated for digraphs as well. Baglivo and Graver [1] showed that a
2-dimensional square grid framework with diagonal cables is rigid if and only if a
natural bipartite digraph representation is strongly connected. Thus making a frame-
work rigid by adding the smallest number of new cables corresponds to making a
bipartite digraph strongly connected by adding a smallest set of new arcs that pre-
serve bipartiteness. Gabow and Jordán [38] proved a minimax theorem for the more
general problem, where an arbitrary digraph D = (V,A) is to be made strongly con-
nected by adding the smallest number γ(D,P) of new arcs, such that each new arc
joins vertices in distinct members of a given partition P = {P1, ..., Pr} of V . As
in the unconstrained strong connectivity augmentation problem (c.f. Theorem 3.1),
we can reduce the problem to the case when D is acyclic by contracting each of its
strong components C to a single vertex vC and defining the corresponding partition
P ′ accordingly: if C intersects at least two members of P then vC becomes a singleton
member of P ′, otherwise it keeps its “colour”. Thus we may assume that D = (V,A)
is a dag (with |V | ≥ 2 and r ≥ 2). Recall the definition of X+ and X− from Section
3. Since new arcs must connect distinct members of P , it is easy to see that the
following value Φ(D,P) is a lower bound for γ(D,P):

Φ(D,P) = max{|V +|, |V −|, |P+
i |+ |P−i | : 1 ≤ i ≤ r} (9)

There are digraphs for which the optimum is greater than this subpartition-type lower
bound. Consider for example the bipartite digraph consisting of two independent arcs
whose tails belong to different members of the (bi)partition. This graph has Φ = 2 and
γ = 3. The “exceptions”, however, can be classified as follows. Let R−(X) denote the
set of all sinks that can be reached from some source of X. Similarly, R+(X) denotes
the set of all sources that can reach some sink of X.

We say a dag D = (V,A) is a blocker if it is a 1-, 2-, 3-, or 4-blocker as defined
by the conditions below. In these conditions B and W denote two distinct partition
members and B̄ = V −B. A 1-blocker has

(i) Φ(D,P) = |B+|+ |B−|;

(ii) B+, B̄+ 6= ∅;

(iii) R−(B) ⊆ B̄.

The remaining blockers satisfy (i) Φ(D,P) = |V +| = |V −|. A 2-blocker has

(ii) B+, B̄+ 6= ∅;

(iii) R−(B̄) ⊆ B.

A 3-blocker either has

(ii) B+,W+ 6= ∅;

(iii) R−(B) ⊆ W,R−(W ) ⊆ B, |V + −B −W | = 1,
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or it has (ii) and (iii) with + and − interchanged. A 4-blocker has

(ii) B+, B− 6= ∅;

(iii) R−(B) ∪R+(B) ⊆ W, |B+|+ |B−| = Φ(D,P)− 1.

It is not hard to show that any blocker D has γ(D,P) > Φ(D,P). Gabow and
Jordán [38] show that any dag satisfies γ(D,P) ≤ Φ(D,P) + 1 and every dag with
γ(D,P) > Φ(D,P) is a blocker.

Theorem 4.14. [38] Let D = (V,A) be a dag. Then γ(D,P) = Φ(D,P) unless D is
a blocker, in which case γ(D,P) = Φ(D,P) + 1.

The partition constrained k-edge-connectivity augmentation problem for directed
graphs seems to be more complex than for undirected graphs. Even in the special
case when k = 1 and r = 2, the directed problem has four exceptional families, while
there is only one exceptional family for any k ≥ 2 and r = 2 in the undirected case,
see Theorem 4.3. Moreover, for any exceptional graph G we have γ(G,P) ≤ 2k + 1.
In the directed case exceptional digraphs exist with arbitrary γ(D,P) value.

Theorem 4.14 has been extended in two ways. Gabow and Jordán [39] solved the
problem of optimally increasing the edge-connectivity of a (k − 1)-edge-connected
digraph by one, with bipartition constraints. Actually, they solved an even more
general “abstract” problem, see the remark after Theorem 7.8. The (bi)partition-
constrained k-edge-connectivity augmentation problem for arbitrary starting digraphs
is still open. For this general problem Gabow and Jordán [40] developed a polynomial
algorithm which finds a solution with at most k extra edges over the optimum and
showed that the difference between a natural extension of the subpartition type lower
bound (9) and the optimum is at most k. A key step in the proof is an extension of
Theorem 3.2.

5 Vertex-connectivity of graphs

The vertex-connected versions of the augmentation problems are substantially more
difficult than their edge-connected counterparts. This will be transparent by compar-
ing the corresponding minimax theorems, the proof methods, as well as the hardness
results and open questions. The following observation indicates that the k-vertex-
connectivity augmentation problem, at least in the undirected case, has a different
character. Suppose the goal is to make G = (V,E) k-connected, optimally, where
k = |V | − 2. Although this case may seem very special, it is in fact equivalent to the
maximum matching problem. To see this observe that F is a good augmenting set
if and only if the complement of G + F consists of independent edges. Thus finding
a smallest augmenting set for G corresponds to finding a maximum matching in its
complement. The case k = |V | − 3, which is equivalent to finding a four-cycle free
2-matching of maximum size, is still open.

As in the edge-connected case, if k is small, the k-connectivity augmentation prob-
lem can be solved by considering the tree-like structure of the “k-connected compo-
nents” of the graph. If k = 2, the familiar concept of 2-connected components, or
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“blocks”, and the “block-cutvertex tree” helps. For simplicity, suppose G = (V,E) is
connected. Let t(G) denote the number of end-blocks of G and let b(G) denote the
maximum number of components of G− v over all vertices v ∈ V . Note that the end-
blocks are pairwise disjoint. Since G′ is 2-connected if and only if t(G′) = b(G′)−1 = 0,
and adding a new edge can decrease t(G) by at most two and b(G) by at most one, it
follows that at least Ψ(G) = max{dt(G)/2e, b(G)− 1} new edges are needed to make
G 2-connected. Eswaran and Tarjan [20] and independently Plesnik [77] proved that
this number can be achieved. (See also Hsu and Ramachandran [48].) Finding two
end-blocks X, Y for which adding a new edge xy with x ∈ X and y ∈ Y decreases
Ψ(G) by one can be done, roughly speaking, by choosing the end-blocks corresponding
to the end-vertices of a longest path in the block-cutvertex tree of G.

Theorem 5.1. [20, 77] Let G = (V,E) be a connected graph. Then G can be made
2-connected by adding max{dt(G)/2e, b(G)− 1} edges.

The lower bounds used in Theorem 5.1 can be extended to k ≥ 3 and arbitrary
starting graphs G as follows. A non-empty subset X ⊂ V is a fragment if V −X −
N(X) 6= ∅, where NG(X), or simply N(X) if G is clear from the context, denotes
the set of neighbours of vertex set X in G. It is easy to see that every set of new
edges F which makes G k-connected must contain at least k − |N(X)| edges from X
to V − X − N(X) for every fragment X. By summing up these “deficiencies” over
pairwise disjoint fragments, we obtain a subpartition-type lower bound, similar to the
one used in the corresponding edge-connectivity augmentation problem. Let

t(G, k) = max{
r∑
i=1

(k − |N(Xi)|) : X1, ..., Xr are pairwise disjoint fragments in V }

(10)
Let γ(G, k) denote the size of a smallest augmenting set of G with respect to k.

Since an edge can decrease the ’deficiency’ k − |N(Xi)| of at most two sets Xi, we
have γ(G, k) ≥ dt(G, k)/2e. For K ⊂ V let b(K,G) denote the number of components
in G−K. Let

b(G, k) = max{b(K,G) : K ⊂ V, |K| = k − 1} (11)

Since G′−K has to be connected in the augmented graph G′, we have that γ(G, k) ≥
b(G, k)− 1. Thus the following value Ψ(G, k) is also a lower bound for γ(G, k). Let

Ψ(G, k) = max{dt(G, k)/2e, b(G, k)− 1} (12)

Theorem 5.1 implies that γ(G, k) = Ψ(G, k) for k = 2. Watanabe and Nakamura
[85] proved that this minimax equality is valid for k = 3, too. Hsu and Ramachandran
[47] gave an alternative proof and a linear time algorithm, based on Tutte’s decompo-
sition theory of 2-connected graphs into 3-connected components. This method was
further developed by Hsu [45], who solved the problem of making a 3-connected graph
4-connected by adding a smallest set of edges. His proof relies on the decomposition
of 3-conneced graphs into 4-connected components.
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This approach, however, which relies on the decomposition of a graph into its “k-
connected components”, is rather hopeless for k ≥ 5. While k-edge-connected com-
ponents have a nice structure, k-connected components are difficult to handle. Fur-
thermore, the successive augmentation property does not hold for vertex-connectivity
augmentation [13].

Although Ψ(G, k) suffices to characterize γ(G, k) for k ≤ 3, there are examples
showing that γ(G, k) can be strictly larger than Ψ(G, k). Consider for example the
complete bipartite graph Kk−1,k−1 with target k. For k ≥ 4 this graph has Ψ =
k − 1 and γ = 2k − 4, showing that the gap can be as large as k − 3. Jordán [58]
showed that if the starting graph G is (k − 1)-connected then this is the extremal
case, that is, γ(G, k) ≤ Ψ(G, k) + k − 3. He developed a polynomial time algorithm
to find an augmenting set with at most k − 3 surplus edges. This gap was later
reduced to (k− 1)/2 with the help of two additional lower bounds [59]. Cheriyan and
Thurimella [15] gave a more efficient algorithm with the same approximation gap and
showed how to compute b(G, k) in polynomial time if G is (k− 1)-connected. A near
optimal solution can be found efficiently even if G is not (k− 1)-connected. This was
proved by Ishii and Nagamochi [49] and independently Jackson and Jordán [55]. The
approximation gap in the latter paper is slightly smaller.

Theorem 5.2. [55] Let G = (V,E) be l-connected. Then γ(G, k) ≤ Ψ(G, k) + (k −
l)k/2 + 4.

Jackson and Jordán [55] adapted the edge splitting method for vertex-connectivity.
This method was subsequently employed to solve the problem optimally, in polynomial
time, for k fixed.

Given an extension G′ = (V +s, E ′) of a graph G = (V,E), define d̄(X) = |NG(X)|+
d′(s,X) for every X ⊆ V , where d′ denotes the degree function in G′. We say that G′

is (k, s)-connected if

d̄(X) ≥ k for every fragment X ⊂ V, (13)

and that it is minimally (k, s)-connected if the set of edges incident to s is inclu-
sionwise minimal with respect to (13). The following result from [55] gives lower and
upper bounds for γ(G, k) in terms of d′(s) in any minimally (k, s)-connected extension
of G.

Theorem 5.3. [55] Let G′ = (V + s, E ′) be a minimally (k, s)-connected extension of
a graph G. Then dd′(s)/2e ≤ γ(G, k) ≤ d′(s)− 1.

Let G′ = (V + s, E ′) be a minimally (k, s)-connected extension of G. Splitting off
su and sv in G′ is k-admissible if G′uv also satisfies (13). Notice that if G′ has no
edges incident to s then (13) is equivalent to the k-connectivity of G. Hence, as in the
case of edge-connectivity, it would be desirable to know, when d(s) is even, that there
is a sequence of k-admissible splittings which isolates s. In this case, using the fact
that γ(G, k) ≥ d′(s)/2 by Theorem 5.3, the resulting graph on V would be an optimal
augmentation of G with respect to k. This approach works for the k-edge-connectivity
augmentation problem but does not always work in the vertex connectivity case. The
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reason is that complete k-admissible splittings do not necessarily exist. On the other
hand, the splitting off results in [55, 56] are ‘close enough’ to yield an optimal algorithm
for k-connectivity augmentation, which is polynomial for k fixed.

The obstacle for the existence of a k-admissible splitting can be described, provided
d′(s) is large enough compared to k. The proof of the following theorem is based on
a new tripartite submodular inequality for |N(X)|, see [55].

Theorem 5.4. [55] Let G′ = (V + s, E ′) be a minimally (k, s)-connected extension of
G = (V,E) and suppose that d′(s) ≥ k2. Then there is no k-admissible splitting at s
in G′ if and only if there is a set K ⊂ V in G such that |K| = k − 1 and G−K has
d′(s) components C1, C2, ..., Cd′(s) (and we have d′(s, Ci) = 1 for 1 ≤ i ≤ d′(s)).

Theorem 5.4 does not always hold if d′(s) is small compared to k. To avoid this
essential obstacle, Jackson and Jordán [56] introduced the following family of graphs.
Let G = (V,E) be a graph and k be an integer. Let X1, X2 be disjoint subsets of V .
We say (X1, X2) is a k-deficient pair if d(X1, X2) = 0 and |V −(X1∪X2)| ≤ k−1. We
say two deficient pairs (X1, X2) and (Y1, Y2) are independent if for some i ∈ {1, 2}
we have either Xi ⊆ V −(Y1∪Y2) or Yi ⊆ V −(X1∪X2), since in this case no edge can
simultaneously connect X1 to X2 and Y1 to Y2. We say G is k-independence free if
G does not have two independent k-deficient pairs. Note that if G is (k−1)-connected
and (X1, X2) is a k-deficient pair then V −(X1∪X2) = N(X1) = N(X2). For example
(a) (k − 1)-connected chordal graphs and graphs with minimum degree 2k − 2 are k-
independence free; (b) all graphs are 1-independence free and all connected graphs
are 2-independence free; (c) a graph with no edges and at least k + 1 vertices is not
k-independence free for any k ≥ 2; (d) if G is k-independence free and H is obtained
by adding edges to G then H is also k-independence free; (e) a k-independence free
graph is l-independence free for all l ≤ k. In general, a main difficulty in vertex-
connectivity problems is that vertex cuts can cross each other in many different ways.
In the case of an independence free graph G these difficulties can be overcome.

Theorem 5.5. [56] If G is k-independence free then γ(G, k) = Ψ(G, k).

If G is not k-independence free but t(G, k) is large, then the augmentation problem
can be reduced to the independence free case by adding new edges. This crucial
property is formulated by the next theorem.

Theorem 5.6. [56] Let G = (V,E) be (k − 1)-connected and suppose that t(G, k) ≥
8k3 +10k2−43k+22. Then there exists a set of edges F for G such that t(G+F, k) =
t(G, k)− 2|F |, G+ F is k-independence free, and t(G+ F, k) ≥ 2k − 1.

These results lead to the following theorem.

Theorem 5.7. [56] Let G be (k − 1)-connected. If γ(G, k) ≥ 8k3 + 10k2 − 43k + 21
then

γ(G, k) = Ψ(G, k).
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The min-max equality in Theorem 5.7 is not valid if we remove the hypothesis that
G is (k− 1)-connected. To see this consider the graph G obtained from the complete
bipartite graph Km,k−2 by adding a new vertex x and joining x to j vertices in the
m set of the Km,k−2, where j < k < m. Then b(G, k) = m, t(G, k) = 2m + k − 2j
and γ(G, k) = m− 1 + k− j. However, by modifying the definition of b(G, k) slightly,
an analogous minimax theorem can be obtained for augmenting graphs of arbitrary
connectivity. For a set K ⊂ V with |K| = k − 1 let δ(K, k) = max{0,max{k − d(x) :
x ∈ K}} and b∗(K,G) = b(K,G) + δ(K, k). Let b∗(G, k) = max{b∗(K,G) : K ⊂
V, |K| = k − 1}. It is easy to see that γ(G, k) ≥ b∗(G, k)− 1. Let

Ψ∗(G, k) = max{dt(G, k)/2e, b∗(G, k)− 1}

Theorem 5.8. [56] Let G = (V,E) be l-connected. If γ(G, k) ≥ 3(k− l+ 2)3(k+ 1)3

then γ(G, k) = Ψ∗(G, k).

The lower bounds, in terms of k, are certainly not best possible in Theorems 5.6,
5.7, and 5.8. These bounds, however, depend only on k. This is the essential fact in
the solution for k fixed. Note that by Theorem 5.3 one can efficiently decide whether
γ(G, k) (or t(G, k)) is large enough compared to k.

The proofs of these results are algorithmic and give rise to an algorithm which solves
the k-vertex-connectivity augmentation problem optimally in polynomial time for k
fixed. If γ(G, k) is large, then the algorithm has polynomial running time even if k is
not fixed. This phenomenon is similar to what we observed when we investigated the
algorithm for the simplicity-preserving k-edge-connectivity augmentation problem.

One of the most exciting open questions of this area is the complexity of the k-
vertex-connectivity augmentation problem, when k is part of the input. It remains
open even if the starting graph is (k − 1)-connected. The following conjecture1 of
Frank and Jordán [31] may give a good characterisation for this special case.

Let G = (V,E) be (k− 1)-connected. A clump of G is an ordered pair C = (S,P)
where S ⊂ V , |S| = k−1, and P is a partition of V −S into non-empty subsets, called
pieces, with the property that no edge of G joins two distinct pieces in C. (Note that
a piece is not necessarily connected.) It can be seen that if C = (S,P) is a clump of
G then, in order to make G k-connected, we must add a set of at least |P| − 1 edges
between the pieces of C, where |P| is the number of pieces of P . We shall say that
a clump C covers a pair of vertices u, v of G if u and v belong to distinct pieces of
C. A bush B of G is a set of clumps such that each pair of vertices of G is covered
by at most two clumps in B. Thus, if B is a bush in G, then in order to make G
k-connected, we must add a set of at least

def(B) = d1
2

∑
(S,P )∈B

(|P| − 1)e (14)

edges between the pieces of the clumps in B. Two bushes B1 and B2 of G are disjoint
if no pair of vertices of G is covered by clumps in both B1 and B2. Thus, if B1 and

1The conjecture, and the polynomial-time solvability of the k-vertex-connectivity augmentation
problem with (k − 1)-connected input graphs were verified by L. Végh [81] in 2011.
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B2 are disjoint bushes, then the sets of edges which need to be added between the
pieces of the clumps in B1 and B2 are disjoint. We can now state the conjecture.

Conjecture Let G be a (k−1)-connected graph. Then the minimum number of edges
which must be added to G to make it k-connected is equal to the maximum value of∑

B∈D def(B) taken over all sets of pairwise disjoint bushes D for G.

The local connectivity augmentation problem, or LC for short, is NP-hard. This
can be seen as follows. In the (decision version of) problem LC we are given a graph
G = (V,E), a positive integer r(u, v) for each pair u, v ∈ V and a positive integer
L. The question is whether there is a set F of edges on V such that |F | ≤ L and
κ(u, v;G′) ≥ r(u, v) for each pair u, v ∈ V , where G′ = (V,E ∪ F ). In the proof we
use the fact that problem LDC is NP-complete (a result from [26]). In problem LDC
we are given a directed graph D = (V,A), a set T ⊆ V and a positive integer K and
the question is whether there is set I of arcs with |I| ≤ K such that in the digraph
D′ = (V,A ∪ I) there exist a directed path from u to v for all u, v ∈ T .

Theorem 5.9. Problem LC is NP-complete.

Proof: It is clear that LC is in NP. Consider an instance D = (V,A), T ⊂ V , and
K ∈ Z+ of LDC. Let n = |V | and V = {v1, v2, ..., vn} and let us build an undirected
graph H = (Z ∪W,J) as follows. The vertex set is the union of two parts of size n
each, denoted by Z = {z1, ..., zn} and W = {w1, ..., wn}. Every edge connecting two
vertices of Z or two vertices of W is in the edge set J of H as well as every edge of
the form ziwi, 1 ≤ i ≤ n. In addition, an edge ziwj (i 6= j) belongs to J if and only
if vivj ∈ A. It is easy to check that H is n-connected, and for every separating set S
of size n in H we have S ∩ {zi, wi} = 1, 1 ≤ i ≤ n. Moreover, there exists a set S of
size n separating zi and wj with vi, vj ∈ T , i 6= j, if and only if there is no directed
path in D from vi to vj. Now let us define an instance of LC with the above graph
H = (Z ∪W,J), integer L = K and with local requirements

r(zi, wj) = n+ 1, if vi, vj ∈ T, i 6= j, and r(zi, wj) = 0 otherwise. (15)

The size of this instance is polynomial in the size of the given instance of the LDC
problem. By the above properties of H it is easy to see that H ′ = (Z ∪W,J ∪ F )
satisfies the local requirements of (15) if and only if for the corresponding set F ′ of
edges on V there exists a directed path between each pair u, v ∈ T in D′ = (V,A∪F ′).
This proves the theorem. •

The proof shows that it is already NP-hard to find a smallest augmenting set which
increases the local vertex-connectivity up to k within a given subset of vertices of a
(k− 1)-connected graph. However, it may be possible to find efficient algorithms if k
(or the maximum r(u, v) value) is small (fixed). For instance, Watanabe et al. [83]
gave a linear-time algorithm for optimally increasing the connectivity to two within
a specified subset. Another interesting open problem is LC in the special case when
the starting graph has no edges.
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We close this section by a different generalisation of the connectivity augmentation
problem. In some cases it is desirable to make the starting graph G = (V,E) k-edge-
connected as well as l-vertex-connected at the same time, by adding a new set of edges
F . In this “multiple target” version l is typically small while k is arbitrary. We may
always assume k ≤ l. Hsu and Kao [46] solved a local version of this problem for
k = l = 2. Ishii, Nagamochi, and Ibaraki [53, 51, 52] proved a number of results for
l ≤ 3 and k arbitrary, and presented near optimal polynomial-time algorithms when
l as well as k is arbitrary.

A typical result is as follows. Let k ≥ 2 and l = 2. By combining α(G, k) and
t(G, 2) define

α′(G, k, 2) = max{
p∑
i=1

(k − d(Xi)) +
t∑

i=p+1

(2− |N(Xi)|)},

where the maximum is taken over all subpartitions {X1, ..., Xp, Xp+1, ..., Xt} of V for
which Xi is a fragment for p + 1 ≤ i ≤ t. Clearly, dα′(G, k, 2)/2e is a lower bound
for this multiple target problem. By applying the splitting off method (and a new
operation called “edge switching”), a common extension of Theorems 2.2 and 5.1 can
be obtained.

Theorem 5.10. [52] G = (V,E) can be made k-edge-connected and 2-connected by
adding γ new edges if and only if max{dα′(G, k, l)/2e, b(G, 2)− 1} ≤ γ.

6 Vertex-connectivity of digraphs

From several aspects, the directed k-edge-connectivity augmentation problem is
less tractable than its undirected version. This may suggest that the directed k-
connectivity augmentation problem is harder than the (still unsolved) undirected
problem. Indeed, after the basic result of Eswaran and Tarjan [20] on the case k = 1
(Theorem 3.1) only a few more results appeared for nearly twenty years. Masuzawa,
Hagihara, Tokura [71] solved the special case when the starting digraph D = (V,A)
is an arborescence (that is, a directed tree with a root vertex r such that there is
a directed path from r to every v ∈ V ). Let γ(D, k) denote the size of a smallest
augmenting set with respect to the target vertex-connectivity k.

Theorem 6.1. [71] Let B = (V,A) be an arborescence. Then γ(B, k) =∑
v∈V max{0, k − δ(v)}.

For arbitrary starting digraphs D = (V,A) there is a natural subpartition-type
lower bound for γ(D, k), similar to t(G, k). We say X ⊂ V is an in-fragment if
V − X − N−(X) 6= ∅. If V − X − N+(X) 6= ∅ then X is called an out-fragment.
Let

tin(D, k) = max{
r∑
i=1

(k−|N−(X)|) : X1, ..., Xr are pairwise disjoint in-fragments in V },
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tout(D, k) = max{
r∑
i=1

(k−|N+(X)|) : X1, ..., Xr are pairwise disjoint out-fragments in V }

and let
Ψ(D, k) = max{tin(D, k), tout(D, k)}.

It can bee seen that γ(D, k) ≥ Ψ(D, k) holds. Theorem 3.1 shows γ(D, 1) = Ψ(D, 1)
and Theorem 6.1 implies that γ(B, k) = Ψ(B, k) for every arborescence B and every
k ≥ 1. However, Jordán [57] pointed out that γ(D, k) ≥ Ψ(D, k) +k− 1 may hold for
every k ≥ 2, even if D is (k− 1)-connected. On the other hand, for (k− 1)-connected
starting digraphs the gap cannot be larger than k − 1 [57].

A stronger lower bound can be obtained by considering deficient pairs of subsets
of V rather than deficient in- or out-fragments. We say that an ordered pair (X, Y ),
∅ 6= X, Y ⊂ V , X ∩ Y = ∅ is a one-way pair in a digraph D = (V,A) if there is no
arc in D with tail in X and head in Y . We call X and Y the tail and the head of the
pair, respectively. The deficiency of a one-way pair-with respect to k-connectivity is
defk(X, Y ) = max{0, k − |V − (X ∪ Y )|}. Two pairs are independent if their tails
or their heads are disjoint. For a family F of pairwise independent one-way pairs we
define defk(F) =

∑
(X,Y )∈F defk(X, Y ). By Menger’s theorem every augmenting set

F with respect to k must contain at least defk(X, Y ) arcs from X to Y for every
one-way pair (X, Y ). Moreover, these arcs are distinct for independent one-way pairs.
This proves γ(D, k) ≥ defk(F) for families F of pairwise independent one-way pairs.
Frank and Jordán [30] solved the k-connectivity augmentation problem for digraphs
by showing that this lower bound can be attained.

Theorem 6.2. [30] A digraph D = (V,A) can be made k-connected by adding at most
γ new arcs if and only if

defk(F) ≤ γ (16)

holds for all families F of pairwise independent one-way pairs.

This result is a corollary of a more general theorem on “bi-supermodular functions”,
see Theorem 7.10. It would be interesting to find a direct proof which could lead to
a combinatorial polynomial algorithm.

The minimax formula of Theorem 6.2 was later refined by Frank and Jordán [32].
Among others, they showed that if defk(F) ≥ 2k2 − 1, then the tails or the heads of
the pairs in F are pairwise disjoint. This implies that if γ(D, k) ≥ 2k2 − 1 then the
simpler lower bound Ψ(D, k) suffices. With the help of this refined version, one can
deduce Theorem 6.1 from Theorem 6.2 as well. A related conjecture of Frank [27]
claims that γ(D, k) = Ψ(D, k) for every acyclic starting digraph D.

If D is strongly connected and k = 2 then a direct proof and a simplified mini-
max theorem was given in [25] by applying the splitting off method. In a strongly
connected digraph D = (V,A) there are two types of deficient sets with respect to
k = 2: in-fragments X with |N−(X)| = 1 (called in-tight) and out-fragments X with
|N+(X)| = 1 (called out-tight).

Theorem 6.3. [25] Let D = (V,A) be strongly connected. If tin(D, 2) = tout(D, 2) =
2, then D can be made 2-connected by adding two arcs unless (∗) there exist three
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in-tight (or three out-tight) sets B1, B2, B3, such that

B1 ∩B2 6= ∅, |B3| = 1, and V − (B1 ∪B2) = B3.

If (∗) holds, then D can be made 2-connected by adding 3 arcs.

Theorem 6.4. [25] Let D = (V,A) be strongly connected. Then γ(D, 2) = Ψ(D, 2)
holds, unless tin(D) = tout(D) = 2 and (∗) holds, in which case γ(D, 2) = 3.

7 Hypergraph augmentation and coverings of set

functions

Connectivity augmentation is about adding new edges to a graph or digraph so that
it becomes sufficiently highly connected. Applying Menger’s theorem, every augmen-
tation problem has an equivalent formulation where the goal is to add new edges so
that each “cut” receives at least as many new edges as its deficiency with respect to
the given target. Cut typically means a subset of vertices, but it may also be a pair
or collection of subsets of the vertex set. The deficiency function, say k − ρ(X) or
R(X)− d(X), is determined by the input graph. This leads to a more abstract point
of view: given a function p on subsets of a ground-set V , find a smallest “cover” of
p, that is, a smallest set of edges F such that at least p(X) edges enter every subset
X ⊂ V . Deficiency functions related to connectivity problems have certain “super-
modular” properties. This motivates the study of minimum covers of functions of this
type.

This is not just for the sake of proving more general minimax theorems. In some
cases (e.g. in the directed k-connectivity augmentation problem) the only known way
to the solution is via an abstract result. In other cases (e.g. in the k-edge-connectivity
augmentation problem) generalizations lead to simpler proofs, algorithms, and exten-
sions (to local requirements or vertex-induced cost functions) by showing the back-
ground of the problem.

An intermediate step towards an abstract formulation is to consider hypergraphs.
A hypergraph is a pair G = (V,E) where V is a finite set (the set of vertices of G)
and E is a finite collection of hyperedges. Each hyperedge e is a set Z ⊆ V with
|Z| ≥ 2. The size of e is |Z|. Thus (loopless) graphs correspond to hypergraphs with
edges of size two only. A hyperedge of size two is called a graph edge. Let dG(X)
denote the number of hyperedges intersecting both X and V − X. A hypergraph
is k-edge-connected if dG(X) ≥ k for all ∅ 6= X ⊂ V . A component of G is a
maximal connected subhypergraph of G. Let w(G) denote the number of components
of G.

One possible way to generalize the k-edge-connectivity augmentation problem is to
search for a smallest set of graph edges whose addition makes a given hypergraph
k-edge-connected. Cheng [12] was the first to prove a result in this direction. He
determined the minimum number of new graph edges needed to make a (k − 1)-
edge-connected hypergraph G k-edge-connected, by invoking deep structural results
of Cunningham [17] on decompositions of submodular functions. His result was soon
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extended to arbitrary hypergraphs by Bang-Jensen and Jackson [4]. They employed
and extended the splitting off method to hypergraphs.

A hypergraph H = (V + s, E) is (k, s)-edge-connected if s is incident to graph
edges only and dH(X) ≥ k for all ∅ 6= X ⊂ V . Splitting off two edges su, sv is
k-admissible if Huv is also (k, s)-edge-connected. The extension of Theorem 2.3 to
hypergraphs is as follows.

Theorem 7.1. [4] Let H = (V + s, E) be a (k, s)-edge-connected hypergraph with
dH(s) = 2m. Then exactly one of the following statements holds.
(i) there is a complete k-admissible splitting at s, or
(ii) there exists A ⊂ E with |A| = k − 1 and w(H− s− A) ≥ m+ 2.

Let G = (V,E) be a hypergraph. Let

α(G, k) = max{
t∑
i=1

(k − d(Xi)) : X1, ..., Xt is a subpartition of V } (17)

c(G, k) = max{w(G − A) : A ⊂ E, |A| = k − 1}. (18)

As in the case of graphs, dα(G, k)/2e is a lower bound for the size of a smallest
augmentation. Another lower bound is c(G, k)− 1. Note that if G is a graph, k ≥ 2,
and G−A has c(G, k) components C1, C2, ..., Cc for some A ⊂ E with |A| = k−1 then∑c

1(k− d(Ci)) = kc−
∑c

1 d(Ci) ≥ kc− 2(k− 1) = 2(c− 1) + (k− 2)(c− 2) ≥ 2(c− 1),
and hence α(G, k)/2 ≥ c(G, k)− 1.

Theorem 7.2. [4] The minimum number of new graph edges which makes a hyper-
graph G k-edge-connected equals

max{dα(G, k)/2e, c(G, k)− 1}. (19)

The proof in [4] is simpler than Cheng’s proof and gives Cheng’s result in the
special case when G is (k − 1)-edge-connected. In a recent work Cosh [16] solved
the bipartition constrained version of Theorem 7.2 by using the non-admissibility
graph method. Note that the successive augmentation property does not hold for
hypergraphs [13]. Cosh, Jackson, and Király [67] proved that the local version of the
hypergraph edge-connectivity augmentation problem (with graph edges) is NP-hard,
even if the starting hypergraph is connected and the maximum requirement is two.

Benczúr and Frank [7] solved an abstract generalisation of Theorem 7.2. Let V be
a finite set and let p : 2V → Z be a function with p(∅) = p(V ) = 0. p is symmetric if
p(X) = p(V −X) holds for every X ⊆ V . We say that p is crossing supermodular
if it satisfies the following inequality for each pair of crossing sets X, Y ⊂ V :

p(X) + p(Y ) ≤ p(X ∪ Y ) + p(X ∩ Y ) (20)

We say that a set of edges F on V covers p if dF (X) ≥ p(X) for all X ⊂ V .
Now suppose p is a symmetric crossing supermodular function on V . What is the

minimum size γ(p) of a cover of p? A subpartition-type lower bound is the following.
Let

α(p) = max{
t∑
i=1

p(Xi) : {X1, ..., Xt} is a subpartition of V }
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Since an edge can cover at most two sets of a subpartition, we have γ(p) ≥ dα(p)/2e.
This lower bound may be strictly less than γ(p). To see this consider a ground set V
with 4 elements and let p ≡ 1. Here α(p) = 4 but, since every cover forms a connected
graph on V , we have γ(p) ≥ 3. This example leads to the following notions. We call
a partition Q = {Y1, . . . , Yr} of V with r ≥ 4 p-full if

p(∪Y ∈Q′Y ) ≥ 1 for every non-empty subfamily Q′ ⊆ Q. (21)

The maximum size of a p-full partition is called the dimension of p and is denoted
by dim(p). If there is no p-full partition, then dim(p) = 0. Since every cover induces
a connected graph on the members of a p-full partition, we have γ(p) ≥ dim(p) − 1.
Thus the minimum size of a cover is at least Φ(p) = max{dα(p)/2e, dim(p)− 1}.

Theorem 7.3. [7] Let p : 2V → Z be a symmetric crossing supermodular function.
Then γ(p) = Φ(p).

The proof of Theorem 7.3 yields a polynomial time algorithm to find a small-
est cover, provided a polynomial time submodular function minimization oracle is
available. The deficiency function of a (hyper)graph is symmetric and supermodu-
lar: Theorems 2.2 and 7.2 follow by taking p(X) = k − dG(X) for all X ⊂ V and
p(∅) = p(V ) = 0, where G is the starting (hyper)graph, see [7]. The special case of
Theorem 7.3 where p(X) ∈ {0, 1} for all X ⊂ V follows also from a result of Fleiner
and Jordán [22].

One may also want to augment a hypergraph by adding hyperedges. The mini-
mum number of new hyperedges which make a given hypergraph G = (V,E) k-edge-
connected is easy to determine: add l copies of the hyperedge containing all vertices
of V , where l = max{k− dG(X) : ∅ 6= X ⊂ V }. So it is natural to either set an upper
bound on the size of the new edges ([22] contains partial results in this direction) or
to make the “cost” of a new hyperedge depend on its size. Szigeti [79] solved (an
abstract generalisation of) the latter version.

Let V be a ground set and let p : 2V → Z with p(∅) = p(V ) = 0. p is skew-
supermodular if for each pair X, Y ⊂ V we have

p(X) + p(Y ) ≤ max{p(X ∩ Y ) + p(X ∪ Y ), p(X − Y ) + p(Y −X)}.

For example, symmetric crossing supermodular functions are skew-supermodular.
Also, q(X) (defined as the deficiency of X with respect to local edge-connectivity
requirements in a (hyper)graph G, see Section 2) is skew-supermodular [26]. The
minimum total size of a cover, consisting of hyperedges, can be characterised by a
subpartition-type lower bound.

Theorem 7.4. [79] Let p : 2V → Z be a symmetric skew-supermodular function.
Then

min{
∑
e∈F

|e| : F is a cover of p} = max{
t∑
1

p(Xi) : X1, ..., Xr is a subpartition of V }.

(22)
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Theorem 7.4 gives the minimum total size of hyperedges which make a hypergraph
G r-edge-connected for given local edge-connectivity requirements r(u, v), by taking
p(X) = q(X) = R(X) − dG(X). Another corollary of Theorem 7.4 is a solution for
the local edge-connectivity augmentation problem for hypergraphs, where graph edges
of fractional capacities can also be added. If p is an even valued skew-supermodular
function, the minimum size of a cover consisting of graph edges can also be determined.

We have seen that edge splitting results are important ingredients in solutions of
connectivity augmentation problems and hence generalisations of some augmentation
problems lead to extensions of edge splitting theorems. This works the other way
round as well. Consider the following operation. Let G = (V + s, E) be a graph with
a designated vertex s. A degree specification for s is a sequence S = (d1, ..., dp)
of positive integers with

∑p
j=1 dj = d(s). An S-detachment of s in G is obtained

by replacing s by p vertices s1, ..., sp and replacing every edge su by an edge siu for
some 1 ≤ i ≤ p so that d(si) = di holds in the new graph for 1 ≤ i ≤ p. If di = 2
for all 1 ≤ i ≤ p then an S-detachment corresponds to a complete splitting in a
natural way. Given a requirement function r : V × V → Z+, an S-detachment is
called r-admissible if the detached graph G′ satisfies λ(x, y;G′) ≥ r(x, y) for every
pair x, y ∈ V .

Extending an earlier theorem of Fleiner [21] on the case when r ≡ k for some k ≥ 2,
Jordán and Szigeti [62] gave a necessary and sufficient condition for the existence of
an r-admissible S-detachment. We call r proper if r(x, y) ≤ λ(x, y;G) for every pair
x, y ∈ V .

Theorem 7.5. [62] Let r be a requirement function for G = (V + s, E) and suppose
that G is 2-edge-connected and r(u, v) ≥ 2 for each pair u, v ∈ V . Let S = (d1, ..., dp)
be a degree specification for s with di ≥ 2, i = 1, ..., p. Then there exists an r-
admissible S-detachment of s if and only if r is proper and

λ(u, v;G− s) ≥ r(u, v)−
p∑
i=1

bdi/2c (23)

holds for every pair u, v ∈ V .

Theorem 7.5 implies Theorem 2.6 by letting r ≡ rλ and di ≡ 2. Theorem 7.5 gives
the following extension of Theorem 2.7. By attaching a star of degree d to a graph
G = (V,E) we mean the addition of new vertex s and d edges from s to vertices
in V . Let G = (V,E) be a graph and suppose that we are given local requirements
r(u, v) for each pair u, v ∈ V as well as a set of integers d1, ..., dp (dj ≥ 2). Can we
make G r-edge-connected by attaching p stars with degrees d1, d2, ..., dp? The first
phase of Frank’s algorithm combined with Theorem 7.5 gives a necessary and sufficient
condition [62]. Recall the definition of q(X) from Section 2. For simplicity, we can
assume that G has no marginal components with respect to r (otherwise a reduction
similar to Theorem 2.5 works).

Theorem 7.6. [62] Let a graph G = (V,E) and local edge-connectivity requirements
r(u, v), u, v ∈ V be given such that G has no marginal components with respect to
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r. Then G can be made r-edge-connected by attaching p stars with degrees d1, ..., dp
(dj ≥ 2, 1 ≤ j ≤ p) if and only if

t∑
i=1

q(Xi) ≤
p∑
j=1

dj (24)

holds for every subpartition {X1, ..., Xt} of V and λ(u, v;G) ≥ r(u, v) −
∑p

j=1bdj/2c
for every pair u, v ∈ V .

With the help of Theorem 7.6 it is easy to deduce a minimax formula for the
following optimization problem: given G, r, and an integer w ≥ 2, determine the
minimum number γ for which G can be made r-edge-connected by attaching γ stars
of degree w. If w = 2 then we are back at Theorem 2.7.

In the rest of this section we consider extensions of some of the previous results on
augmentations of directed graphs to directed hypergraphs and to directed covers of
certain set functions.

A directed hypergraph (or dypergraph, for short) is a pair D = (V,A), where
V is a finite set (the set of vertices of D) and A is a finite collection of hyperarcs.
Each hyperarc e is a set Z ⊆ V , |Z| ≥ 2, with a specified head vertex v ∈ Z. We
also use (Z, v) to denote a hyperarc on set Z and with head v. The size of e is |Z|.
Thus a directed graph (without loops) is a dypergraph with hyperarcs of size two
only. We say that a hyperarc (Z, v) enters a set X ⊂ V if v ∈ X and Z − X 6= ∅.
Let ρ(X) denote the number of hyperarcs entering X. A dypergraph D = (V,A)
is k-edge-connected if ρ(X) ≥ k for every ∅ 6= X ⊂ V . In a recent paper Berg,
Jackson, and Jordán [9] extended Theorem 3.2 to dypergraphs and, among others,
proved the following extension of Theorem 3.3.

Theorem 7.7. [9] Let D = (V,A) be a dypergraph. Then D can be made k-edge-
connected by adding γ new hyperarcs of size at most t if and only if

γ ≥
r∑
1

(k − ρ(Xi)) (25)

and

(t− 1)γ ≥
r∑
1

(k − δ(Xi)) (26)

hold for every subpartition {X1, X2, ..., Xr} of V .

Directed covers of set functions have also been investigated. Frank [27] proved the
directed version of Theorem 7.3. We say that a set of arcs F on ground set V covers
a function p : 2V → Z if ρF (X) ≥ p(X) for all X ⊂ V .

Theorem 7.8. [27] Let p : 2V → Z be a crossing supermodular function. Then p can
be covered by γ arcs if and only if

γ ≥
t∑
1

p(Xi) (27)
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and

γ ≥
t∑
1

p(V −Xi) (28)

hold for every subpartition {X1, X2, ..., Xt} of V .

If p(X) ∈ {0, 1} for all X ⊂ V , the problem corresponds to covering a “crossing
family” of subsets of V by a smallest set of arcs. Gabow and Jordán [39] solved the
bipartition-constrained version of this special case, extending Theorem 4.14. In this
abstract formulation the minimax theorem has six exceptional families.

Since p(X) = k − ρ(X) is crossing supermodular, Theorem 7.8 implies Theorem
3.3. The following generalisation of the directed k-edge-connectivity augmentation
problem can also be solved by Theorem 7.8. Let D = (V,A) be a directed graph
with a specified root vertex r ∈ V and let k ≥ l ≥ 0 be integers. D is called
(k, l)-edge-connected (from r) if λ(r, v;D) ≥ k and λ(v, r;D) ≥ l for every vertex
v ∈ V − r. Clearly, D is k-edge-connected if and only if D is (k, k)-edge-connected.
The extension, due to Frank [24], is as follows. Let pkl(X) = max{k − ρ(X), 0} for
sets ∅ 6= X ⊆ V − r and let pkl(X) = max{l − ρ(X), 0} for sets X ⊂ V with r ∈ X.

Theorem 7.9. [24] Let D = (V,A) be a digraph and let r ∈ V . D can be made
(k, l)-edge-connected from r by adding γ new arcs if and only if

γ ≥
t∑
1

pkl(Xi) (29)

and

γ ≥
t∑
1

pkl(V −Xi) (30)

hold for every partition {X1, X2, ..., Xt} of V .

The next abstract result concerning digraphs, due to Frank and Jordán [30], has
a number of corollaries. Among others, it leads to the solution of the k-connectivity
augmentation problem for directed graphs.

Let V be a ground set and let p(X, Y ) be an integer-valued function defined on
ordered pairs of disjoint subsets X, Y ⊂ V . We call p crossing bi-supermodular if

p(X, Y ) + p(X ′, Y ′) ≤ p(X ∩X ′, Y ∪ Y ′) + p(X ∪X ′, Y ∩ Y ′)

holds whenever X ∩ X ′, Y ∩ Y ′ 6= ∅. A set of arcs F covers p if there are at least
p(X, Y ) arcs in F with tail in X and head in Y for every pair X, Y ⊂ V , X ∩ Y = ∅.
Two pairs (X, Y ), (X ′, Y ′) are independent if X ∩X ′ or Y ∩ Y ′ is empty.

Theorem 7.10. [30] Let p be an integer-valued crossing bi-supermodular function on
V . Then p can be covered by γ arcs if and only if

∑
(X,Y )∈F p(X, Y ) ≤ γ holds for

every family F of pairwise independent pairs.
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Let D = (V,A) be a digraph. By taking p(X, Y ) = k − |(V − (X ∪ Y )| for one-
way pairs (X, Y ) we can deduce Theorem 6.2. Furthermore, Theorem 7.10 implies
Theorems 3.2, 3.3 and 3.4 as well as Edmonds’ matroid partition theorem, a theorem
of Győri on covering a rectilinear polygon with rectangles, and a theorem of Frank on
Kt,t-free t-mathcings in bipartite graphs, see [28, 30] for more details.

On the other hand, the proof of Theorem 7.10 is not algorithmic. For the previ-
ously unsolved corollaries, such as the directed k-ST -edge-connectivity and k-vertex-
connectivity augmentation problems, it does imply a polynomial-time algorithm, via
the ellipsoid method. However, a constructive proof and a combinatorial algorithm
would be desirable at least for these two special cases. (Actually, the directed k-ST -
edge-connectivity augmentation problem contains the directed k-vertex-connectivity
augmentation problem as a special case [32].) Frank and Végh [35] developed such an
algorithm for the case when p(X, Y ) ∈ {0, 1} for all pairs (X, Y ).

The idea of abstract formulations may also lead to graph augmentation problems
with somewhat different but still connectivity related objectives. A recent result of
Frank and Király [33] solves the problem of optimally augmenting a graph G by adding
a set F of edges so that G+ F has k edge-disjoint spanning trees.
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