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On universally rigid frameworks on the line

Tibor Jordán? and Viet-Hang Nguyen??

Abstract

We give a complete characterization of universally rigid one-dimensional bar-
and-joint frameworks in general position with a complete bipartite underlying
graph. We also discuss several open questions concerning generically universally
rigid graphs and the universal rigidity of general frameworks on the line.

1 Introduction

A d-dimensional (bar-and-joint) framework is a pair (G, p), where G = (V,E) is a
graph and p is a configuration of the vertices, that is, a map from V to Rd. We
consider the framework to be a straight line realization of G in Rd. Two frameworks
(G, p) and (G, q) are equivalent if ||p(u)−p(v)|| = ||q(u)−q(v)|| holds for all pairs u, v
with uv ∈ E, where ||.|| denotes the Euclidean norm in Rd. Frameworks (G, p), (G, q)
are congruent if ||p(u)− p(v)|| = ||q(u)− q(v)|| holds for all pairs u, v with u, v ∈ V .
This is the same as saying that (G, q) can be obtained from (G, p) by an isometry of
Rd.

Let (G, p) be a d-dimensional framework for some d ≥ 1. We say that (G, p) is rigid
in Rd if there is a neighborhood Up in the space of configurations in Rd such that if a d-
dimensional framework (G, q) is equivalent to (G, p) and q ∈ Up, then q is congruent to
p. The framework (G, p) is called globally rigid in Rd if every d-dimensional framework
(G, q) which is equivalent to (G, p) is congruent to (G, p). We obtain an even stronger
property by extending this condition to equivalent realizations in any dimension: we
say that (G, p) is universally rigid if it is a unique realization of G, up to congruence,
with the given edge lengths, in all dimensions Rd′ , d′ ≥ 1.

It seems to be a hard problem to decide if a given framework is rigid, globally rigid,
or universally rigid. Indeed, Abbott [1] verified that recognizing rigid frameworks in
the plane is NP-hard and Saxe [16] proved that it is NP-hard to decide if even a 1-
dimensional framework is globally rigid. The complexity of the corresponding decision
problem for universal rigidity seems to be open, even for d = 1.

These problems become more tractable, however, if we assume that there are no
algebraic dependencies between the coordinates of the points of the framework. A
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Section 2. Complete bipartite graphs 2

framework (G, p) is said to be generic if the set containing the coordinates of all its
points is algebraically independent over the rationals. It is well-known [5] that rigidity
of frameworks in Rd is a generic property, that is, the rigidity of (G, p) depends only on
the graph G and not the particular realization p, if (G, p) is generic. Global rigidity is
also a generic property in Rd, for all d [9, 13]. This property does not hold for universal
rigidity, even if d = 1, which follows by considering different generic realizations of a
four-cycle on the line.

A graph G is called generically rigid (resp. generically globally rigid, generically
universally rigid) in Rd if every d-dimensional generic framework (G, p) is rigid (resp.
globally rigid, universally rigid). We shall also use the shorter versions d-GR, d-GGR,
and d-GUR, respectively, for these families of graphs. d-GR and d-GGR graphs are
well-characterized for d ≤ 2. It remains an open problem to extend these results to
higher dimensions or to characterize d-GUR graphs for any d ≥ 1. We refer the reader
to [17] for more details on the theory of rigid graphs and frameworks.

Let (G, p) be a framework in Rd with G = (V,E). An equilibrium stress (or stress,
for short) on (G, p) is an assignment of scalars ωij to the edges vivj such that for each
vi ∈ V we have ∑

j|vivj∈E

ωij(p(vi)− p(vj)) = 0

Given a stress, there is an associated |V | × |V | symmetric matrix Ω, the stress matrix
such that for i 6= j, the i, j entry of Ω is −ωij, and the diagonal entries for i, i are∑

j 6=i ωij. Here we follow the convention that an equilibrium stress can be extended
to non-adjacent pairs vi, vj by putting wij = 0. Note that all row and column sums
are now zero. It is easy to see that the rank of Ω is at most |V | − d− 1. We say that
Ω is of full rank if its rank is equal to |V | − d− 1.

Connelly [8] and Gortler and Thurston [12] show that a generic framework (G, p)
in Rd on at least d+ 2 vertices is universally rigid if and only if it has a positive semi-
definite (PSD) stress matrix of full rank. The ’if’ direction also holds for frameworks
in general position by a theorem of Alfakih and Ye [4].

2 Complete bipartite graphs

In this section we give a complete characterization of the universally rigid one-dimen-
sional realizations of complete bipartite graphs. As a corollary we shall deduce that
no bipartite graph (other than K1,1) is 1-GUR.

We will need the following result.

Theorem 2.1 (Alfakih [3]). Let (G, p) be a framework in general position. Then
(G, p) has a non-zero PSD stress matrix Ω if and only if (G, p) has no equivalent
realization in R|V (G)|−1.

Let (G, p) be a framework on the line with G = (V,E). A pair of vertices u, v ∈ V
is called universally linked in (G, p) if ||q(u) − q(v)|| = ||p(u) − p(v)|| holds for all
frameworks (G, q) which are equivalent to (G, p) (in all dimensions). Let C be a
cycle of G passing through v1, . . . , vk with E(C) = {v1v2, . . . , vk−1vk, vkv1}. If p(v1) <
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Section 2. Complete bipartite graphs 3

p(v2) < · · · < p(vk) then C is called a stretched cycle in (G, p). If C is a stretched cycle
in (G, p) then it is not difficult to see that every pair of vertices of C is universally
linked in (G, p).

Theorem 2.2. Let G be a complete bipartite graph on at least three vertices with
bipartition X = {x1, . . . , xm}, Y = {y1, . . . , yn} and p a realization of G on the line.

1. If p(x1) < · · · < p(xm) < p(y1) < · · · < p(yn), then (G, p) is not universally
rigid.

2. If p(x1) < · · · < p(xk) < p(y1) < · · · < p(yn) < p(xk+1) < · · · < p(xm) (or
symmetrically p(y1) < · · · < p(yk) < p(x1) < · · · < p(xm) < p(yk+1) < · · · <
p(yn)), then (G, p) is not universally rigid.

3. If both of the two conditions above do not hold, then (G, p) is universally rigid.

Proof.
1. Suppose that p(x1) < · · · < p(xm) < p(y1) < · · · < p(yn) holds and consider a PSD
stress matrix Ω of (G, p). We shall prove that Ω is the zero matrix.

Let rij = p(yj)− p(xi) > 0 denote the distance between xi and yj in (G, p), and wij

the stress on the edge xiyj, for 1 ≤ i ≤ m and 1 ≤ j ≤ n. The equilibrium condition
at vertices in X gives ∑

j

rijwij = 0, for every i = 1, . . . ,m. (1)

Let sj = p(yj)−p(y1) be the distance between y1 and yj. Then we have rij−ri1 = sj,
for every i = 1, . . . ,m and j = 1, . . . , n. The entries on the diagonal of Ω are

∑n
j=1wij,

for i = 1, . . . ,m, and
∑m

i=1wij, for j = 1, . . . , n. Since Ω is PSD, these entries are all
non-negative. Therefore,

n∑
j=1

ri1wij ≥ 0, for i = 1, . . . ,m.

Using (1), we have

0 ≤
∑
j

ri1wij =
∑
j

ri1wij −
∑
j

rijwij =
∑
j

(ri1 − rij)wij = −
∑
j>1

sjwij.

Therefore,
∑

j>1 sjwij ≤ 0, for j = 1, . . . , n. Then, since sj > 0 for j = 2, . . . , n,

0 ≤
∑
j>1

sj
∑
i

wij =
∑
i

∑
j>1

sjwij ≤ 0

which implies that equality holds everywhere. Thus, all entries on the diagonal of Ω
are 0’s with possibly an exception of the entry corresponding to (x1, x1). However,
by using the symmetry of the graph, we can deduce that this entry must also be 0.
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Section 2. Complete bipartite graphs 4

Therefore, the sum of all eigenvalues of Ω is 0. Hence Ω is the zero matrix. Theo-
rem 2.1 now implies that (G, p) is not universally rigid, in fact, it has an equivalent
realization in dimension m + n− 1.

2. Suppose that p(x1) < · · · < p(xk) < p(y1) < · · · < p(yn) < p(xk+1) < · · · < p(xm)
holds and consider a PSD stress matrix Ω of (G, p). We shall prove that Ω is the zero
matrix.

Let rij be the distance between xi and yj in this realization and wij the stress on
the edge xiyj. Let

qj =

{
rij − ri1, for i ≤ k
ri1 − rij, for i ≥ k + 1

and

ti =

{
rk+1,j + rij, for i ≤ k
rij − rk+1,j, for i ≥ k + 1

Then qj ≥ 0, ti ≥ 0 for every i, j and qj > 0 if j 6= 1 and ti > 0 if i 6= k + 1.
Let Ai = ri1

∑
j wij. Since

∑
j rijwij = 0 for every i by the equilibrium condition

at vertices in X, we have

Ai = ri1
∑
j

wij −
∑
j

rijwij

=
∑
j

(ri1 − rij)wij

=

{
−
∑

j qjwij, for i ≤ k∑
j qjwij, for i ≥ k + 1

Let Bj = rk+1,j

∑
i wij. Since

∑
i≤k rijwij−

∑
i≥k+1 rijwij = 0 for every j = 1, . . . , n

by the equilibrium condition at vertices in Y , we have

Bj =
∑
i≤k

(rk+1,j + rij)wij +
∑
i≥k+1

(rk+1,j − rij)wij

=
∑
i≤k

tiwij −
∑
i≥k+1

tiwij.

Therefore, ∑
i

tiAi =
∑
i≤k

tiAi +
∑
i≥k+1

tiAi

=
∑
i≤k

ti(−
∑
j

qjwij) +
∑
i≥k+1

ti(
∑
j

qjwij)

= −
∑
j

qj
∑
i≤k

tiwij +
∑
j

qj
∑
i≥k+1

tiwij

= −
∑
j

qjBj.
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Section 2. Complete bipartite graphs 5

Since Ω is PSD and rij > 0, Ai, Bj ≥ 0 hold for every i, j. Hence 0 ≤
∑

i tiAi =
−
∑

j qjBj ≤ 0 holds. Therefore, equality must occur everywhere, which means that
Ai = 0 for i 6= k + 1 and Bj = 0 for j 6= 1. Thus every entry on the diagonal of
Ω with possible exceptions of the entries corresponding to (xk+1, xk+1) and (y1, y1)
must be zero. However, by using the symmetry of the graph, we can deduce that
these entries must also be zero, so every entry on the diagonal of the PSD matrix Ω
is zero. Therefore, Ω is the zero matrix. Theorem 2.1 now implies that (G, p) is not
universally rigid, in fact, it has an equivalent realization in dimension m + n− 1.

3. If both conditions in 1 and 2 do not hold, then there exist, say x1, x2, y1, y2, such
that p(x1) < p(y1) < p(x2) < p(y2). Then x1, y1, x2, y2 form a stretched cycle in
(G, p) and hence x1, x2 and y1, y2 are universally linked in (G, p). This implies that
the pairwise distances among these four vertices are the same in all realizations of
G equivalent to (G, p) and hence (G, p) is universally rigid if and only if (G′, p) is
universally rigid, where G′ = G + x1x2 + y1y2. It remains to observe that (G′, p) can
be obtained from a framework on a complete graph on four vertices by iteratively
attaching vertices of degree two (and adding edges). These operations are known
to preserve universal rigidity on the line. Therefore (G′, p) and hence (G, p) are
universally rigid, as required. �

Theorem 2.2 implies that a realization of a complete bipartite graph (on at least
three vertices) on the line is universally rigid if and only if it contains a stretched
cycle. It also implies the following observation of Connelly1.

Corollary 2.3 (Connelly [10]). The only generically universally rigid bipartite graph
in R1 is the single edge K1,1.

We also have some further questions and remarks on the relation of PSD stress
matrices and equivalent realizations.

Question 2.4. Is it true that a framework (G, p) in general position has a PSD stress
matrix Ω of rank at least k if and only if (G, p) has no equivalent realization in R|V (G)|−i

for all 1 ≤ i ≤ k.

The “only if” part follows from the following result.

Theorem 2.5 (Alfakih [3]). Let (G, p) be a framework and Ω a PSD stress matrix of
(G, p). Then Ω is a stress matrix for every framework (G, q) equivalent to (G, p).

1Connelly’s argument is as follows: map the bipartite graph G = Km,n onto the unit interval on
the line. This framework has a realization as a subframework of a unit-length simplex (S, p) in Rd,
where d = m + n − 1. Then perturb the realization on the line to a generic one and follow it with
a modified realization of the simplex in Rd. The inverse function theorem can be used to verify the
construction. (In detail, consider the rigidity map fG on the d-dimensional realizations of G which
assigns the edge lengths to the realizations. Since the simplex is minimally infinitesimally rigid in
Rd, p is a regular point of fS . By the inverse function theorem, we can choose an open neibourhood
Up of p and an open neighbourhood W of fS(p) such that fS maps Up diffeomorphically onto W .
Thus there is a realization of S for which the edge lengths of the complete bipartite subframework
are consistent with the edge lengths of the perturbed one-dimensional framework.)
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Section 3. Generic universal rigidity on the line 6

In fact, suppose that Ω is a PSD stress matrix of (G, p) of rank at least k, and
(G, q) a framework equivalent to (G, p). Then Ω is a stress matrix for (G, q). If d is
the dimension of (G, q) then rank Ω ≤ |V (G)| − d− 1. Therefore, d ≤ |V (G)| − k− 1.

Alfakih also conjectured that if a general framework (G, p) is universally rigid in
Rd then it has a PSD stress matrix of rank |V (G)| − d− 1. Note that an affirmative
answer to Question 2.4 would imply the truth of this conjecture.

We close this section with another question, motivated by Theorem 2.2.

Question 2.6. Is it true that the universal rigidity of a general position framework
(G, p) in R1 depends only on the ordering of vertices on the line (and not on the
coordinates)?

3 Generic universal rigidity on the line

In this section we consider generic frameworks in R1 and list a few questions and obser-
vations concerning the family of 1-GUR graphs. As we noted earlier, the complexity
of recognizing these graphs is still an open question.

First we recall a conjectured inductive construction of 1-GUR graphs.

Conjecture 3.1. [10] A graph G on at least three vertices is 1-GUR if and only if G
can be obtained from K3 by the following operations:
(i) add an edge,
(ii) choose two graph G1, G2 built by these operations, choose two sets U1, U2 of each
with |U1| = |U2| ≥ 2, delete all edges joining vertices of U1 in G1, then glue the two
graphs together along the vertices in U1 and U2.

The “if” direction of Conjecture 3.1 follows from a recent result of Ratmanski [15].
Note that the graphs built up from a triangle by operations (i) and (ii) must contain a
triangle. Thus finding triangle-free 1-GUR graphs would be interesting, c.f. Section 4.
Furthermore, Conjecture 3.1, if true, does not seem to provide a good characterization
of 1-GUR graphs since it is not clear how to test whether G can be constructed from
a triangle by the above operations.

This leads us to minimally 1-GUR graphs, for which the deletion of any edge makes
them not 1-GUR. These graphs may be sparse and may have small vertex separations,
along which they may be decomposed by the inverse operation of (ii).

Question 3.2. Let G = (V,E) be a minimally 1-GUR graph. Can we prove a (linear)
upper bound on |E| as a function of |V |?

We remark here that there is no constant k for which the k-vertex-connectivity of G
would imply that G is 1-GUR, and there exist dense not 1-GUR graphs, for example,
the complete bipartite graphs (c.f. Corollary 2.3). However, the end of the proof of
Theorem 2.2 shows that by adding an edge to a complete bipartite graph we obtain
a 1-GUR graph which contains a sparse 1-GUR spanning subgraph.

Let G = (V,E) be a graph. A pair (G1, G2), where G1, G2 are subgraphs of G, is
called a k-separator of G if V (G1) ∪ V (G2) = V , E(G1) ∪ E(G2) = E, and |V (G1) ∪
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Section 3. Generic universal rigidity on the line 7

V (G2)| = k hold. For a subset X ⊆ V let G + K(X) denote the supergraph of G
obtained by adding all edges connecting pairs of vertices of X (which are non-adjacent
in G). The first observation about separations is as follows.

Lemma 3.3. Let G be a 1-GUR graph and let (G1, G2) a k-separator of G with
X = V (G1) ∩ V (G2). Then Gi + K(X) is 1-GUR for i = 1, 2.

Proof. Suppose that G1 = G1 + K(X) is not 1-GUR. Then there exists a generic
realization (G1, p1) of G1 in R1 which is not UR and hence there exists a realization
(G1, p

′
1) equivalent but non congruent to (G1, p1). We can assume that p′1(v) = p1(v)

for every v in X. Extend p1 to a generic realization p of G in R1. Let

p′(v) =

{
p′1(v), v ∈ V (G1)
p(v), v ∈ V (G2)

Then (G, p′) is equivalent but not congruent to (G, p), which means that G is not
1-GUR, a contradiction. �

Lemma 3.3 implies that we can cut a 1-GUR graph along a separating vertex pair
u, v into two smaller 1-GUR graphs if we add the edge uv to both pieces2. What if we
are not allowed to add the edge? In this context the following statement may help.

A pair of vertices u, v in graph G is called generically universally linked if the
distance between u and v is the same in every pair of equivalent generic realizations
of G.

Conjecture 3.4. Suppose that u, v is not generically universally linked in G on the
line, for some pair u, v ∈ V . Then there exist generic 1-dimensional realizations
(G, p), (G, q) of G with the property that there exist a realization (G, p′) equivalent
to (G, p) and a realization (G, q′) equivalent to (G, q), such that ‖p′(u) − p′(v)‖ >
‖p(u)− p(v)‖ and ‖q′(u)− q′(v)‖ < ‖q(u)− q(v)‖.

Note that a pair of vertices is generically globally linked in R1 if and only if there
exist two vertex-disjoint paths from u to v. From this it is easy to see that the
“globally linked” version of Conjecture 3.4 is true.

The truth of this conjecture would imply:

Conjecture 3.5. Let G be 1-GUR and let (G1, G2) be a 2-separation in G with
V (G1) ∩ V (G2) = {x, y}. Then G1 or G2 is 1-GUR.

Proof. (assuming the truth of Conjecture 3.4) Suppose, for a contradiction, that G1

and G2 are not 1-GUR. We may assume that x, y is not generically universally linked
in G1 and G2. Thus there is a generic realization (G1, p) in R1 and an equivalent
realization (G1, q) such that the distance between p(x) and p(y) is, say, stricly smaller
than the distance between q(x) and q(y). By assuming the truth of Conjecture 3.4 we
can find a generic realization (G2, p

′) in R1 and an equivalent realization (G2, q
′) such

2It is easy to see that every 1-GUR graph (in fact, every 1-GGR graph) is 2-connected. Thus we
may begin the study of small separators with the 2-separations.
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Section 4. Cover graphs and universal rigidity 8

that the distance between p′(x) and p′(y) is, say, stricly smaller than the distance
between q′(x) and q′(y). By using a result of Alfakih [2] we can show that every
realization close enough to (G2, p

′) has this property. Therefore, by carefully choosing
the generic realization (G2, p

′) and rescaling, if necessary, we may assume that ||p(x)−
p(y)|| = ||p′(x)− p′(y)||. Now we can use a result of Bezdek and Connelly 3 to obtain
a pair of realizations (G1, r) and (G2, r

′) for which ||r(x)− r(y)|| = ||r′(x)− r′(y)|| >
||p(x)−p(y)|| and such that (G1, r) is equivalent to (G1, p) and (G2, r

′) is equivalent to
(G2, p

′). By glueing together (G1, p) and (G2, p
′) as well as (G1, r) and (G2, r

′) along
the pair x, y we obtain two equivalent but not congruent realizations of G, where the
former realization is generic. This contradicts the fact that G is 1-GUR. �

Conjecture 3.5 would imply Conjecture 3.1 by induction in the case when there is
a 2-separation.

We close this section with the following question.

Question 3.6. Let G = (V,E) be 1-GUR. Does this imply that
(a) |E| ≥ 2|V | − 3 holds?
(b) G is 2-GR?

Note that the truth of Conjecture 3.1 would imply an affirmative answer to (b),
and hence also to (a), since both operations preserve generic rigidity in R2.

4 Cover graphs and universal rigidity

Since it is probably difficult to characterize 1-GUR graphs, special families of 1-GUR
(or not 1-GUR) graphs may be of interest. In this context we offer the study of the
following family of graphs as a candidate for being not 1-GUR.

Let G = (V,E) be a graph and let ~G be an acyclic orientation of G. An edge e of G

is dependent if the reversal of e in ~G creates a directed cycle. An orientation without
dependent edges is called strongly acyclic. We say that G is a cover graph if G has a
strongly acyclic orientation. (It is known that G is a cover graph if and only if it is
the Hasse diagram of some partially ordered set on V .) Note that complete bipartite
graphs are cover graphs: orient all edges from one colour class to the other. Also note
that cover graphs are triangle-free. We should also remark that it is NP-hard to test
whether a given graph is a cover graph [7, 14].

Question 4.1. Is it true that no cover graph is 1-GUR (except K1,1)?

It is also known that triangle-free planar graphs (and more generally, triangle-free
3-colorable graphs) are cover graphs [11]. (Recall that by a theorem of Grötzsch,
every triangle-free planar graph is 3-colorable.) These special cases would also be
interesting:

3Bezdek and Connelly [6] proved that if p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) are two configu-
rations in Rd then there is a continuous motion p(t) in R2d, that is analytic in t, such that p(0) = p,
p(1) = q and for 0 ≤ t ≤ 1, ‖pi(t)− pj(t)‖ is monotone for all 1 ≤ i < j ≤ n.
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Section 5. Further observations on cover graphs 9

Question 4.2. Is it true that no triangle-free planar graph (or even triangle-free
3-colorable graph) is 1-GUR (except K1,1)?

We may also ask whether all non-cover graphs are 1-GUR. An interesting graph
to analyse is the Grötzsch graph, which is triangle-free and 4-chromatic, see Figure
1. This graph is not a cover graph [11]. Is it 1-GUR? Since it is triangle-free, an
affirmative answer to this question would disprove Conjecture 3.1.

Figure 1: The Grötzsch graph.

5 Further observations on cover graphs

This section contains some further questions and observations about cover graphs,
loosely related to (universal) rigidity of graphs. Let G = (V,E) be a graph. We say
that G is (2, 4)-sparse if for all subsets X ⊆ V with |X| ≥ 3 the subgraph induced
by X has at most 2|X| − 4 edges. For example, triangle-free planar graphs are (2, 4)-
sparse. Perhaps the following larger family also consists of cover graphs.

Question 5.1. Is every (2, 4)-sparse graph a cover graph?

A (2, 4)-sparse graph is clearly triangle-free. It is also independent in the 2-
dimensional generic rigidity matroid by Laman’s theorem. This leads us to a further
extension:

Question 5.2. Is every triangle free graph which is independent in the two-dimen-
sional generic rigidity matroid a cover graph?

One proof method for a positive result here would use the following well-known
Henneberg operations (typically used in rigidity problems in two dimensions). Let
G = (V,E) be a graph. The 0-extension operation adds a new vertex v to G and
two new edges vx, vy connecting v to existing vertices. The 1-extension operation
deletes an edge xy of G, adds a new vertex v, and three new edges vx, vy, vz, for some
vertex z 6= x, y. The next lemmas on the construction of cover graphs show that this
approach may be useful.

Lemma 5.3. Let G be a triangle-free graph obtained from a graph H by a 0-extension
operation. Then G is a cover graph if and only if H is a cover graph.
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Proof. Since H is a subgraph of G, necessity is obvious. To see the other direction
consider a strongly acyclic orientation ~H of H. Suppose that G = H + vx+ vy. Since
~H is acyclic, we cannot have an (x, y)-directed path and a (y, x)-directed path in ~H
simultaneously. Thus we have three cases to consider.

Case 1: There is an (x, y)-directed path in ~H. Then we orient vx from x to v and vy
from v to y.

Case 2: There is an (y, x)-directed path in ~H. Then we orient vx from v to x and vy
from y to v.

Case 3: There is neither (x, y)-directed path nor (y, x)-directed path in ~H. Then we
orient vx from v to x and vy from v to y. �

Lemma 5.4. Let G be a triangle-free graph obtained from a cover graph H by a
1-extension operation. Then G is also a cover graph.

Proof. Consider a strongly acyclic orientation ~H of H. Suppose that G = H − xy +
vx + vy + vz. We orient the edges vx, vy, vz as follows.

Case 1: There is an (x, z)-directed path in ~H − xy. Then there is no (z, y)-directed

path in ~H − xy.
Case 1.1: There is a (y, z)-directed path in ~H − xy. We orient vx from x to v, vy

from y to v and vz from v to z. (Figure 2)

Figure 2: Case 1.1

Case 1.2: There is no (y, z)-directed path in ~H − xy. We orient vx from x to v, vy
from v to y and vz from v to z. (Figure 3)

Figure 3: Case 1.2

Case 2: There is an (z, x)-directed path in ~H − xy. Then every (y, z)-path in ~H − xy
has at least two backward edges. We orient vx from v to x, vy from v to y and vz
from z to v. (Figure 4)

Case 3: There is neither (x, z)-directed path nor (z, x)-directed path in ~H − xy.
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Figure 4: Case 2

Case 3.1: There is a (y, z)-directed path in ~H − xy. Then every (x, z)-path in
~H − xy has at least two forward edges. We orient vx from x to v, vy from y to v and
vz from v to z. (Figure 5)

Figure 5: Case 3.1

Case 3.2: There is a (z, y)-directed path in ~H − xy. We orient vx from x to v, vy
from v to y and vz from z to v. (Figure 6)

Figure 6: Case 3.2

Case 3.3: There is neither (y, z)-directed path nor (z, y)-directed path in ~H − xy.
We orient vx from x to v, vy from y to v and vz from z to v. (Figure 7) �

Figure 7: Case 3.3
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