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Rigid two-dimensional frameworks with
two coincident points

Zsolt Fekete?, Tibor Jordán??, and Viktória E. Kaszanitzky? ? ?

Abstract

Let G = (V,E) be a graph and u, v ∈ V be two distinct vertices. We
give a necessary and sufficient condition for the existence of an infinitesimally
rigid two-dimensional bar-and-joint framework (G, p), in which the positions of
u and v coincide. We also determine the rank function of the corresponding
modified generic rigidity matroid on ground-set E. The results lead to efficient
algorithms for testing whether a graph has such a coincident realization with
respect to a designated vertex pair and, more generally, for computing the rank
of G in the matroid.

1 Introduction

A two-dimensional bar-and-joint framework (G, p) is a graph G = (V,E) and a map
p : V → R2. We say that the framework (G, p) is a realization of the graph G in
R2. The rigidity matrix of the framework is the matrix R(G, p) of size |E| × 2|V |,
where, for each edge vivj ∈ E, in the row corresponding to vivj, the entries in the
two columns corresponding to the vertices i and j contain the two coordinates of
(p(vi) − p(vj)) and (p(vj) − p(vi)), respectively, and the remaining entries are zeros.
The rigidity matrix of (G, p) defines the rigidity matroid of (G, p) on the ground set
E by linear independence of the rows of the rigidity matrix. The framework is said to
be independent if the rows of R(G, p) are linearly independent. A framework (G, p) is
generic if the set of coordinates of the points p(v), v ∈ V , is algebraically independent
over the rationals. Any two generic frameworks (G, p) and (G, p′) have the same
rigidity matroid. We call this the two-dimensional rigidity matroid R(G) = (E, r) of
the graph G. We denote the rank of R(G) by r(G).

A framework (G, p) in R2 is infinitesimally rigid if rankR(G, p) = 2|V | − 3. This
definition is motivated by the fact that if (G, p) is infinitesimally rigid then (G, p) is
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‘rigid’ in the sense that every continuous deformation of (G, p) which preserves the
edge lengths ||p(u)− p(v)|| for all uv ∈ E, must preserve the distances ||p(w)− p(x)||
for all w, x ∈ V . We say that the graph G is rigid in R2 if r(G) = 2|V | − 3 holds. In
this case every generic framework (G, p) in R2 is infinitesimally rigid and hence, by
the above remark, is ‘rigid’. G = (V,E) is minimally rigid if it is rigid but G−e is not
rigid for every e ∈ E. See e.g. [3, 12] for more details on two- and higher-dimensional
frameworks and rigidity matroids.

Independence in the two-dimensional rigidity matroid (and hence the family of rigid
graphs) was characterized by Laman [6], who proved that the edge set F of a graph
H = (V, F ) is independent in R(H) if and only if iH(X) ≤ 2|X| − 3 for all X ⊆ V
with |X| ≥ 2, where iH(X) denotes the number of edges induced by X in H. The
rank function was determined by Lovász and Yemini [7]. It remains a difficult open
problem to characterize independence or rigidity in generic d-dimensional frameworks
for all d ≥ 3.

To verify the rigidity of (special families of) generic frameworks it is sometimes use-
ful to consider non-generic realizations of graphs. For example, to prove a major con-
jecture of Tay and Whiteley [8], stating that a graph operation called X-replacement
preserves rigidity in three-space, it could be useful to have a characterization of when
a graph has an infinitesimally rigid realization in R3 in which the positions of four
given vertices are coplanar, see [8, 9, 12].

Motivated by this connection, Jackson and Jordán [4] characterized when a graph
has an infinitesimally rigid realization in R2 in which three given vertices are collinear.
A set X of vertices in a minimally rigid graph G is tight if iG(X) = 2|X| − 3. An
obstacle for an ordered triple (x, y, z) of vertices is an ordered triple of tight sets
(X, Y, Z) for which X ∩ Y = {z}, X ∩ Z = {y}, and Y ∩ Z = {x}.

Theorem 1. [4] Let G = (V,E) be a minimally rigid graph and let x, y, z ∈ V
be distinct vertices. Then G has an infinitesimally rigid realization (G, p), in which
(p(x), p(y), p(z)) are collinear if and only if G contains no obstacle for the triple
(x, y, z).

Watson [9] introduced the concept of flat realizations. He called a d-dimensional
framework (G, p) U-flat, for some U ⊆ V (G) with 2 ≤ |U | ≤ d + 1, if the set
{p(x) : x ∈ U} is not affinely independent. He verified a number of results on U -flat
realizations in R3 and formulated a conjecture for the existence of a two-dimensional
U -flat realization. The special case when |U | = 3 is settled by Theorem 1 above.
A slightly reformulated, but equivalent version of his conjecture for the case when
|U | = 2 is as follows.

Conjecture 2. [9, Conjecture 4.40] Let G = (V,E) be a minimally rigid graph and
u, v ∈ V be two distinct vertices. Then there exists an infinitesimally rigid realization
(G, p) of G in which p(u) = p(v) if and only if
(i) uv 6∈ E,
(ii) there is no w ∈ V for which G contains an obstacle for {u, v, w},
(iii) u and v have at most two common neighbours in G.

We have found a counterexample to Conjecture 2, see the graph of Figure 1.
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u v

Figure 1: The graph G of this figure is minimally rigid and satisfies conditions (i)-(iii)
of Conjecture 2 with respect to the designated vertex pair u, v. However, it does not
have an infinitesimally rigid realization in which p(u) = p(v). To see this observe that
the existence of such a realization would imply that the graph obtained from G by
contracting the vertex pair u, v is rigid - but this graph fails to satisfy this necessary
condition.

Our main result is a characterization for the existence of a two-dimensional U -flat
realization for a given graph G and U ⊆ V (G) with |U | = 2, which completes the
solution of the two-dimensional flatness problem.

We need the following definitions. Let G = (V,E) be a graph and let u, v ∈ V be
two distinct vertices of G. A realization (G, p) is called uv-coincident if p(u) = p(v)
holds. A uv-coincident realization is uv-generic if the set of coordinates of the points
{p(z) : z ∈ V − v} is algebraically independent over the rationals. Any two uv-
coincident uv-generic frameworks (G, p) and (G, p′) have the same rigidity matroid.
We call this the two-dimensional uv-rigidity matroid Ruv(G) = (E, ruv) of the graph
G. We denote the rank of Ruv(G) by ruv(G). We say that the graph G is uv-rigid
in R2 if ruv(G) = 2|V | − 3 holds. A set F ⊆ E is said to be uv-independent if F is
independent in Ruv(G). The graph G is said to be minimally uv-rigid if G is uv-rigid
and E is uv-independent.

The structure of the paper is as follows:
(i) we introduce a new count matroidMuv(G) on the edge set of G, describe its rank

function, and show that uv-independence implies independence in Muv(G) (Section
2),

(ii) we give a Henneberg-type inductive construction for minimally uv-rigid graphs
and show that Muv(G) is in fact isomorphic to Ruv(G). In addition, we prove that
G is uv-rigid if and only if the deletion of the edge uv (if it exists in G) and the
contraction of the pair u, v both give rise to rigid graphs (Section 3),

(iii) we give a different, obstacle-based characterization of minimally uv-rigid graphs
(Section 4).

We close this section with some definitions. Let G = (V,E) be a graph. For some
X ⊆ V let G[X] denote the subgraph of G induced by X and let EG(X) be the set
of edges of G[X]. Thus iG(X) = |EG(X)|. For a family S = {S1, S2, . . . , Sk}, where
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Section 2. The count matroid 4

Si ⊆ V for all i = 1, . . . , k, we define EG(S) = ∪ki=1EG(Si) and put iG(S) = |EG(S)|.
We also define cov(S) = {(x, y) : x, y ∈ V, {x, y} ⊆ Si for some 1 ≤ i ≤ k}. We
say that S covers F ⊆ E if F ⊆ cov(S). A system K = {S1, ...,Sl} is a cover
of F if F ⊆ ∪li=1cov(Si). The degree of a vertex w is denoted by dG(w). We let
NG(w) = {z ∈ V : wz ∈ E} denote the neighbours of w in G. We may omit the
subscripts referring to G if the graph is clear from the context.

u v

ah

e d

b

c

g

f

Figure 2: A rigid but not uv-rigid graph G = (V,E) with |V | = 10. Consider the
cover K = {{{u, v, a, h}, {u, v, e, d}}, {a, b, c}, {c, d}, {e, f}, {f, g, h}} of E. Its value
equals 16, which is less than 2|V | − 3 = 17, showing that G is not uv-rigid.

2 The count matroid

Let G = (V,E) be a graph and u, v ∈ V be two distinct vertices of G. Let H =
{H1, ..., Hk} be a family with Hi ⊆ V , 1 ≤ i ≤ k. We say that H is uv-compatible if
u, v ∈ Hi and |Hi| ≥ 3 hold for all 1 ≤ i ≤ k. We define the value of subsets of V of
size at least two and of uv-compatible families as follows. For H ⊆ V with |H| ≥ 2
and H 6= {u, v} we let

val(H) = 2|H| − 3,

and put val({u, v}) = 0. For a uv-compatible family H = {H1, H2, . . . , Hk} we let

val(H) =
k∑

i=1

(2|Hi| − 3)− 2(k − 1).

Note that if H = {H} is a uv-compatible family containing only one set then the two
definitions are compatible, i.e. val(H) = val(H) holds.
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Section 2. The count matroid 5

The value of a system K = {H1,H2, . . . ,Hl} of set families (which may consist of
uv-compatible families as well as subsets of V ) is defined by val(K) =

∑l
i=1 val(Hi).

The next lemmas will enable us to consider uv-compatible families of special types
in the main proof of this section.

Lemma 3. Let H = {H1, . . . , Hk} be a uv-compatible family. If |Hi∩Hj| ≥ 3 for some
pair 1 ≤ i < j ≤ k, then there is a uv-compatible family H′ with cov(H) ⊆ cov(H′)
for which val(H′) ≤ val(H)− 1.

Proof. We may assume that i = k − 1 and j = k. Let H′ = {H1, . . . , Hk−2, (Hk−1 ∪
Hk)}. Then

val(H) =
k∑

l=1

(2|Hl| − 3)− 2(k − 1) =

=
k−2∑
l=1

(2|Hl| − 3)− 2((k − 1)− 1) + (2|Hk−1| − 3) + (2|Hk| − 3)− 2 =

=
k−2∑
l=1

(2|Hl|−3)+(2|Hk−1∪Hk|−3)+2((k−1)−1)+(2|Hk−1∩Hk|−3)−2 ≥ val(H′)+1.

Clearly, we have cov(H) ⊆ cov(H′). �

Let G = (V,E) be a graph and u, v ∈ V be distinct vertices. We say that G is
uv-sparse if for all H ⊆ V with |H| ≥ 2 we have iG(H) ≤ val(H) and for all uv-
compatible families H we have iG(H) ≤ val(H). Note that if G is uv-sparse then
uv /∈ E must hold. A set H ⊆ V of vertices with |H| ≥ 2 (resp. a uv-compatible
family H = {H1, . . . , Hk} ) is called tight if iG(H) = val(H) (resp. iG(H) = val(H))
holds.

Lemma 4. Let H = {H1, . . . , Hk} be a uv-compatible family with |Hi ∩Hj| = 2 for
all 1 ≤ i < j ≤ k, and let Y ⊆ V be a set of vertices with |Y ∩ {u, v}| ≤ 1 and
|Y ∩ Hi| ≥ 2 for some 1 ≤ i ≤ k. Then there is a uv-compatible family H′ with
cov(H)∪ cov(Y ) ⊆ cov(H′) for which val(H′) ≤ val(H) + val(Y ) holds. Furthermore,
if G is uv-sparse and H and Y are both tight then H′ is also tight.

Proof. By renumbering the sets of H, if necessary, we may assume that |Y ∩Hi| ≥ 2
if i ≥ j, for some j ≤ k, and |Y ∩Hi| ≤ 1 for all 1 ≤ i ≤ j − 1. Let X = Y ∪ ∪k

i=jHi

and H′ = {H1, . . . , Hj−1, X}. Then we have cov(H) + cov(Y ) ⊆ cov(H′) and

val(H) + val(Y ) =
k∑

i=1

(2|Hi| − 3)− 2(k − 1) + (2|Y | − 3) =

=

j−1∑
i=1

(2|Hi| − 3)− 2(j − 1) +
k∑

i=j

(2|Hi| − 3)− 2(k − j) + (2|Y | − 3) =

=

j−1∑
i=1

(2|Hi| − 3) + (2|X| − 3)− 2(j − 1) + 4(k − j)− 3(k − j + 1)+
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+2
k∑

i=j

|Y ∩Hi| − 2(k − j)− 2|Y ∩ {u, v}|(k − j) ≥

≥ val(H′) +
k∑

i=j

val(Y ∩Hi).

Now suppose that H and Y are tight. Then we have

i(H′) +
k∑

i=j

i(Y ∩Hi) ≥ i(H) + i(Y ) = val(H) + val(Y ) ≥

≥ val(H′) +
k∑

i=j

val(Y ∩Hi) ≥ i(H′) +
k∑

i=j

i(Y ∩Hi),

where the first inequality follows from the fact that edges spanned by H or Y are
spanned by H′ and if some edge is spanned by both H and Y then it is spanned by
Y ∩Hi for some i. The first equality holds because H and Y are tight, and the second
inequality holds by our calculations above. The last inequality holds because G is
uv-sparse. Hence equality must hold everywhere, which implies that H′ is also tight.
�

Lemma 5. Let H = {H1, . . . , Hk} be a uv-compatible family with |Hi∩Hj| = 2 for all
1 ≤ i < j ≤ k, and let Y ⊆ V be a set of vertices with Y ∩{u, v} = ∅ and |Y ∩Hi| ≤ 1
for all 1 ≤ i ≤ k, for which |Y ∩ Hi| = |Y ∩ Hj| = 1 for some pair 1 ≤ i < j ≤ k.
Then there is a uv-compatible family H′ with cov(H) ∪ cov(Y ) ⊆ cov(H′) for which
val(H′) = val(H) + val(Y ). Furthermore, if G is uv-sparse and H and Y are both
tight then H′ is also tight.

Proof. We may assume that i = k − 1 and j = k. Let H′ = {H1, . . . , Hk−2, (Hk−1 ∪
Hk ∪ Y )}. Then

val(H) + val(Y ) =
k∑

i=1

(2|Hi| − 3)− 2(k − 1) + (2|Y | − 3) =

=
k−2∑
i=1

(2|Hi| − 3)− 2((k − 1)− 1)− 2 + (2|Hk−1| − 3) + (2|Hk| − 3) + (2|Y | − 3) =

=
k−2∑
i=1

(2|Hi| − 3)− 2((k − 1)− 1) + (2(|Hk−1|+ |Hk|+ |Y |)− 3)− 8 =

=
k−2∑
i=1

(2|Hi| − 3) + (2|Hk−1 ∪Hk ∪ Y | − 3)− 2((k − 1)− 1) = val(H′).

Clearly, we have cov(H) ∪ cov(Y ) ⊆ cov(H′).
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Now suppose that G is uv-sparse and H and Y are tight. Then we have

i(H) + i(Y ) = val(H) + val(Y ) = val(H′) ≥ i(H′) ≥ i(H) + i(Y )

where the last inequality follows since |Y ∩Hk−1| = |Y ∩Hk| = 1, |Hk−1 ∩Hk| = 2,
and |Y ∩ Hi| ≤ 1 for all 1 ≤ i ≤ k. Hence equality must hold everywhere, which
implies that H′ is also tight. �

Lemma 6. Let G = (V,E) be uv-sparse and let X, Y ⊆ V be tight sets in G with
|X ∩ Y | ≥ 2 and X 6= {u, v} 6= Y . Then X ∩ Y 6= {u, v} and X ∪ Y and X ∩ Y are
also tight.

Proof. If X ∩ Y 6= {u, v} then the lemma follows as in [4, Lemma 2.3]. Otherwise
we obtain i({u, v}) = 1, which contradicts the fact that G is uv-sparse. �

Lemma 7. Let G = (V,E) be uv-sparse and suppose that there is a tight uv-compatible
family in G. Then there is a unique tight uv-compatible family Hmax in G for which
cov(H) ⊆ cov(Hmax) for all tight uv-compatible families H of G.

Proof. It follows from Lemma 3 that ifH = {X1, X2, . . . , Xk} is a tight uv-compatible
family in G then Xi ∩Xj = {u, v} holds for all 1 ≤ i < j ≤ k. Now consider a pair
H1 = {X1, X2, . . . , Xk} and H2 = {Y1, Y2, . . . , Yl} of tight uv-compatible families. Let
F = (V, E) be a hypergraph where E = {Xi − {u, v} : 1 ≤ i ≤ k} ∪ {Yj − {u, v} : 1 ≤
j ≤ l} and let C1 = (V1, E1), . . . , Ct = (Vt, Et) be the connected components of F . We
define the following families:

H∪ = {Hs : Hs = (∪(Xi−{u,v})∈EsXi) ∪ (∪(Yj−{u,v})∈EsYj) for 1 ≤ s ≤ t}

H∩ = {Z ⊆ V : |Z| ≥ 3,∃1 ≤ i ≤ k, 1 ≤ j ≤ l such that Xi ∩ Yj = Z}

It is easy to see that H∪ and H∪ are both uv-compatible. For convenience we rename
the families as H∪ = {A1, . . . , Ap} and H∩ = {B1, . . . , Bq}. By using that Xi ∩Xj =
Yi′∩Yj′ = {u, v} we obtain p+q ≥ k+ l. We also have i(H1)+ i(H2) ≤ i(H∪)+ i(H∩),
since the family H∪ spans all the edges spanned by H1 or H2 and H∩ spans all the
edges spanned by both H1 and H2. Thus

k∑
i=1

(2|Xi| − 3)− 2(k − 1) +
l∑

j=1

(2|Yj| − 3)− 2(l − 1) = val(H1) + val(H2) =

= i(H1) + i(H2) ≤ i(H∪) + i(H∩) ≤ val(H∪) + val(H∩) =

=

p∑
s=1

(2|As| − 3)− 2(p− 1) +

q∑
t=1

(2|Bt| − 3)− 2(q − 1) =

=

p∑
s=1

2(|As| − 2)− (p− 2) +

q∑
t=1

2(|Bt| − 2)− (q − 2) ≤
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2.1 The matroid and its rank function 8

≤
k∑

i=1

2(|Xi| − 2)− (k − 2) +
l∑

j=1

2(|Yj| − 2)− (l − 2) =

=
k∑

i=1

(2|Xi| − 3)− 2(k − 1) +
l∑

j=1

(2|Yj| − 3)− 2(l − 1),

where the last inequality follows from
∑p

k=1(|Ak|−2) +
∑q

l=1(|Bl|−2) =
∑k

i=1(|Xi|−
2) +

∑l
j=1(|Yj|− 2) and p+ q ≥ k+ l. Hence we can deduce that H∪ and H∩ are both

tight. Clearly, we have cov(H1) ∪ cov(H2) ⊆ cov(H∪). Thus the lemma follows by
choosing the tight uv-compatible family Hmax of G for which cov(Hmax) is maximal.
�

2.1 The matroid and its rank function

Let G = (V,E) be a graph and u, v ∈ V be distinct vertices of G. In this subsection
we prove that the family

IG = {F : F ⊆ E,H = (V, F ) is uv-sparse} (1)

is a family of independent sets of a matroid on ground-set E. We shall also characterize
the rank function of this matroid. We need the following definition.

Let H = {X1, . . . , Xt} be a uv-compatible family and let H1, . . . , Hk be subsets of
V of size at least two. We say that the system K = {H1, . . . , Hk} is thin if
(i) |Hi ∩Hj| ≤ 1 for all pairs 1 ≤ i, j ≤ k.
The system L = {H, H1, . . . , Hk} is thin if (i) holds and
(ii) Xi ∩Xj = {u, v} for all pairs 1 ≤ i, j ≤ t, and
(iii) |Hi ∩ ∪t

j=1Xj| ≤ 1 for all 1 ≤ i ≤ k.

Theorem 8. Let G = (V,E) be a graph and u, v ∈ V be distinct vertices of G. Then
Muv(G) = (E, IG) is a matroid on ground-set E, where IG is defined by (1). The
rank of a set E ′ ⊆ E in Muv(G) is equal to

min{val(K) : K is a thin cover of E ′}.

Proof. Let I = IG, let E ′ ⊆ E and let F ⊆ E ′ be a maximal subset of E ′ in I. Since
F ∈ I we have |F | ≤ val(K) for all covers K of E ′. We shall prove that there is a
(thin) cover K of E ′ with |F | = val(K), from which the theorem will follow.

Let J = (V, F ) denote the subgraph induced by the edge set F . First suppose that
there is no tight uv-compatible family in J and consider the following cover of F :

K1 = {H1, H2, . . . , Hk},

where H1, H2, . . . , Hk are the maximal tight sets in J . Every edge f ∈ F induces a
tight set in J , hence K1 is indeed a cover of F . It is thin by Lemma 6. Thus

|F | =
k∑

j=1

|EJ(Hj)| =
k∑

j=1

(2|Hj| − 3) = val(K1)
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2.2 Independence 9

follows. We claim thatK1 is a cover of E ′. To see this consider an edge ab = e ∈ E ′−F .
Since F is maximal subset of E ′ in I we have F + e 6∈ I. By our assumption there is
no tight uv-compatible family in J , and hence there must be a tight set X in J with
a, b ∈ X. Hence X ⊆ Hi for some 1 ≤ i ≤ k which implies that K1 covers e, too.

Next suppose that there is a tight uv-compatible family in J and consider the
following cover of F :

K2 = {Hmax, H1, H2, . . . , Hk},

where Hmax = {X1, X2, . . . , Xl} is the uv-compatible family of G for which cov(Hmax)
is maximal (c.f. Lemma 7) and H1, H2, . . . , Hk are maximal tight sets of J ′ = (V, F −
E(Hmax)). It is easy to see that K2 is indeed a cover of F . By Lemmas 3, 4, 5 and 6
the cover K2 is thin, and hence

|F | =
l∑

i=1

|EJ(Xi)|+
k∑

j=1

|EJ(Hj)| =
l∑

i=1

(2|Xi|−3)−2(l−1)+
k∑

j=1

(2|Hi|−3) = val(K2).

We claim that K2 is a cover of E ′. As above, let ab = e ∈ E ′ − F be an edge. By the
maximality of F we have F + e 6∈ I. Thus either there is a tight set X ⊆ V in J with
a, b ∈ X or there is a tight uv-compatible family H′ = {Y1, . . . , Yt} in J with a, b ∈ Yi

for some 1 ≤ i ≤ t.
In the latter case Lemma 7 implies that cov(H′) ⊆ cov(Hmax) and hence e is

covered by K2. In the former case, when a, b ∈ X for some tight set X in J we
have two possibilities. First suppose that |X ∩∪li=1Xi| ≥ 2. Then we can deduce that
X ⊆ Xi for some 1 ≤ i ≤ l by using Lemma 4 or 5 and the maximality of Hmax, which
implies that K2 covers e. Next suppose that |X ∩ ∪l

i=1Xi| ≤ 1. Then E(X) ⊆ E(J ′)
and hence X ⊆ Hi for some 1 ≤ i ≤ k, since every edge of J ′ induces a tight set
and every tight set is contained in a maximal tight set. Hence e is covered by K2, as
claimed. �

2.2 Independence

Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Let Guv denote
the graph obtained from G by contracting the vertex pair u, v into a new vertex zuv
(and deleting the resulting loops and parallel copies of edges). Given a realization
(Guv, puv) of Guv, we obtain a uv-coincident realization (G, p) of G by putting p(u) =
p(v) = puv(z) and p(x) = puv(x) for all x ∈ V − {u, v}. Furthermore, each vector
in the kernel of R(Guv, puv) determines a vector in the kernel of R(G, p) in a natural
way. It follows that

dimKerR(G, p) ≥ dimKerR(Guv, puv). (2)

We can use this fact to prove that uv-independence implies independence inMuv(G).
The reverse implication will be verified in the next section.

Lemma 9. Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. If G is
uv-independent then E is independent in Muv(G).
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Section 3. Inductive constructions 10

Proof. Let (G, p) be an independent uv-coincident realization of G. Independence
implies that i(H) ≤ val(H) holds for all H ⊆ V with |H| ≥ 2. Since p(u) = p(v),
uv /∈ E follows.

Let H = {X1, . . . , Xk} be a uv-compatible family and consider the subgraph F =
(∪ki=1Xi,∪ki=1E(Xi)). By contracting the vertex pair u, v in F we obtain the graph Fuv,
in which Huv = {X1/{u, v}, . . . , Xk/{u, v}} is a cover. Thus r(Fuv) ≤

∑k
i=1(2(|Xi| −

1) − 3). This bound and (2) imply that dimKerR(F, p) ≥ dimKerR(Fuv, puv) ≥
2(| ∪k

i=1 Xi| − 1)−
∑k

i=1(2|Xi| − 5). Since (G, p) is uv-independent, we have

iF (H) = |F | ≤ 2

∣∣∣∣∣
k⋃

i=1

Xi

∣∣∣∣∣−
(

2

(
|

k⋃
i=1

Xi| − 1

)
−

k∑
i=1

(2|Xi| − 5)

)
=

k∑
i=1

(2|Xi| − 3)− 2(k − 1) = val(H).

Thus E is independent in Muv(G), as claimed. �

3 Inductive constructions

The (two-dimensional versions of) the well-known Henneberg operations are as follows.
Let G = (V,E) be a graph. The 0-extension operation (on a pair of distinct vertices
a, b ∈ V ) adds a new vertex z and two edges za, zb to G. The 1-extension operation
(on edge ab ∈ E and vertex c ∈ V − {a, b}) deletes the edge ab, adds a new vertex z
and edges za, zb, zc.

We shall need the following specialized versions. Let u, v ∈ V be two distinct
vertices. The 0-uv-extension operation is a 0-extension on a pair a, b with {a, b} 6=
{u, v}. The 1-uv-extension operation is a 1-extension on some edge ab and vertex c
for which {u, v} is not a subset of {a, b, c}. The inverse operations are called 0-uv-
reduction and 1-uv-reduction, respectively.

The Henneberg operations preserve independence in the two-dimensional rigidity
matroid, see e.g. [12, Lemma 2.1.3, Theorem 2.2.2]. The same arguments can be used
to verify the next lemma.

Lemma 10. Let G = (V,E) be an uv-independent graph and suppose that G′ is
obtained from G by a 0-uv-extension or a 1-uv-extension. Then G′ is uv-independent.

Lemma 11. Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Suppose
that |E| = 2|V |−3, E is independent inMuv(G), and d(a) ≥ 3 for all a ∈ V −{u, v}.
Then either G = K4 − uv or there is a vertex z ∈ V − {u, v} with d(z) = 3 and
|N(z) ∩ {u, v}| ≤ 1.

Proof. For a contradiction suppose that for all z ∈ V − {u, v} with d(z) = 3 we
have z ∈ N(u) ∩ N(v) and let m denote the number of vertices of degree three in
N(u) ∩N(v). We may assume that m ≤ d(u) ≤ d(v). By our assumptions we have

4|V | − 6 = 2|E| =
∑

d(v) ≥ d(u) + d(v) + 3m + 4(|V | −m− 2)
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u

v

Figure 3: The graph K4 − uv.

= 4|V | −m + d(u) + d(v)− 8 ≥ 4|V |+ d(v)− 8,

which implies that m = d(u) = d(v) = 2 must hold. Let N(u) ∩N(v) = {a, b}. Then
either ab ∈ E and hence G = K4 − uv or U = V − {u, v, a, b} is non-empty and
i(U) ≥ 2|U | − 1 holds, contradicting the fact that E is independent in Muv(G). �

Lemma 12. Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Suppose
that E is independent in Muv(G) and let z ∈ V − {u, v} be a vertex with d(z) = 3
and |N(z) ∩ {u, v}| ≤ 1. Then there is a 1-reduction at z which leads to a graph G′

which is independent in Muv(G
′).

Proof. Let F = {ab /∈ E : a, b ∈ N(z)}, let G1 = G − z + F and G2 = G + F . For
a contradiction suppose that ruv(G1) ≤ ruv(G) − 3. Consider a base B1 of Muv(G1)
which contains the triangle on N(z) and let B2 be a base of Muv(G2) with B1 ⊆ B2.
Since K4 is a circuit of Muv(G2), we have ruv(G2) ≤ ruv(G1) + 2. Thus ruv(G) ≤
ruv(G2) ≤ ruv(G)− 1, a contradiction. �

Theorem 13. Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Then
G is uv-independent if and only if E is independent in Muv(G).

Proof. Necessity follows from Lemma 9. Now suppose that E is independent in
Muv(G). We prove that G is uv-independent by induction on |V |. By extending E to
a base of Muv(G), if necessary, we may assume that |E| = 2|V | − 3 holds. If |V | ≤ 4
then we must have G = K4−uv, which is uv-independent. Thus we may assume that
|V | ≥ 5.

First suppose that there is a vertex w ∈ V − {u, v} with d(w) = 2. Let N(w) =
{a, b}. Clearly, a 6= b holds. If {a, b} = {u, v} then let H = {{u, v, w}, {V −w}}. We
have

2|V | − 3 = |E| = iE(H) ≤ val(H) = 2 · 3− 3 + 2(|V | − 1)− 3− 2 = 2|V | − 4,

a contradiction. Hence {a, b} 6= {u, v}, which implies that the 0-uv-reduction opera-
tion can be applied at w to obtain a graph G′ = (V −w,E ′) that is independent in the
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matroidMuv(G
′) and satisfies |E ′| = 2|V −w|−3. By induction, G′ is uv-independent.

Now Lemma 10 implies that G is uv-independent.
Next suppose that there is no vertex of degree two in G. By Lemmas 11 and 12 we

may apply the 1-uv-reduction operation at some vertex z of degree three to obtain
a graph G′ = (V − w,E ′) that is independent in the matroid Muv(G

′) and satisfies
|E ′| = 2|V −w| − 3. By induction G′ is uv-independent. Lemma 10 implies that G is
uv-independent. This completes the proof. �

As a by-product of the proof of Theorem 13 we obtain the following corollary.

Theorem 14. Let G = (V,E) be a graph with |E| = 2|V | − 3 and let u, v ∈ V be
distinct vertices. Then G is uv-independent if and only if G can be obtained from
K4 − uv by a sequence of 0-uv-extensions and 1-uv-extensions.

3.1 Main result

Theorem 15. Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Then
G is uv-rigid if and only if G− uv and Guv are both rigid.

Proof. Necessity follows from the fact that an infinitesimally rigid uv-coincident
realization of G gives rise to an infinitesimally rigid realization of G − uv as well as
Guv, by (2).

To prove sufficiency, suppose, for a contradiction, that G − uv and Guv are both
rigid but G is not uv-rigid. By Theorems 8 and 13 this implies that there is a thin
cover K of G − uv with val(K) ≤ 2|V | − 4. If K consists of subsets of V only then
r(G− uv) ≤ 2|V | − 4 follows, which contradicts the fact that G− uv is rigid.

Hence K = {H, H1, . . . , Hk}, where H = {X1, . . . , Xl} is a uv-compatible family.
Contract the vertex pair u, v in G into a new vertex zuv. This leads to a graph Guv

and a cover
K′ = {X ′1, . . . , X ′l , H1, . . . , Hk}

of Guv, where X ′j is obtained from Xj by replacing u, v by zuv, for 1 ≤ j ≤ l. Then
we obtain

k∑
i=1

(2|Hi| − 3) +
l∑

j=1

(2|X ′j| − 3) =
k∑

i=1

(2|Hi| − 3)+

+
l∑

j=1

(2|Xj| − 3)− 2l = val(K)− 2 ≤ 2|V | − 4− 2 = 2(|V | − 1)− 4,

which implies that Guv is not rigid, a contradiction. This completes the proof. �

A similar proof can be used to verify the following more general result:

Theorem 16. Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Then
ruv(G) = min{r(G− uv), r(Guv) + 2}.

Theorems 15 and 16 show that the polynomial-time algorithms for computing the
rank of a graph in the two-dimensional rigidity matroid (see e.g. [1]) can be used to
test whether G is uv-rigid, or more generally, to compute ruv(G).
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4 An obstacle for minimal uv-rigidity

We may also obtain a characterization of minimally uv-rigid graphs which is similar
to the obstacle-based characterization for the collinear problem given in Theorem 1.

Theorem 17. Let G = (V,E) be a minimally rigid graph and let u, v ∈ V be distinct
vertices. Suppose that uv /∈ E. Then the following statements are equivalent:
(i) G is uv-rigid,
(ii) there is no subgraph G′ = (V ′, E ′) of G with {u, v} ⊆ V ′ and |E ′| = 2|V ′|− (3+s)
such that G′ − {u, v} has at least s + 2 components, for s = 0 or s = 1.

Proof. First suppose that there is a subgraph G′ = (V ′, E ′) of G with |E ′| =
2|V ′| − (3 + s) for which G′−{u, v} has at least s+ 2 components, for s = 0 or s = 1.
Let G1 = (E1, V1), . . . , Gt = (Et, Vt) be the components of G − {u, v}. Consider the
following cover of G:

K = {{Vi ∪ {u, v} : 1 ≤ i ≤ t}} ∪ {{vp, vq} : vpvq ∈ E − E ′}.

Since t ≥ s + 2, we obtain

ruv(E) ≤
t∑

i=1

(2|Vi + {u, v}| − 3)− 2(t− 1) + |E −E ′| =
t∑

i=1

2|Vi| − t+ 2 + |E −E ′| =

= 2|(
t⋃

i=1

Vi) ∪ {u, v}| − (t + 2) + |E − E ′| ≤ 2|V ′| − (s + 4) + |E − E ′| < |E|.

Thus G is not uv-independent (and hence not uv-rigid) by Lemma 9. Hence (i) implies
(ii).

Next suppose that G is not uv-rigid. Then, by Theorems 8 and 13, there is a thin
cover K0 of G with val(K0) ≤ 2|V |−4. Since G is rigid, K0 = {H, H1, . . . , Hk}, where
H = {X1, . . . , Xl} is a uv-compatible family with l ≥ 2. Since K0 is thin, the set {u, v}
separates the subgraph G′ = (V ′, E ′), where V ′ = V (H) and E ′ = E(H) = E(V ′).

We claim that by choosing K0 so that the number of its members is maximized, we
have i(Hi) = 2|Hi| − 3 for all 1 ≤ i ≤ k and i(Xi) ≥ 2|Xi| − 4 for all 1 ≤ j ≤ l. The
claim follows by observing that we can replace a set Hi or Xj violating these counts
by the pairs of end-vertices of the edges it covers to obtain another cover with the
same or smaller value. (If Xj ∈ H then we also remove Xj from the uv-compatible
family.) Furthermore, since G is independent and uv /∈ E, there can be at most one
Xi ∈ H with E(Xi) = 2|Xi| − 3, c.f. Lemma 6.

If there is a Xi ∈ H with E(Xi) = 2|Xi| − 3 then it is easy to see that we have
|E ′| = 2|V ′| − 3. Since l ≥ 2, G′ − {u, v} has at least two components.

If E(Xi) = 2|Xi| − 4 for all 1 ≤ i ≤ l then we have |E ′| = 2|V ′| − 4 and l ≥ 3. To
see the latter inequality suppose that l = 2 and take the cover K3 = {H1, . . . , Hk} ∪
{{na, nb} : nanb ∈ E(X1)}∪{{na, nb} : nanb ∈ E(X2)}. We have val(K3) = val(K0) <
2|V | − 3. Since there is no uv-compatible family in K3, this contradicts the fact that
G is rigid. Hence l ≥ 3, as claimed, which implies that G′ − {u, v} has at least three
components. Thus (ii) implies (i). �
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Finally we remark that it may be interesting to see whether our results imply that
if G is minimally rigid on at least four vertices then there is a pair u, v for which G is
uv-rigid, c.f. [4, Corollary 4.4].
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