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PPAD-completeness of polyhedral versions of
Sperner’s Lemma

Tamás Király? and Júlia Pap??

Abstract

We show that certain polyhedral versions of Sperner’s Lemma, where the
colouring is given explicitly as part of the input, are PPAD-complete. The proofs
are based on two recent results on the complexity of computational problems
in game theory: the PPAD-completeness of 2-player Nash, proved by Chen and
Deng, and of Scarf’s Lemma, proved by Kintali. We show how colourings of
polyhedra provide a link between these two results.

1 Introduction

1.1 Polyhedral versions of Sperner’s Lemma

Sperner’s Lemma on the existence of a multicoloured triangle in a suitable colouring
of a triangulation has many versions and generalizations. We consider a variant of
the standard n-dimensional Sperner Lemma, formulated in terms of colourings of n-
dimensional polytopes, see for example [9]. Given a colouring of the vertices of a
polytope by n colours, a facet is called multicoloured if it contains vertices of each
colour.

Theorem 1.1. Let P be an n-dimensional polytope, with a simplex facet F0. Suppose
we have a colouring of the vertices of P by n colours such that F0 is multicoloured.
Then there is another multicoloured facet.

This theorem leads naturally to a computational problem where the task is to find
a multicoloured facet different from F0.

Polytopal Sperner

Input: vectors vi ∈ Qn (i = 1, . . . ,m) whose convex hull is a full-dimensional poly-
tope P ; a colouring of the vertices by n colours; a multicoloured simplex facet
F0 of P .
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1.1 Polyhedral versions of Sperner’s Lemma 2

Output: n affine independent vectors vi1 , . . . , vin with different colours which lie on
a facet of P different from F0.

Obviously, the polar version of the theorem is also true, and the resulting compu-
tational problem is equivalent. A vertex of a full-dimensional polyhedron is called
simple if it is on exactly n facets.

Polar polytopal Sperner

Input: a matrix A ∈ Qn×n and a vector b ∈ Qn, such that the polyhedron P = {x :
Ax ≤ b} is bounded and full-dimensional; a colouring of the facets by n colours;
a multicoloured simple vertex v0 of P .

Output: a multicoloured vertex of P different from v0.

A related but slightly different version of Sperner’s Lemma was introduced by the
authors in [9]. Recall that the extreme directions of a polyhedron are the extreme
rays of its characteristic cone.

Theorem 1.2. Let P be an n-dimensional pointed polyhedron whose characteristic
cone is generated by n linearly independent vectors. If we colour the facets of the
polyhedron by n colours such that facets containing the i-th extreme direction do not
get colour i, then there is a multicoloured vertex.

This version is practical since it provides a way to give short and transparent
proofs of several known combinatorial and game theoretic results, see [8, 9, 10]. The
corresponding computational problem is the following.

Extreme direction Sperner

Input: matrix A ∈ Qm×n and vector b ∈ Qm such that P = {x : Ax ≤ b} is a pointed
polyhedron whose characteristic cone is generated by n linearly independent
vectors; a colouring of the facets by n colours such that facets containing the
i-th extreme direction do not get colour i.

Output: a multicoloured vertex of P .

In this note we show, using recent developments on the computational complexity of
problems in game theory, that the following two natural special cases of this problem
are already PPAD-complete.

0-1 extreme direction Sperner

Input: matrix A ∈ {0, 1}m×n with no all-0 column; a colouring of the facets of
P = {x : Ax ≤ 1, x ≤ 1} by n colours such that facets with extreme direction
−ei do not get colour i.

Output: a multicoloured vertex of P .
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1.2 The class PPAD and PPAD-completeness 3

Extreme direction Sperner with 2n facets

Input: a matrix A ∈ Qn×n
+ ; a colouring of the facets of the polyhedron P = {x :

Ax ≤ 1, x ≤ 1} by n colours such that facets with extreme direction −ei do not
get colour i and every colour appears exactly twice.

Output: a multicoloured vertex of P .

We also show that extreme direction Sperner provides a link between the
complexity of Scarf’s Lemma and that of finding Nash equilibria in 2-player games.

1.2 The class PPAD and PPAD-completeness

The complexity class PPAD is defined as the set of total search problems which are
Karp-reducible to its prototypical problem, end of the line, which is the following.

End of the line

Input: a directed graph on {0, 1}n given implicitly by an algorithm (described for
example as a Turing machine) with running time polynomial in n. It is required
that in the graph, every vertex has at most one out-neighbour and at most
one in-neighbour, and 0 has no in-neighbour, but it has an out-neighbour. The
input of the algorithm describing the graph is a vertex, that is, an n-bit binary
string, and its output is the out-neighbour and the in-neighbour of the vertex.

Output: any vertex in {0, 1}n \ {0} that has degree 1 (where the degree is the in-
degree plus the out-degree).

A problem in PPAD is called PPAD-complete if every other problem in PPAD is
Karp-reducible to it. The class PPAD was introduced by Papadimitriou [11], who
proved among other results that a computational version of 3D Sperner’s Lemma is
PPAD-complete. Later Chen and Deng [2] proved that the 2 dimensional problem is
also PPAD-complete. The input of these computational versions is the description of
a polynomial algorithm that computes a legal colouring, while the number of vertices
to be coloured is exponential in the input size. This is conceptually different from
the computational problems that we consider, where the input explicitly contains the
vertices or facets of a polyhedron and their colouring. In these problems the difficulty
lies not in the large number of vertices but in that the structure is encoded as a
polyhedron. We note that in fixed dimension they are solvable in polynomial time
since then the number of facets is polynomial in the number of vertices.

For a long time it had been open to find natural PPAD-complete problems that
do not have a description of a Turing machine in their input. In 2006, Daskalakis,
Goldberg and Papadimitriou [1] proved that approximating Nash-equilibria in 4-player
games is PPAD-hard. Building on their work, Chen and Deng [4] managed to prove
the same for 2-player Nash-equilibria, which is considered a breakthrough result in the
area. In another line of research, Kintali [7] proved that the computational version of
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Section 2. Membership in PPAD 4

Scarf’s Lemma (Theorem 4.3) is PPAD-complete, along with other related problems,
see [6].

In this paper we give natural PPAD-complete polyhedral problems that do not have
descriptions of algorithms in their input. We show that these problems are related
both to the Nash-equilibrium results and to Scarf’s lemma, thus providing a link
between these two game-theoretic computational problems.

First, we show that our problems belong to the class PPAD. Then in Section 3 we
use the results of Kintali [7] to show that 0-1 extreme direction Sperner is
PPAD-complete even in the case when each row of A contains at most three 1s. In
contrast, the problem is solvable in polynomial time if each row contains at most two
1s. Finally, in Section 4 we prove using the result of Chen and Deng [4] that extreme
direction Sperner with 2n facets is PPAD-complete. We also show that this
problem is in fact a special case of Scarf, thus providing an alternative proof of its
PPAD-completeness.

2 Membership in PPAD

Proposition 2.1. Polytopal Sperner is in PPAD.

Proof. We reduce it to the problem end of the line. We can compute in polynomial
time a perturbation of the vertices in the input such that every facet of the convex hull
of the perturbed vertices is a simplex, and every facet (as a vertex set) is a subset of an
original facet. Assume that the set of colours is [n]. We define a digraph whose nodes
are the facets that contain all colours in [n − 1] (formally, we may associate a node
to each n-tuple of vertices, all other nodes being isolated). Each (n− 2)-dimensional
face with all colours in [n− 1] is in exactly two facets. We can say that one of them
is on the left side of the face and the other is on the right side, with respect to a
fixed orientation: we compute the sign of the two determinants of the vectors going
from a fixed inner point of P to the n− 1 vertices of the (n− 2)-dimensional face (in
the order according to the colours) and the n-th vertex of the two facets; the facet
whose determinant is positive is on the left side, the other is on the right. For each
such (n − 2)-dimensional face, we introduce an arc from the node corresponding to
the facet on the left side to the node corresponding to the facet on the right side.

The obtained digraph has in-degree and out-degree at most 1 in every node, and
the neighbours of a node can be computed in polynomial time. A node has degree 1
if and only if the corresponding facet is multicoloured. We may assume without loss
of generality that the node corresponding to F0 is a source, so the solution of end of
the line for this digraph corresponds to finding a multicoloured facet different from
F0.

Proposition 2.2. Extreme direction Sperner is in PPAD.

Proof. We prove that extreme direction Sperner is Karp-reducible to poly-
topal Sperner. Suppose that matrix A and vector b are an instance of extreme
direction Sperner and let P = {x : Ax ≤ b}. We can translate P so that it con-
tains the origin in its interior. In this case its polar P∆ is a polytope whose vertices
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Section 3. PPAD-completeness of 0-1 extreme direction Sperner 5

can be obtained easily from A and b. The colouring of P defines a colouring of the
vertices of P∆ except for the origin which corresponds to the infinite facet of P . Let
us cut off the origin with a hyperplane H – such a hyperplane can be computed in
polynomial time. This way, since the origin is a simple vertex of P , we introduce
exactly n new vertices and a simplex facet. The i-th new vertex lies on the facets
that correspond to all but the i-th extreme direction of P ; let the colour of it be
i. We obtained a colouring of P∆ ∩ H+ (where H+ is the halfspace bounded by H
not containing the origin) which satisfies the criteria, so it is an instance of poly-
topal Sperner. A multicoloured facet of P∆ ∩H+ which is different from P∆ ∩H,
corresponds to a multicoloured vertex of P .

3 PPAD-completeness of 0-1 extreme direction

Sperner

Theorem 3.1. 0-1 extreme direction Sperner is PPAD-complete, even when
every row of A contains at most three 1s.

Proof. The proof is similar to the proof of PPAD-completeness of Scarf by Kintali
[7], and builds on his result that the problem 3-strong kernel defined below is
PPAD-complete. A digraph D = (V,E) is called clique-acyclic if there is no directed
cycle in a clique, whose arcs do not appear reversed. Equivalently, for each clique K,
there is a node v ∈ K whose closed out-neighbourhood contains K (the node itself is
included in the closed out-neighbourhod). A strong fractional kernel of D is a vector
x : V → R+ such that x(K) ≤ 1 for every clique K, and for each node v there is at
least one clique K in the closed out-neighbourhood of v such that x(K) = 1.

3-strong kernel

Input: A clique-acyclic digraph D with maximum clique size at most 3.

Output: A strong fractional kernel of D.

To reduce 3-strong kernel on digraph D = (V,E) to 0-1 extreme direction
Sperner, we assume that V = [n], and consider the polyhedron

P = {x ∈ Rn : x(K) ≤ 1 for every clique K of D}.

Since every clique has size at most 3, the number of cliques is polynomial in n. The
extreme directions of P are −ej (j ∈ [n]). As a set of colours, we use [n]. Let the
colour of the facet x(K) = 1 be a node of K whose closed out-neighbourhood contains
K. This colouring satisfies the criterion in Theorem 1.2, so we have a valid input for
0-1 extreme direction Sperner, and furthermore every row of the describing
system contains at most three 1s. Let x∗ be a mulitcoloured vertex. For each node v,
there is a clique K such that the facet x(K) = 1 contains x∗ and has colour v, hence
K is in the closed out-neighbourhood of v. This means that x∗ is a strong fractional
kernel.
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Section 3. PPAD-completeness of 0-1 extreme direction Sperner 6

Corollary 3.2. Polytopal Sperner and polar polytopal Sperner are PPAD-
complete.

Proof. This follows directly from Proposition 2.1, Proposition 2.2 and Theorem 3.1.

Next we show that three 1s in a row is best possible.

Proposition 3.3. 0-1 extreme direction Sperner can be solved in polynomial
time if every row of A contains at most two 1s.

Proof. Let A be the matrix in the input. We may assume that every row of A contains
exactly two 1s. Consider the graph on node set [n] whose edge-node incidence matrix
is A. The colouring of the facets corresponding to the rows of A determines an
orientation of this graph: let the head of each edge be the colour of the corresponding
facet. Let D denote the resulting directed graph. The goal is to find a vertex of the
polyhedron P = {x ∈ Rn : Ax ≤ 1, x ≤ 1} for which for every i ∈ [n] we have xi = 1
or there is an arc ji of D which is saturated, that is, xj + xi = 1.

If each node has an incoming arc, then the vector z = 1
2
1 is a multicoloured element

of P , because Az = 1, that is, all arcs are saturated. Thus we can find a vertex x∗ of
P for which Ax∗ = 1, which is therefore multicoloured.

If there is a source node i of D, then xi has to be 1, because the only inequality with
colour i is xi ≤ 1. If j is an out-neighbour of i, then to make arc ij saturated, let xj be
0. This guarantees that x lies on facets of every colour in the closed outneighbourhood
of i. We can delete the closed outneighbourhood of i and repeat the above, until we
get a graph with no source node, and set the remaining variables as we did in the case
where each node had an incoming arc.

The above proof works only when the right side of every inequality is 1. If we
remove this restriction, then we obtain an interesting problem on vertex covers of
graphs. For an undirected graph G = ([n], E) and a vector w ∈ NE, a vector x ∈ Nn

is called a w-cover if xi + xj ≥ wij for every ij ∈ E.

Theorem 3.4. Let D = ([n], E) be a directed graph and let w ∈ NE. Then there is
a 2w-cover x of the underlying undirected graph of D such that for every node i with
xi > 0 there is an arc ji with xj + xi = 2wji.

Proof. Let A be the edge-node incidence matrix of the underlying undirected graph
and consider the polyhedron

P = {x ∈ Rn : Ax ≥ 2w, x ≥ 0}.

Let us colour an inequality corresponding to an arc ji with colour i and an inequality
xj ≥ 0 with colour j. Using Theorem 1.2 there is a multicoloured vertex x∗ of P . By
a result of Gallai [5], P is an integer polyhedron. Therefore x∗ is the characteristic
vector of a 2w-cover which by multicolouredness has the desired properties.

Question. Can we find the 2w-cover guaranteed by the theorem in polynomial time?
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The special case when the in-degree of every node is 1 can be solved in polynomial
time.

Proposition 3.5. The 2w-cover in Theorem 3.4 can be found in polynomial time in
the case when each node has in-degree 1 in D.

Proof. Let us first assume that D is a directed cycle, and the nodes are indexed
according to the cyclic order. We can check in polynomial time if there is a nonnegative
2w-cover x where every arc is tight, that is, xi + xi+1 = 2wi,i+1 for every i ∈ [n]. If
there is no such 2w-cover, then there must be a node i where xi = 0. We claim that
if xi = 0, then this uniquely determines the next node j in the order where xj = 0.
Suppose for convenience that x0 = 0. Then x1 has to be 2w0,1. Thus x2 has to be the
minimum of 0 and 2w1,2−2w0,1, and so forth, xi has to be wi−1,i−wi−2,i−1+− · · ·±w0,1,
so far as these values are positive. If we reach a node i where this value is negative
or 0, we have to set xi to 0, and then repeating the above we get the values of the
forthcoming nodes. If we determined all the xi values, then the edge n1 is either
covered, in which case we are done, or not. Since Theorem 3.4 guarantees a solution,
thus by trying all possible starting points, we will find a solution.

In the general case each component of D contains one directed cycle and some
arborescences rooted on nodes of the cycle. First we solve the problem restricted to
the cycle, then we can traverse the arborescences starting from the root; the values
are uniquely determined and we get a solution.

We note that the prescription of in-degree 1 means that the corresponding polyhe-
dron has 2n facets and each colour appears exactly twice. This leads us to the topic
of the next section.

4 PPAD-completeness of extreme direction

Sperner with 2n facets

It is a well-known result in game theory that finding a symmetric Nash equilibrium
in a symmetric finite 2-player game is as hard as finding a Nash equilibrium in a not
necessarily symmetric 2-player game. A nice property of symmetric games is that
symmetric Nash equilibria can be characterized as vertices of a polyhedron having
a certain complementarity property. Thus the search problem for symmetric finite
2-player games can be described as follows.
Symmetric 2-Nash

Input: a matrix A ∈ Qn×n
+ , such that the polyhedron P = {x : Ax ≤ 1, x ≥ 0} is

bounded and full-dimensional.

Output: a nonzero vertex v of P with the property that aiv = 1 whenever vi > 0,
where ai is the i-th row of A.

The results of Chen and Deng [4] imply the following.
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Section 4. PPAD-completeness of extreme direction Sperner with 2n facets 8

Theorem 4.1 ([4]). Symmetric 2-Nash is PPAD-complete.

We can observe that symmetric 2-Nash is a special case of polar polytopal
Sperner: if we colour the facet corresponding to the i-th row of A by colour i,
and also the facet xi ≥ 0 by colour i, we can set v0 to be 0 since it is a simple
and multicoloured vertex, and a nonzero multicoloured vertex v clearly satisfies that
aiv = 1 whenever vi > 0.

In the following, we prove that symmetric 2-Nash is Karp-reducible to a special
case of extreme direction Sperner with 2n facets, which turns out to be a
special case of Scarf.

Theorem 4.2. Extreme direction Sperner with 2n facets is PPAD-complete.

Proof. We reduce symmetric 2-Nash to it. Let A ∈ Qn×n
+ define an instance of

symmetric 2-Nash, and let P = {x : Ax ≤ 1, x ≥ 0}. The vertex 0 is simple, so it
has n neighbouring vertices v1, . . . , vn, which furthermore have the form vi = λiei for
some λi > 0. These vertices can be computed in polynomial time, and we can check
if one of them satisfies the conditions. We can assume that none of them does, that
is, aiv

i < 1 (i ∈ [n]).
Let P0 = {x : Ax ≤ 1, x ≥ 0,

∑n
j=1

1
λj
xj ≥ 1}, which is the convex hull of the

vertices of P except for the origin. The new facet F0 contains the vertices v1, . . . , vn.
We can translate P0 so that it contains the origin in its interior. In this case its

polar P∆
0 is a polytope; its vertices can be computed. Let w0 be the vertex of P∆

0

corresponding to F0, and let F1, . . . , Fn denote the facets of P∆
0 corresponding to the

vertices v1, . . . , vn.
Let w1, . . . , wn be the vertices of P∆

0 adjacent to w0, indexed such that wi is not
on facet Fi. We can apply an affine transformation that takes w0 to 0 and wi to ei
(i ∈ [n]); let Q be the resulting polytope. The polar Q∆ is a polyhedron of the form
{x : Ax ≤ 1, x ≤ 1}.

Let us take the colouring of P that we used for polar polytopal Sperner: the
facet corresponding to the i-th row of A and the facet xi ≥ 0 has colour i. This
colouring induces a colouring of the facets of Q∆ according to the two polarities.
Clearly every colour appears exactly twice. We claim that the facets with extreme
direction−ei do not get colour i. A facet ofQ∆ with extreme direction−ei corresponds
to a vertex of P∆

0 on facet Fi, which in turn corresponds to a facet of P containing
vertex vi. Since vii > 0 and aiv

i < 1, no facet containing vi has colour i.
Suppose that we can find a multicoloured vertex v of Q∆. By a similar argument as

above, this corresponds to a multicoloured vertex of P , which completes the proof.

We close this section by showing a relation between extreme direction Sperner
with 2n facets and Scarf’s Lemma [12]. In Scarf’s Lemma we consider a bounded
polyhedron P = {x ∈ Rn : Ax ≤ b, x ≥ 0}, where A is an m× n nonnegative matrix
(with non-zero columns) and b ∈ Rm is a positive vector. In addition, for every row ai
of A (i ∈ [m]), a total order <i of supp(ai) is given. If j ∈ supp(ai) and K ⊆ supp(ai),
we use the notation j ≤i K as an abbreviation for “j ≤i k for every k ∈ K”.
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Section 4. PPAD-completeness of extreme direction Sperner with 2n facets 9

A vertex x∗ of P dominates column j if there is a row i where aix
∗ = bi and

j ≤i supp(x∗)∩supp(ai) (this implies that j ∈ supp(ai)). A vertex x∗ of P is maximal
if by increasing any coordinate of x∗ we leave P (or formally, ({x∗}+Rn

+)∩P = {x∗}).

Theorem 4.3 (Scarf’s Lemma [12]). Let P = {x ∈ Rn : Ax ≤ b, x ≥ 0} and let <i

be a total order on supp(ai) (i ∈ [m]), where ai is the i-th row of A. Then P has a
maximal vertex that dominates every column.

It was shown by Kintali [7] that the following computational version of Scarf’s
Lemma is PPAD-complete.

Scarf

Input: a matrix A ∈ Qm×n
+ and a vector b ∈ Qm

+ ; a total order <i on supp(ai) for
every i ∈ [m].

Output: a maximal vertex of P = {x ∈ Rn : Ax ≤ b, x ≥ 0} that dominates every
column.

Proposition 4.4. Extreme direction Sperner with 2n facets is a special
case of Scarf.

Proof. Let us consider an instance (A, c) of extreme direction Sperner with
2n facets, where ci is the colour of the facet determined by the i-th row. We can
assume without loss of generality that all vertices of P = {x : Ax ≤ 1, x ≤ 1}
are strictly positive, since we can get an equivalent problem of the same form by
scaling from center 1. We can transform this into an instance (A′, b′, <) of Scarf by
setting A′ =

(
A
I

)
, b′ = 1, and defining <i to be an arbitrary total order on supp(ai)

whose smallest element is ci (the order of the other elements does not matter). Let
P ′ = {x ∈ Rn : A′x ≤ b′, x ≥ 0}.

If v is a multicoloured vertex of P , then for every j ∈ [n], either vj = 1, or there is
an index i such that aiv = 1, j ∈ supp(ai) and ci = j. This means that v dominates
every column according to <. It is also a maximal vertex of P ′ since it is a vertex of
P .

It is easy to check (using that every vertex of P is strictly positive) that the reverse
also holds: any dominating maximal vertex of P ′ is a multicoloured vertex of P .

An interesting observation is that we obtain a special case of Scarf where the
total orders <i do not play any role apart from designating a single element from
supp(ai). Therefore the hardness of Scarf is not due to the extra structure given by
total orders (compared to colouring).

It is natural to ask whether the problem remains PPAD-complete if we restrict it
to 0-1 matrices. We pose this as an open question.

Question. Is 0-1 extreme direction Sperner PPAD-complete in the special case
when A is an n× n matrix and every colour appears exactly twice?
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