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The triangle-free 2-matching polytope of subcubic
graphs⋆

Kristóf Bérczi⋆⋆

Abstract: The problem of determining the maximum size of aCk-free 2-
matching (that is, a2-matching not containing cycles of lengthk) is a much
studied question of matching theory. Cornuéjols and Pulleyblank showed that
deciding the existence of aCk-free 2-factor is NP-complete fork ≥ 5, while
Hartvigsen gave an algorithm for the triangle-free case (k = 3). The existence
of aC4-free 2-matching is still open.

The description of theCk-free2-matching polytope is also of interest. Király
showed that finding a maximum weight square-free 2-factor isNP-complete
even in bipartite graphs with0− 1 weights, hence we should not expect a nice
polyhedral description fork ≥ 4. However, imposing the condition that the
graph has maximum degree 3, these problems become considerably easier. The
polyhedral description of the triangle-free 2-factor and 2-matching polytopes of
subcubic simple graphs was given by Hartvigsen and Li. In this paper, we give
slight generalizations of their nice results by using a shrinking method inspired
by Edmonds’ maximum matching algorithm.

Considering the general case, a new class of valid inequalities for the triangle-
free 2-matching polytope is introduced. With the help of these inequalities,
we propose a conjecture for the polyhedral description of the triangle-free 2-
matching polytope of simple graphs.

1 Introduction

A cornerstone of matching theory is Edmonds’ [7] description of the perfect matching poly-
tope, the convex hull of incidence vectors of perfect matchings of a graphG = (V,E).

Theorem 1.1.The perfect matching polytope is determined by

(i) xe ≥ 0 (e ∈ E),

(ii) x(δ(v)) = 1 (v ∈ V ), (P1)

(iii) x(δ(K)) ≥ 1 (K ⊆ V, |K| odd).
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⋆⋆MTA-ELTE Egerváry Research Group on Combinatorial Optimization (EGRES), Operations Research
Department, Eötvös Loránd University, Budapest, Hungary (berkri@cs.elte.hu).
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Section 1. Introduction 2

Here δ(K) denotes the set of edges having exactly one end inK. Observe that the
incidence vector of a perfect matching satisfies all these conditions. The theorem yields
that the set of vertices of the above polytope is identical tothe set of incidence vectors of
perfect matchings.

A natural generalization of perfect matchings areb-factors, with 1-factors being perfect
matchings. Given a graphG = (V,E) and a degree prescriptionb : V → Z+ on the nodes,
a b-factor is a subsetM ⊆ E of edges such thatdM(v), the number of edges inM incident
to v, equalsb(v) for eachv ∈ V . This is often calledsimple b-factor in the literature,
since multiple copies of the same edge are not allowed. If notstated otherwise, allb-factors
considered will be simple throughout the paper. We callK ⊆ V, F ⊆ δ(K) apair if F does
not contain loops (by notation, this only means restrictionin case of|K| = 1). The pair is
odd if b(K)+ |F | is odd. Theb-factor polytope is the convex hull of the incidence vectors
of b-matchings ofG. In the same paper [7], Edmonds gave the following characterization
of theb-factor polytope.

Theorem 1.2.Theb-factor polytope is determined by

(i) 0 ≤ xe ≤ 1 (e ∈ E),

(ii) x(δ̇(v)) = b(v) (v ∈ V ), (P2)

(iii) x(δ(K) \ F )− x(F ) ≥ 1− |F | ((K,F ) odd).

Note thatb(K) =
∑

v∈K b(v), while δ̇(v) denotes the family of edges incident tov ∈ V ,
that is, any loop atv occurs twice inδ̇(v). The set of loops atv ∈ V is denoted byl(v).

A closely related concept isb-matching, where instead ofdF (v) = b(v), only dF (v) ≤
b(v) is required. A polyhedral description ofb-matchings can easily be derived form Theo-
rem 1.2.

Theorem 1.3.Theb-matching polytope is determined by

(i) 0 ≤ xe ≤ 1 (e ∈ E),

(ii) x(δ̇(v)) ≤ b(v) (v ∈ V ), (P3)

(iii) x(E[K]) + x(F ) ≤ ⌊ b(K)+|F |
2

⌋ ((K,F ) odd).

We refer the reader to Part III, in particular, Chapters 30-33 of Schrijver [14] for a detailed
discussion ofb-matchings andb-factors.

Results onb-factors can be reduced to perfect matchings via a simple construction. Given
a graphG = (V,E), construct a new graphG′ = (V ′, E ′) as follows. Introduceb(v)
vertices for each nodev ∈ V . For each edgee = uv ∈ E, introduce two verticespe,u and
pe,v, an edgepe,upe,v, and edges connectingpe,u to all b(u) copies ofu and connectingpe,v
to all b(v) copies ofv. It is not difficult to see thatG′ contains a perfect matching if and only
if G contains ab-factor. Using this correspondence, results on matchings can be extended
to b-factors, including Theorem 1.2, which thus deduces from Theorem 1.1. To the extent
of our knowledge, all previous proofs of Theorem 1.3 used this correspondence.

An important subclass ofb-factors are2-factors, decompositions of a graph to disjoint
union of cycles. Hamiltonian cycles being 2-factors, it is anatural question looking at spe-
cial 2-factors not containing short cycles. AC≤k-free 2-factor is a2-factor not containing
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Section 1. Introduction 3

cycles of length at mostk. Cornuéjols and Pulleyblank [5] showed that deciding the exis-
tence of such a subgraph is NP-complete fork ≥ 5. On the other hand, Hartvigsen gave a
difficult algorithm for the triangle-free case (k = 3) in his Ph.D. thesis [8]. The existence of
aC≤4-free orC4-free 2-matching is still open (in the latter problem, triangles are allowed).
Yet imposing the condition that the graph is subcubic (that is, the maximum degree ofG is
3), these problems become solvable, see [2, 3].

Considering the maximum weight version of the problems, there is a firm difference
between triangle- and square-free 2-factors. Király showed [11] that finding a maximum
weight square-free 2-factor is NP-complete even in bipartite graphs with0− 1 weights. On
the other hand, for subcubic graphs, polynomial-time algorithms were given by Hartvigsen
and Li [9], and by Kobayashi [12] for the weightedC3-free2-factor problem with an arbi-
trary weight function. The former result implies that we should not expect a nice polyhedral
description of the square-free2-factor polytope. However, solvability of the triangle-free
case was a main motivation of our result.

The existence of triangle-free 2-matchings becomes significantly harder without assum-
ing the graph is subcubic. Yet if instead of (simple) 2-factors, we look at the problem of
uncapacitated 2-factors, when we are allowed to use two copies of the same edge, there
exists a polyhedral description for arbitrary graphs, given by Cornuéjols and Pulleyblank
[6]. Let T be a set consisting of triangles ofG. The node-set and the edge-set of a triangle
T ∈ T are denoted byVT andET , respectively. An (uncapacitated)2-factor is calledT -free
if it contain at most two edges (counted by multiplicity) of any member ofT . Cornuéjols
and Pulleyblank proved the following.

Theorem 1.4.The convex hull ofT -free uncapacitated 2-factors is determined by

(i) 0 ≤ xe (e ∈ E),

(ii) x(δ̇(v)) = 2 (v ∈ V ), (P4)

(iii) x(ET ) ≤ 2 (T ∈ T ).

[6] also proves that this description is totally dual integral.
Returning to our subject, Hartvigsen and Li gave a polyhedral description of the triangle-

free 2-factor polytope for subcubic simple graphs [9].

Theorem 1.5.TheT -free 2-factor polytope of a simple subcubic graph is determined by

(i) 0 ≤ xe ≤ 1 (e ∈ E),

(ii) x(δ̇(v)) = 2 (v ∈ V ),

(iii) x(δ(K) \ F )− x(F ) ≥ 1− |F | (K ⊆ V, F ⊆ δ(K), (P5)

|F | odd),

(iv) x(ET ) = 2 (T ∈ T ).

Their proof is based on shrinking triangles and on a variation of the Basic Polyhedral
Theorem of [4]. In the same paper, they gave a description of the 2-matching polytope as
well and gave a sketch of the proof, which was published in itsfull version in [10].

As we have seen, theb-matching andb-factor polytopes have a similar description. Un-
expectedly, the same does not hold in the triangle-free case. We say that a triangleT 1-fits
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Section 1. Introduction 4

(resp. 2-fits) a setK ⊆ V if |VT ∩ K| = 1 (resp. 2). The special edgeof a trian-
gle T 1-fitting (resp. 2-fitting) the setK is the edgee ∈ ET having exactly0 (resp. 2)
end-nodes inK, and is denoted byeT . Given a setT of forbidden triangles, the set of
triangles 1-fitting (resp. 2-fitting)K is denoted byT 1

K (resp. T 2
K) while TK stands for

T 1
K ∪ T 2

K . (K,F,T) is called atriplet of Type i if K ⊆ V , F ⊆ δ(K), T ⊆ T i
K are such

thatF ∩ ET = ∅, the triangles inT are edge-disjoint andF does not contain loops. A
triplet is calledodd if b(K) + |F | + |T| is odd. Thedeficiencyof a triplet is defined by
def(K,F,T) = x(E[K]) + x(F ) +

∑

T∈T x(ET )− ⌊1
2
(b(K) + |F |+ 3|T|)⌋.

K

: edges inE[K] \ ET and inδ(K) \ (F ∪ ET)

: edges inF

: triangles inT

K

2

2 2

2

2

2

1
1

1

1

2 : a node and itsb-value

Figure 1: Odd triplets of Type 1 and 2

The fundamental result of Hartvigsen and Li is the following([9, 10]).

Theorem 1.6. TheT -free 2-matching polytope of a simple subcubic graph is determined
by

(i) 0 ≤ xe ≤ 1 (e ∈ E),

(ii) x(δ̇(v)) ≤ 2 (v ∈ V ),

(iii) x(E[K]) + x(F ) +
∑

T∈T x(ET ) ≤ |K|+ ⌊ |F |+3|T|
2

⌋ ((K,F,T) odd (P6)

triplet of Type 2),

(iv) x(ET ) ≤ 2 (T ∈ T ).

Their proof is algorithmic and uses, in some sense, an Edmonds-style matching algo-
rithm consisting of clever triangle alteration and alternating forest growing. The algorithm
alternates between a primal and a dual phase, and a quite complex dual change is performed
whenever no improvement is found during the forest growing.The algorithm stops when
the primal and dual solutions (that are feasible throughout) satisfy complementary slack-
ness.

In this paper we give new proofs of Theorems 1.5 and 1.6 in a slightly more general form.
Let G = (V,E) be a graph andb : V → Z+ an upper bound on the node-set such that for
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Section 1. Introduction 5

anyT ∈ T and any nodev of T ,

dG(v) ≤ 3, (1)

b(v) = 2. (2)

These settings clearly includes and generalizes the triangle-free2-factor and2-matching
problems in subcubic graphs.

Theorem 1.7. LetG = (V,E), b : V → Z+ andT a collection of triangles satisfying (1)
and (2). Moreover, assume that there are no two forbidden triangles on the same node-set.
TheT -freeb-factor polytope is determined by

(i) 0 ≤ xe ≤ 1 (e ∈ E),

(ii) x(δ̇(v)) = b(v) (v ∈ V ),

(iii) x(δ(K) \ F )− x(F ) ≥ 1− |F | ((K,F ) odd), (P7)

(iv) x(ET ) = 2 (T ∈ T ).

Note that the assumption that no two forbidden triangles share the same node-set is not a
restricting one. Indeed, ifVT1

= VT2
then, by (1) and (2), nob-factor exists inG.

Our main result is the proof of the following theorem which gives a slight generalization
of Theorem 1.6. The method we use here is also inspired by Edmonds’ matching algorithm,
but different from that of [10] and is based on a new shrinkingmethod. We hope that our
proof can be extended to the non-subcubic case as well which is the sole remaining open
problem concerning triangle-free 2-matchings.

Theorem 1.8. LetG = (V,E), b : V → Z+ andT a collection of triangles satisfying (1)
and (2). TheT -freeb-matching polytope is determined by

(i) 0 ≤ xe ≤ 1 (e ∈ E),

(ii) x(δ̇(v)) ≤ b(v) (v ∈ V ),

(iii) x(E[K]) + x(F ) +
∑

T∈T x(ET ) ≤ ((K,F,T) odd (P8)

⌊ b(K)+|F |+3|T|
2

⌋ triplet of Type 2),

(iv) x(ET ) ≤ 2 (T ∈ T ),

(v) x(ET1
∪ ET2

) ≤ 2 (T1, T2 ∈ T , VT1
= VT2

).

Our proof is a natural extension of the proof of Theorem 1.1 given by Aráoz, Cunning-
ham, Edmonds, and Green-Krótki [1] and Schrijver [13]. Assumption (1) here is essential:
the theorem is false if we remove the degree bounddG(v) ≤ 3 on nodes of forbidden
triangles. An example is shown in Section 8.

Throughout the paper we use the following notation. For an undirected graphG = (V,E)
and setX ⊆ V , the subgraph induced byX is denoted byG[X ]. The sets of edges induced
by and having exactly one end inX are denoted byE[X ] and δ(X), respectively. For
disjoint subsetsX, Y of V , E[X, Y ] denotes the set of edges betweenX andY . Also,
d(X, Y ) stands for the number of edges going between disjoint subsetsX andY . For a set
X ⊆ V , X̄ denotesV −X.
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Section 2. Shrinking odd pairs 6

Recall thatδ̇(v) stands for the collection of edges incident tov in which loops atv (whose
set is denoted byl(v)) are included twice. We defined(v) = |δ(v)|, that is, loops onv are
counted twice. For a setX ⊆ V , the set of loops induced byX is denoted byl(X), that is,
l(X) = ∪v∈X l(v). For a nodev ∈ V , we abbreviate the set{v} by v, for example,X − v
stands forX \ {v}. For a nodev ∈ V and edgesF ⊆ E, Fv = δ(v) ∩ F .

We useb(U) =
∑

v∈U b(v) for a functionb : V → Z+ and a setU ⊆ V .
For a setT of triangles,VT andET stand for the set of nodes and edges contained by the

triangles inT, respectively. For an edgee ∈ E, we denote its ends byeu andev. For a
triangleT with VT = {u, v, w} (resp.{t1, t2, t3}) we denote its edges byeTuv, e

T
vw andeTuw

(resp.eT12, e
T
23 andeT13) whereeTij is the edge betweeni andj (resp. ti andtj). Recall that

the special edge of a triangle 1-fitting (resp. 2-fitting) a set K is its edge having 0 (resp. 2)
end-nodes inK.

Sometimes we use these notations with subscripts when only asubsetF ⊆ E is consid-
ered or we work with different graphs simultaneously.

For vectorsx, y ∈ N
n we say thatx is lexicographically larger thany if and only if

there is an1 ≤ i ≤ n such thatxj = yj for each1 ≤ j < i andxi > yi.
The above notation may seem to be overcomplicated. The reason for using such complex

notation is that we do not want to forbid the existence of parallel edges and loops in the
graph. Apart from making the proofs more difficult, these indicate that the introduction of
a precise notation is crucial.

The rest of the paper is organized as follows. In Section, 2 wedefine a shrinking oper-
ation which is then used in Section 3 to prove Theorem 1.2. As an introduction into our
method, we reprove Theorem 1.7 in Section 4. Section 5 extends the shrinking procedures
introduced earlier. With the help of the new operations, we prove Theorem 1.8 in Section
6. Section 7 exhibits an example showing why (1) cannot be omitted from Theorem 1.8.
We also define a new class of inequalities and give a conjecture for the description of the
triangle-free2-matching polytope of simple -not necessarily subcubic- graphs.

2 Shrinking odd pairs

We prove Theorem 1.2 by induction onb(V ), |V | and|E|. In the proof we use a shrinking
operation to get a smaller graph on which the induction step can be applied. Note that
condition(iii) in Theorems 1.2 and 1.7 is required for odd pairs. Ifb(V ) is odd then(V, ∅)
is an odd pair and thus (P2) and (P7) are infeasible. In the sequel we assume thatb(V ) is
even.

Definition 2.1 (Shrinking an odd pair). Shrinking an odd pair(K,F ) consists of the
following operations:

• replaceK by an edgepq with b◦(p) = |F | andb◦(q) = 1,

• defineb◦(v) = b(v) for eachv ∈ V −K,

• replace each edgee with eu ∈ K, ev ∈ V −K by an edgeqev if e ∈ F , otherwise by
pev.
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Section 2. Shrinking odd pairs 7

K V −K V −Kb◦(q) = 1

b◦(p) = |F |

:
:

edges inδ(K) \ F
edges inF

Figure 2: Shrinking an odd pair(K,F )

We usually denote the graph obtained by shrinking an odd pairby G◦ = (V ◦, E◦). By
abuse of notation, each edgee ∈ δ(K) is denoted bye again after shrinking the pair and is
called theimageof the original edge. Hence the intersectionE ∩ E◦ stands for the set of
all edges not induced byK, in other words,E◦ − pq ⊆ E. Similarly,V ◦ \ {p, q} ⊆ V .

Assume thatx ∈ R
E satisfies (P2). An odd pair(K,F ) is calledx-tight if it satisfies

(iii) with equality. When shrinking anx-tight pair, we use the notationx◦ for the image of
x, namely

x◦(e) =

{

x(e) if e ∈ E◦ − pq,

|F | − x(F ) if e = pq.

The main advantage of the shrinking operation is the following.

Lemma 2.2. LetG = (V,E) be a graph withb : V → Z+. Assume thatx ∈ R
E satisfies

(P2) and(K,F ) is anx-tight pair. Thenx◦ satisfies (P2) in G◦ = (V ◦, E◦) with b◦.

Proof. (i) clearly holds for edges different frompq. Concerningpq, x◦(pq) = |F |−x(F ) ≥
0. The tightness of(K,F ) impliesx◦(pq) = |F | − x(F ) = 1− x(δ(K) \ F ) ≤ 1.

For a nodev in V ◦−{p, q}, by the definition of shrinking,x◦(δ̇(v)) = x(δ̇(v)) = b(v) =
b◦(v). Also, x◦(δ̇(p)) = x(F ) + x◦(pq) = |F | = b◦(p). By the tightness of(K,F ),
x◦(δ̇(q)) = x(δ(K) \ F ) + x◦(pq) = 1 = b◦(q).

It only remains to show thatx◦ satisfies(iii) in G◦. First, observe that -assumingb(V )
is even-(Z,H) is an odd pair if and only if(Z̄, H) is also an odd pair. For these two pairs,
condition(iii) is identical.
(iii) immediately follows for odd pairs(Z,H) with Z ⊆ V ◦\{p, q} asx satisfied(iii) in

the original problem. By taking(Z̄, H) instead, it also holds ifp, q ∈ Z. Again by possibly
changingZ to Z̄, it remains to show that(iii) is satisfied ifp ∈ Z, q 6∈ Z.

If pq ∈ H, then addq to Z and deletepq from H. We have previously seen that the odd
pair (Z ′, H ′) = (Z + q,H − pq) satisfies(iii), thus

x(δ(Z) \H)− x(H) = x(δ(Z ′) \H ′)− x(H ′)− x(δ(q))

≥ (1− |H ′|)− 1

= 1− |H|.
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Section 3. Proof of Theorem 1.2 8

If pq 6∈ H, then first consider the case whenF ∩ (δ(Z)\H) 6= ∅. Letf be an edge in this
set. Define(Z ′, H ′) = (Z + q,H + f), which is again an odd pair satisfying(iii). Then

x(δ(Z) \H)− x(H) = x(δ(Z ′) \H ′) + 2x(pq)− x(δ(q)) + 2x(f)

≥ (1− |H ′|) + 2(x(pq) + x(f))− 1

= 1− |H|+ 2(x(pq) + x(f)− 1)

≥ 1− |H|.

For the last inequality, we use thatx(δ(p)) = |F |, and the degree ofp is |F |+ 1. Hencepq
andf , two edges incident top must havex value together at least 1.

If F ∩ (δ(Z) \ H) = ∅, then letF1 = F ∩ H, F2 = F \ H. DefineZ ′ = Z − p,
H ′ = (H \F1)∪F2. (Z ′, H ′) is odd sinceb(Z ′)+ |H ′| = b(Z)+ |H|− |F |− |F1|+ |F2| =
b(Z) + |H| − 2|F1|. As we have seen, the pair(Z ′, H ′) satisfies(iii).

x(δ(Z) \H)− x(H) = x(δ(Z ′) \H ′)− x(H ′) + x(F2) + x(pq)− x(F1)

≥ (1− |H ′|) + x(δ̇(p))− 2x(F1)

≥ (1− |H ′|) + |F | − 2|F1|

= 1− |H|.

This completes the proof.

3 Proof of Theorem 1.2

It is easy to see that eachb-factor satisfies(i) and(ii). To show that(iii) indeed holds for
a b-factorM ⊆ E, add all equalitiesdM(v) = b(v) for v ∈ K. This gives

2|M ∩ E[K]|+ |M ∩ δ(K)| = b(K). (3)

Adding the inequalities|M ∩F | ≤ |F | and−|M ∩ (δ(K)\F )| ≤ 0, we get2|M ∩E[K]|+
2|M ∩ F | ≤ b(K) + |F |. This yields|M ∩ E[K]| + |M ∩ F | ≤ ⌊1

2
(b(K) + |F |)⌋ =

1
2
(b(K) + |F | − 1) since(K,F ) is odd. Subtracting the double of this from (3), we get

|M ∩ (δ(K) \ F )| − |M ∩ F | ≥ 1− |F |, as required.
Recall that we may assume thatb(V ) is even since otherwise there exists nob-factor, and

also the polytope (P2) is empty.
It remains to show that(i), (ii) and(iii) completely determine theb-factor polytope, that

is, anyx ∈ R
E satisfying (P2) is a convex combination of incidence vectors ofb-factors.

Assume that this does not hold. Let us choosex to be a vertex of the polytope described by
(P2) not contained in theb-factor polytope.

We choose this counterexample in such a way that(l(V ), b(V ), |V |, |E|) is lexicograph-
ically minimal. This implies that0 < x < 1 as edges withxe = 0 could be deleted, while
if xe = 1 we can deletee and decrease theb values on its ends by one (ife is a loop on
v then decreaseb(v) by 2). It is easy to see that thex′ andb′ thus obtained would satisfy
(i)−(iii) thus giving a smaller counterexample, a contradiction. Also, it can be shown that,
in presence of parallel edges, the totalx value of parallel edges between two nodes should
be strictly smaller than one.
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Section 3. Proof of Theorem 1.2 9

As b(v) ≥ 1 for eachv ∈ V , each node has degree at least2 in G, so |E| ≥ |V |.
G is connected, otherwise one of its components would be a smaller counterexample. If
|E| = |V |, thenG is an even cycle as it implies thatb ≡ 1 andb(V ) is even. By(ii), x is
alternatelyµ and1− µ for some value0 < µ < 1 on the edges of this cycle, hence it is the
convex combination of the two perfect matchings of the graph, a contradiction.

So |E| > |V |. As x is a vertex, it satisfies|E| linearly independent constraints among
(P2) with equality. From|E| > |V |, there is a tight odd pair(K,F ) linearly independent
from the equalities of form(ii).

Proposition 3.1. For any tight odd pair(K,F ) independent from equalities of form(ii),
the shrinking of(K,F ) results in a lexicographically smaller problem, and the same holds
for (K̄, F ).

Proof. The second part follows by complementingK and by the observation that(K,F ) is
independent from equalities of form(ii) if and only if (K̄, F ) does so.

What we have to prove is that either(A) l(K) 6= ∅, or (B) l(K) 6= ∅ andb(K) > |F |+1,
or (C) l(K) = ∅, b(K) = |F |+ 1 and|K| > 2, or (D) l(K) = ∅, b(K) = |F |+ 1, |K| = 2
andE[K] > 1 as(b(V ), l(V ), |V |, |E|) decreases only in these cases. However, we will
show that either(A), (B) or (C) is satisfied.

We claim thatG[K] is connected. Indeed, assume indirectly thatK = K1 ∪K2 where
K1∩K2 = ∅ and there is no edge betweenK1 andK2. DefineFi = F ∩ δ(Ki) for i = 1, 2.
Then one of the pairs(K1, F1), (K2, F2) is odd while the other is not, say(K1, F1) is odd.
We have

1− |F | = x(δ(K) \ F )− x(F )

= x(δ(K1) \ F1)− x(F1) + x(δ(K2) \ F2)− x(F2)

≥ 1− |F1| − |F2|

= 1− |F |,

thus we have equality everywhere. That means thatx(δ(K2) \F2)−x(F2) = −|F2|, which
is only possible (by0 < x < 1) if δ(K2) = ∅, contradicting the connectivity ofG. Hence
G[K] must be connected.

Assume that(A) does not hold, sol(K) = ∅ and (B) does not hold either, sob(K) ≤
|F |+1. We show thatb(K) = |F |+1 in this case. Otherwiseb(K) ≤ |F | − 1 as(K,F ) is
an odd pair. Asx(F ) ≥ |F | − 1, only b(K) = |F | − 1 ispossible. By0 < x < 1, E[K] = ∅
and so|K| = 1 by the previous observation. IfF = δ(v), the tightness of(K,F ) is
identical tox(δ̇(v)) = b(v), contradicting linear independence. Henceδ(v)\F 6= ∅ and thus
x(δ(v)\F ) > 0. Also,x(F ) ≤ b(v) ≤ |F |−1. Consequently,x(δ(v)\F )−x(F ) > 1−|F |,
a contradiction.

Now we show that|K| ≥ 2. If K = {v} thenx(δ(v) \ F ) ≥ 1 as l(v) = ∅. If
F 6= ∅ thenx(F ) < |F | asx < 1, so(iii) cannot hold with equality. HenceF = ∅ and
x(δ(v)) = 1 = b(v), so the tightness of(K,F ) is identical tox(δ̇(v)) = b(v), contradicting
independence.

Assume that(C) does not hold either, sol(K) = ∅, b(K) = |F | + 1 and|K| = 2. We
show that this leads to contradiction. LetK = {u, v}, and letC be the set of parallel edges
betweenu andv. Then we have
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Section 3. Proof of Theorem 1.2 10

x(δ(K) \ F )− x(F ) = b(u) + b(v)− 2x(C)− 2x(Fu)− 2x(Fv).

As b(u) + b(v) = |F | + 1, eitherb(u) ≤ |Fu| or b(v) ≤ |Fv|, say the first holds. In
this casex(C) + x(Fu) ≤ b(u) ≤ |Fu|, sox(C) + x(Fu) + x(Fv) ≤ |Fu| + |Fv|. Here
Fv = ∅, otherwise strict inequality holds byx < 1, contradicting the tightness of(K,F ).
Then the tightness of the pair can be reformulated asx(δ(u) \ (C)) − 2x(Fu) = 1 − |Fu|.
By subtracting this from equality2x(C) + x(δ(K)) = |F |+ 1, we get2x(C) + x(δ(K) \
δ(u)) + 2x(Fu) = 2|Fu| = 2b(u). But x(C) + x(Fu) ≤ b(u), henceδ(K) \ δ(u) = ∅ and
x(C)+x(Fu) = b(u) = |Fu|, b(v) = 1. That means that the tightness of(K,F ) is identical
to x(δ(u)) = b(u), contradicting linear independence.
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Figure 3: Illustration of the shrinking method

Note that(K̄, F ) is alsox-tight. LetG◦
1 = (V ◦

1 , E
◦
1), b

◦
1, x

◦
1 andG◦

2 = (V ◦
2 , E

◦
2), b

◦
2, x

◦
2

denote the problems we get after shrinking(K,F ) and(K̄, F ), respectively. By Proposi-
tion 3.1, the induction step can be applied, and -by the minimality of G- x◦

i is the convex
combination of incidence vectors ofb◦i -factors ofG◦

i . Note, that ab◦i -factor contains either
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Section 4. Triangle-freeb-factors 11

each edge ofF and exactly one edge fromδ(K) \ F , or all but one edges ofF , the edge
piqi and none of the edges ofδ(K) \ F . We can write these combinations in the form
x◦
1 = 1

k

∑

χMi
andx◦

2 = 1
k

∑

χNj
for somek ∈ Z+, where theMi’s andNj ’s are (not

necessarily distinct)b◦1- andb◦2-factors, respectively (note thatx◦ is rational, being a vertex
of a rational polytope).

Then each edgee ∈ δ(K) \ F is contained in exactlykx(e) number ofMi’s andNj ’s.
Each of them contains the entireF . We can pair theseb-factors and ’glue’ them together to
getkx(e) b-factors ofG containing the edgee. This can be done for each edgee ∈ δ(K)\F .

Similarly, for each edgee ∈ F there are exactlyk(1− x(e)) Mi’s andNj ’s that does not
containe. Notice that these contain all edges inF − e and none inδ(K)− F . Again, pair
and glue these together to getb-factors ofG not containinge.

Theseb-factors altogether yieldx as a convex combination ofb-factors ofG, a contra-
diction.

Remark 3.2. Note that the above proof also gives a new proof of Theorem 1.3by using the
well-known construction given below.

Take a copy ofG denoted byG′ and for eachv ∈ V addb(v) new edges betweenv and
v′. LetG∗ be the graph thus arising and defineb∗(v) = b∗(v′) = b(v). Theorem 1.3 follows
as the restriction of ab∗-matching ofG∗ to G gives ab-matching inG, and the restriction
of theb∗-factor polytope ofG∗ toG gives exactly the polytope described byP3.

4 Triangle-free b-factors

In this section, we extend the proof of Theorem 1.2 to Theorem1.7. Besides shrinking odd
pairs, we also need to shrink triangles. The following shrinking operation appeared in [2].

Definition 4.1 (Shrinking a triangle). AssumeG, b andT satisfy (1) and (2).Shrinking
a triangleT ∈ T consists of the following operations:

• replaceT by a nodet,

• replace each edgee ∈ E \ ET with eu ∈ VT , e
v ∈ V \ VT by an edgetev, and each

edgee ∈ E \ ET with eu, ev ∈ VT by a loope on t,

• let b◦(t) = 2 and defineb◦(v) = b(v) if v 6= t,

• let T ◦ denote the set of triangles inT node-disjoint fromT .

b◦(t) = 2

t1

t2 t3

Figure 4: Shrinking a triangle
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Section 5. Extending the shrinking operations 12

Similarly to Definition 2.1, we use the notationG◦ = (V ◦, E◦) for the shrunk graph with
E◦ ⊆ E andV ◦ − t ⊆ V . It is easy to see thatG◦, b◦ andT ◦ also satisfy (1) and (2).

Assume thatx ∈ R
E satisfies (P7). When shrinking anx-tight triangle, we use the

notationx◦ for the image ofx, that is,x◦(e) = x(e) for eache ∈ E◦.

Lemma 4.2. Let G = (V,E), b : V → Z+ andT a collection of triangles satisfying (1)
and (2). Moreover, assume that there are no two forbidden triangles on the same node-set.
Assume thatx ∈ R

E satisfies (P7) andT ∈ T is a forbidden triangle. Thenx◦ satisfies (P2)
in G◦ = (V ◦, E◦) with b◦ andT ◦.

Proof. (i), (iii) and (iv) easily follow from the same inequalities in the original graph.
Also, (ii) holds for nodes different fromt. As T is x-tight, x◦(δ̇(t)) = x(δ(VT )) =
∑

x(δ̇(ti))− 2x(ET ) = 2 = b◦(t).

Now we turn to the proof of Theorem 1.7. It is clear that aT -free b-factor satisfies
(i)− (iv) ((iii) can be verified as in the proof of Theorem 1.2).

It remains to show that(i) − (iv) completely determine the polytope in question, that
is, anyx ∈ R

E satisfying (P7) is a convex combination of incidence vectors ofT -free b-
factors. Assume that this does not hold. Let us choosex to be a vertex of the polytope
described by (P7) not contained in theT -freeb-factor polytope.

We choose this counterexample in such a way that(|V |, |E|) is lexicographically min-
imal. This immediately implies thatT = ∅. Indeed, if there is a triangleT ∈ T then
it is automatically tight, that is,x(ET ) = 2. Shrink T to a single nodet as in Defini-
tion 4.1, obtainingG◦, b◦, T ◦, x◦. By Lemma 4.2, these satisfy (P7). As |V ◦| < |V |,
x◦ is a convex combination ofT ◦-free b◦-factorsMi of G◦. Note thatb◦(t) = 2 and
dG◦(t) ≤ 3 follows by (1). Letx◦ = 1

k

∑

λiχM◦
i
. For eachi, |M◦

i ∩ δ(t)| = 2. More-
over, |M◦

i ∩ δ(tj)| ≤ 1 for j = 1, 2, 3. We extendM◦
i to a T -free b-matching ofG

as follows: if |M◦
i ∩ δ(tj)| = |M◦

i ∩ δ(tj+1)| = 1 (indices are meant modulo3) then
Mi = M◦

i ∪ {eTj,j+2, e
T
j+1,j+2}.

Proposition 4.3.Mi is aT -freeb-factor ofG.

Proof. Assume that|M◦
i ∩ δ(t1)| = |M◦

i ∩ δ(t2)| = 1. Mi cannot contain a triangle inT ◦,
and neither containsT due to the construction. It suffices to check that it does not contain
a triangleT ′ ∈ T which shares a node withT . By (1), T andT ′ must have an edge in
common. If the common edge iseT12, thenMi does not containT ′ sinceeT12 6∈ Mi. If the
common edge iseT13 theneT13, e

T
23 ∈ Mi and (2) implies that the edge ofT ′ not incident tot1

is not inMi. The same argument works if the common edge ofT andT ′ is eT23.

As b(tj) = 2 for j = 1, 2, 3 andx(ET ) = 2, an easy computation shows thatx(eTj,j+1) =

x(δ̇(tj+2) \ ET ). This implies thatx = 1
k

∑

χMi
, a contradiction. SoT = ∅ indeed holds

and the theorem follows from Theorem 1.2.

5 Extending the shrinking operations

Theorem 1.7 turned out to easily follow from Theorem 1.2 thanks to the fact that a forbidden
triangle is always tight if (1) and (2) hold. Not surprisingly, the latter does not hold forb-
matchings. In this section, we extend the notion of shrinking to triplets. To prove Theorem
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Section 5. Extending the shrinking operations 13

1.8, we also need to slightly modify the notion of shrinking atriangle. We start with the
latter one.

Definition 5.1 (Shrinking a triangle - extended). AssumeG, b andT satisfy (1) and (2).
Shrinking a triangleT ∈ T consists of the following operations:

• replaceT by two nodest, t′,

• replace each edgee ∈ E \ ET with eu ∈ VT , e
v ∈ V \ VT by an edgetev, and each

edgee ∈ E \ ET with eu, ev ∈ VT by a loope on t,

• add three edges betweent andt′ denoted byg1, g2 andg3,

• let b◦(t) = 2, b◦(t′) = 2 and defineb◦(v) = b(v) if v 6= t, t′,

• let T ◦ denote the set of triangles inT node-disjoint fromT .

t1

t2 t3
b◦(t) = 2

b◦(t′) = 2f1

f2

f3
f1

f2

f3

e12e13

e23

g1 g2 g3

Figure 5: Shrinking a triangle - extended

We use the notationG◦ = (V ◦, E◦) for the shrunk graph withE◦ \ {g1, g2, g3} ⊆ E and
V ◦ \ {t, t′} ⊆ V . It is easy to see thatG◦, b◦ andT ◦ also satisfy (1) and (2).

Assume thatx ∈ R
E satisfies (P8). A triangleT ∈ T is calledx-tight if it satisfies(iv)

with equality. LetT ∈ T be a tight triangle withVT = {t1, t2, t3} andδ(t1) \ ET = f1,
δ(t2) \ ET = f2 andδ(t3) \ ET = f3 (two of these edges may coincide). When shrinking
T , we use the notationx◦ for the image ofx, namely

x◦(e) =

{

x(e) if e ∈ E◦ \ E◦[t, t′],

x(eTi+1,i+2)− x(fi) if e = gi for i = 1, 2, 3.

Remark 5.2. In case ofx being ab-factor,x(gi) = 0 for eachi, making the presence of
edgesg1, g2, g3 unnecessary. That is the reason for the simpler definition ofshrinking a
triangle when proving Theorem 1.7.

Lemma 5.3. Let G = (V,E), b : V → Z+ andT a collection of triangles satisfying (1)
and (2). Assume thatx ∈ R

E satisfies (P8) andT is anx-tight triangle. Thenx◦ satisfies
(P8) in G◦ = (V ◦, E◦) with b◦ andT ◦.
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Section 5. Extending the shrinking operations 14

Proof. Let VT = {t1, t2, t3} andδ(t1) \ ET = f1, δ(t2) \ ET = f2 andδ(t3) \ ET = f3
again. Then(i), (iv) and(v) easily follow from the same inequalities in the original graph
and fromx(gi) = x(eTi+1,i+2)−x(fi) ≥ 0. Also,(ii) holds for nodes different fromt andt′.
Clearly,x◦(δ̇(t)) = x(ET ) = 2 = b◦(t). As for t′, x◦(δ̇(t′)) = x(ET )−

∑

i x(δ(ti)\ET ) ≤
2 = b◦(t′).

Concerning(iii), for a triplet(Z,H,R) with Z ⊆ V ◦, H ⊆ δ(Z),R ⊆ T ◦ the required
inequality follows from the same inequality for(Z \ {t, t′}, H \ (δ(t) ∪ δ(t′),R) in the
original graph.

As mentioned earlier, forbidden triangles are not automatically tight in case ofb-matchings.
This phenomenon lead us to extend the notion of shrinking to more complex structures than
odd pairs, namely to triplets, already introduced in Section 1.

Definition 5.4 (Shrinking a triplet of Type 1). Shrinking a triplet (K,F,T) of Type 1
consists of the following operations:

• replaceK by an edgepq with b◦(p) = |F |+ |T| andb◦(q) = 1,

• replace each triangleT ∈ T with VT = {u, v, w} andVT ∩ K = {u} by edges
prT , rTsT , rT tT ,sTv, tTw whererT , sT andtT are new nodes withb◦(rT ) = 2, b◦(sT ) =
b◦(tT ) = 1, and we also setb◦(v) = b◦(w) = 1,

• defineb◦(v) = b(v) for eachv ∈ V \ (K ∪ VT),

• replace each edgee ∈ E with eu ∈ K, ev ∈ V \K by an edgepev if e ∈ F , and by
qev if e ∈ δ(K) \ (F ∪ ET),

• let T ◦ denote the set of triangles inT node-disjoint fromK ∪ VT.

K V −K V −Kb◦(q) = 1

b◦(p) = |F |+ |T|

:
:

edges inδ(K) \ F
edges inF ∪ ET

rT

sT

tT
u

v

w

v

w

Figure 6: Shrinking a triplet of Type1

We usually denote the graph obtained by shrinking a triplet of Type 1 byG◦ = (V ◦, E◦).
By abuse of notation, each edgee ∈ δ(K) \ ET is denoted bye again after shrinking the
triplet and is called theimageof the original edge. Hence the intersectionE ∩ E◦ stands
for the set of all edges not induced byK nor by a triangle inT.

Assume thatx ∈ R
E satisfies (P8). When shrinking a triplet of Type 1, we use the

notationx◦ for the image ofx, namely
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Section 5. Extending the shrinking operations 15

• for an edgee ∈ E ∩ E◦ let x◦(e) = x(e),

• for a triangleT ∈ T with VT = {u, v, w} andVT ∩K = {u} consider the new edges
mentioned in Definition 5.4, and define

x◦(prT ) = 2x(eTvw) + x(eTuv) + x(eTuw)− 2,

x◦(rT sT ) = 2− x(eTvw)− x(eTuv),

x◦(rT tT ) = 2− x(eTvw)− x(eTuw),

x◦(sTv) = x(eTvw) + x(eTuv)− 1,

x◦(tTw) = x(eTvw) + x(eTuw)− 1,

• definex◦(pq) = |F |+ 3|T| − x(F )−
∑

T∈T x(ET )−
∑

T∈T x(eT ).

Recall thateT denotes the special edge of triangleT , that is, the edge inET having no end
in K.

Definition 5.5 (Shrinking an odd triplet of Type 2). Shrinking a triplet(K,F,T) of Type
2 consists of the following operations:

• replaceK by an edgepq with b◦(p) = |F |+ |T| andb◦(q) = 1,

• replace each triangleT ∈ T with VT = {u, v, w} andVT ∩K = {u, v} by an edge
prT , a looplT on rT , and two parallel edges betweenrT andwT (denoted byrTw1

andrTw2) whererT is a new node withb◦(r) = 2,

• defineb◦(v) = b(v) for eachv ∈ V \K,

• replace each edge edgee ∈ E with eu ∈ K, ev ∈ V \K by an edgepev if e ∈ F , and
by qev if e ∈ δ(K) \ (F ∪ ET),

• let T ◦ denote the set of triangles inT node-disjoint fromK.

K V −K V −Kb◦(q) = 1

b◦(p) = |F |+ |T|

:
:

edges inδ(K) \ F
edges inF ∪ ET

rT

w

u

v

w

Figure 7: Shrinking a triplet of Type2
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Section 5. Extending the shrinking operations 16

We usually denote the graph obtained by shrinking a triplet of Type 2 byG◦ = (V ◦, E◦).
Again, by abuse of notation, each edgee ∈ δ(K) \ET is denoted bye again after shrinking
the triplet.

Assume thatx ∈ R
E satisfies (P8). When shrinking a triplet of Type 2, we use the

notationx◦ for the image ofx, namely

• for an edgee ∈ E ∩ E◦ let x◦(e) = x(e),

• for a triangleT ∈ T with VT = {u, v, w} andVT ∩ K = {u, v} consider the new
edges mentioned in Definition 5.5, and define

x◦(prT ) = 2x(eTuv) + x(eTvw) + x(eTuw)− 2,

x◦(lT ) = 2− x(eTuv)− x(eTvw)− x(eTuw),

x◦(rTw1) = x(eTuw),

x◦(rTw2) = x(eTvw),

• definex◦(pq) = |F |+ 3|T| − x(F )−
∑

T∈T x(ET )−
∑

T∈T x(eT ).

Recall thateT denotes the special edge of triangleT , that is, the edge inET having both
ends inK.

An odd triplet of Type 2(K,F,T) is calledx-tight (or tight, for short) if it satisfies(iii)
with equality. IfT = ∅ then(K,F ) is called atight pair instead.

The following simple observation will be useful later.

Proposition 5.6. Let (K,F,T) be anx-tight triplet of any type for some0 < x < 1. Then
for anyF ′ ⊆ F,T′ ⊆ T,T′′ ⊆ T andH ⊆ δ(K) \ (F ∪ ET) we have

x(H) ≤ 1

and

|F |+ 2|T′|+ |T′′| − 1 ≤ x(F ) +
∑

T∈T′

x(ET ) +
∑

T∈T′′

x(eT ) ≤ |F |+ 2|T′|+ |T′′|.

Moreover, if at least one ofF andT′′ is nonempty then the upper bound hold with strict
inequality.

Proof. As (K,F,T) is x-tight, we have

x(E[K]) + x(F ) +
∑

T∈T

x(ET ) =
b(K)+|F |+3|T|−1

2
.

On the other hand,2x(E[K]) + x(δ(K)) ≤ b(K), together implying the first part of the
proposition. By(iv),

∑

T∈T′ x(ET ) ≤ 2|T′| hold. For nonemptyF ′ andT′′ we have
x(F ′) < |F ′| and

∑

T∈T′′ x(eT ) < |T′′| by x < 1, proving the upper bound.

In the sequel, we will refer to the following special case of Proposition 5.6 several times.
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Corollary 5.7. If v is a node without loops andx(δ(v)) = b(v) = d(v) − 1 thenx(F ) ≥
|F | − 1 for anyF ⊆ δ(v).

The main advantage of shrinking odd pairs was that the arising graph and vector still sat-
isfied (P2). The above definitions also have this useful property, as shown in the following
lemma. The proof is rather technical and needs a lot of computation, the reader may skip it
in order to follow the main idea of the proof of Theorem 1.8.

Lemma 5.8. Let G = (V,E), b : V → Z+ andT a collection of triangles satisfying (1)
and (2). Assume thatx ∈ R

E, 0 < x < 1 satisfies (P8) and(K,F,T) is anx-tight triplet of
Type2. Then either shrinking(K,F,T) or (K̄, F,T), (1) and (2) hold forG◦ = (V ◦, E◦).
Moreover,b◦, T ◦ andx◦ satisfies (P8).

Proof. The validity of (1) and (2) can be checked easily in both cases. We discuss the sec-
ond part separately forK andK̄.

(I) Shrinking (K̄, F,T):

We use the notation of Definition 5.5.(i) clearly holds for edges different frompq and
not contained inδ(K) ∩ ET. For the rest of the edges the required inequalities follow from
Proposition 5.6. As an example, we show this forpq. We have

x(F ) +
∑

T∈T

x(ET ) +
∑

T∈T

x(eT ) ≤ |F |+ 2|T|+ |T| = |F |+ 3|T|,

that is,x◦(pq) ≥ 0. On the other hand,

x(F ) +
∑

T∈T

x(ET ) +
∑

T∈T

x(eT ) ≥ |F |+ 2|T|+ |T| − 1 = |F |+ 3|T| − 1

by Proposition 5.6, sox◦(pq) ≤ 1.
The validity of(ii) is straightforward for nodes different fromq. However, the tightness

of the triplet implies

x◦(δ̇(q)) = x◦(pq) + x(δ(K) \ (F ∪ ET))

= |F |+ 3|T| − x(F )−
∑

T∈T

x(ET )−
∑

T∈T

x(eT ) + x(δ(K) \ (F ∪ ET))

= 2x(E[K]) + x(F ) +
∑

T∈T

x(ET ) + 1− b(K)

−
∑

T∈T

x(eT ) + x(δ(K) \ (F ∪ ET))

= 2x(E[K]) + x(δ(K)) + 1− b(K)

≤ 1

= b◦(q).

(iv) and (v) remain valid for triangles inT ◦ as the same inequalities were true in the
original graph. So it remains to show that(iii) is indeed satisfied inG◦. Choose an odd
triplet (Z,H,R) of G◦ with (def(Z,H,R), |Z̄ ∪ {p, q}|, |H|) lexicographically maximal.
Our aim is to show thatdef(Z,H,R) ≤ 0, which would prove(iii) for all odd triplets.
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Proposition 5.9. Letv ∈ Z \{p, q} be a node withl(v) = ∅, b◦(v) = d◦(v)−1, x◦(δ̇(v)) =
b◦(v) andv 6∈ V ◦

R. Thenδ(Z)v ⊆ H. If u ∈ {p, q} andδ(Z)u \H 6= ∅ thenHu = ∅.

Proof. The conditions onv imply that for any two edgese, f ∈ δ(v) we havex◦(e) +
x◦(f) ≥ 1. If |δ(Z)v \H| ≥ 2 then the addition of two of these edges toH would result in
a lexicographically larger triplet, a contradiction.

Assume that|δ(Z)v \H| = 1. DefineZ ′ = Z − v, H ′ = (H \Hv) ∪ E◦[v, Z − v]. The
triplet (Z ′, H ′,R) thus arising has deficiency

def(Z ′, H ′,R) = def(Z,H,R)− x◦(Hv) +
b◦(v)+|Hv |−|E◦[v,Z−v]|

2

= def(Z,H,R)− x◦(Hv) +
b◦(v)+|Hv |−d◦(v)+|Hv |+1

2

= def(Z,H,R)− x◦(Hv) + |Hv|.

That is, the deficiency is not decreased and|Z \{p, q}| decreased by1, a contradiction. The
second part immediately follows fromx > 0. Indeed, the same computation shows that
the deficiency would strictly decrease in case ofHu 6= ∅, contradicting the choice of the
triplet.

Proposition 5.10.There is nov ∈ Z \ {p, q} with b◦(v) = d◦(v)− 1 = 1.

Proof. The deletion ofv fromZ decreasesx◦(E◦[Z])+x◦(H)+
∑

T∈R x◦(E◦
T ) by at most

1 while ⌊1
2
(b◦(Z)+ |H|+3|R|)⌋ always decreases by1 unless|Hv| = 0, so we may assume

that the latter holds.
If |δ(Z)v| = 2 then the deletion ofv from Z, while if |δ(Z)v| ≤ 1 then the deletion ofv

fromZ and the addition of an edge fromδ(v)\δ(Z) toH would result in a lexicographically
larger triplet, a contradiction.

The above propositions indicate the following simple but useful observation.

Corollary 5.11. LetT ∈ T be a triangle withVT = {u, v, w}. ThenrT , sT , tT , v, w 6∈ Z.

Corollary 5.11 reduces the number of cases to be checked.

Case 1:p, q 6∈ Z
In this case(iii) holds for(Z,H,R) as the same inequality is true in the original graph.

We use here that, by Corollary 5.11,(Z,H,R) is contained inG in an unchanged form.

Case 2:p, q ∈ Z
We prove Case 2 with the help of Case 1. First of all note that|Hp| ≥ |δ(Z)p| − 1. To

prove this, assume that|δ(Z)p \Hp| ≥ 2. We havex◦(δ̇(p)) = |F |+ |T|, and the degree of
p is |F |+ |T|+1. Hence any two edges incident top must havex◦ value together at least 1.
The addition of two of these edges toH would result in a lexicographically larger triplet, a
contradiction.

We distinguish two subcases.

Subcase 2.1:δ(Z)p = Hp
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If |Hq| ≥ 1 then letF1 = Hp, F2 = δ(p) \ (F1 + pq). TakeZ ′ = Z ∩ K, H ′ =
(H \ (F1 ∪Hq)) ∪ F2. Then

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T ) + x◦(pq)

+ x◦(E◦[q, Z ′]) + x◦(Hq) + x◦(F1)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2

⌋+ x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq) + x◦(F1)

≤ ⌊ b◦(Z)−1−|F |−|T|+|H|−|F1|+|F2|−1+3|R|
2

⌋

+ x◦(E◦[q, Z]) + x◦(pq) + x◦(Hq) + x◦(F1)

= ⌊ b◦(Z)+|H|+3|R|
2

⌋ − |F1| − 1 + x◦(E◦[q, Z]) + x◦(pq) + x◦(Hq) + x◦(F1)

≤ ⌊ b◦(Z)+|H|+3|R|
2

⌋,

asx◦(E◦[q, Z]) + x◦(pq) + x◦(Hq) ≤ x◦(δ(q)) ≤ 1. This impliesdef(Z,H,R) ≤ 0.
Now assume that|Hq| = 0. If Z = {p, q} thenR = ∅ andH = δ(p) − pq. Hence

x◦(E◦[Z]) + x◦(H) = x◦(δ(p)) = |F | + |T| ≤ ⌊ |F |+|T|+1+|F |+|T|
2

⌋ = ⌊ b◦(p)+b◦(q)+|H|
2

⌋, so
(iii) holds.

So assume thatZ 6= {p, q} and letZ ′ = Z ∩ K. DefineK ′ = V ◦ \ {p, q} andF ′ =
δ(p)− pq. It is easy to see that the tightness of(K,F,T) implies the tightness of(K ′, F ′).
Using this and that(iii) holds ifZ = {p, q}, we have the following

x◦(E◦[K ′]) + x◦(F ′) + E◦[Z] + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[K ′ \ Z]) + x◦(E◦[Z \K ′]) + x◦(H) +
∑

T∈R

x◦(E◦
T ) + x◦(F ′)

+ 2x◦(E◦[Z ′]) + x◦(E◦[K ′ \ Z ′, Z ′]) + x◦(E◦[{p, q}, Z ′])

≤ ⌊ b◦(K ′\Z)+|H|+3|R|
2

⌋+ ⌊ b◦(Z\K ′)+|F ′|
2

⌋+ 2x◦(E◦[Z ′]) + x◦(δ(Z ′))

= b◦(K ′)+|F ′|−1
2

+ b◦(Z)+|H|+3|R|−1
2

− b◦(Z ′) + 2x◦(E◦[Z ′]) + x◦(δ(Z ′))

≤ b◦(K ′)+|F ′|−1
2

+ b◦(Z)+|H|+3|R|−1
2

.

The tightness of(K ′, F ′) implies def(Z,H,R) ≤ 0. In the proof we used that(K ′ \
Z,H,R) and(Z \K ′, F ′) are also odd. This can be seen byb◦(K ′ \ Z) + |H| + 3|R| =
b◦(K ′)− b◦(Z)+ 1+ |F ′|+ |H|+ |R| which is odd as(K ′, F ′) and(Z,H,R) are odd, and
b◦(Z \K ′) + |F ′| = 1 + 2|F ′|.

Subcase 2.2:|δ(Z)p| = |Hp|+ 1
By Proposition 5.9,Hp = ∅. Let δ(Z)p = f andF2 = δ(p)−f . TakeZ ′ = Z ∩K, H ′ =

(H \ δ(q)) ∪ F2. Then
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x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T ) + x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2

⌋+ x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

= ⌊ b◦(Z)−1−|F |−|T|+|H|+|F2|+3|R|
2

⌋+ x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

= ⌊ b◦(Z)+|H|+3|R|
2

⌋ − 1 + x◦(pq) + x◦(E◦[q, Z ′])) + x◦(Hq)

≤ ⌊ b◦(Z)+|H|+3|R|
2

⌋,

asx◦(pq) + x◦(E◦[q, Z]) + x◦(Hq) ≤ x◦(δ̇(q)) ≤ 1. This impliesdef(Z,H,R) ≤ 0.

Case 3:p ∈ Z, q 6∈ Z
If pq ∈ H, then addq to Z and deleteHq - includingpq - from H. We have previously

seen that the triplet(Z ′, H ′,R) thus obtained satisfies(iii), so

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T )− x◦(E◦[q, Z]) + x◦(Hq)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2

⌋

≤ ⌊ b◦(Z)+1+|H|−1+3|R|
2

⌋

= ⌊ b◦(Z)+|H|+3|R|
2

⌋.

This impliesdef(Z,H,R) ≤ 0.
If pq 6∈ H, then first consider the case whenδ(Z)p \ (Hp + pq) 6= ∅. Let f be an edge

in this set. Define againZ ′ = Z + q, deleteHq from H and addf to it. For the new triplet
(Z ′, H ′,R), we have

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T ) + x◦(Hq)− x◦(E◦[q, Z])− x◦(f)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2

⌋ − x◦(pq)− x◦(f)

≤ ⌊ b◦(Z)+1+|H|+3|R|
2

⌋ − 1

≤ ⌊ b◦(Z)+|H|+3|R|
2

⌋.

For the last inequality, we used Corollary 5.7 (x◦(δ̇(p)) = |F |+ |T|, and the degree ofp is
|F |+ |T|+ 1, hencepq andf , two edges incident top must havex◦ value together at least
1). This impliesdef(Z,H,R) ≤ 0.
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If δ(Z)p \ (Hp + pq) = ∅, then letF1 = Hp − pq, F2 = δ(p) \ (H + pq). Define
Z ′ = Z − p, H ′ = (H \F1)∪F2. Note that(Z ′, H ′,R) is odd sinceb◦(Z ′) + |H ′|+ |R| =
b◦(Z) + |H| − |F | − |T| − |F1|+ |F2|+ |R| = b◦(Z) + |H|+ |R| − 2|F1|. Hence

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T ) + x◦(F1)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2

⌋ + x◦(F1)

≤ ⌊ b◦(Z)−|F |−|T|+|H|−|F1|+|F2|+3|R|
2

⌋ + x◦(F1)

≤ ⌊ b◦(Z)+|H|−2|F1|+3|R|
2

⌋ + x◦(F1)

≤ ⌊ b◦(Z)+|H|+3|R|
2

⌋.

This impliesdef(Z,H,R) ≤ 0.

Case 4:p 6∈ Z, q ∈ Z
If Hq 6= ∅, then deleteq from Z andHq from H. Then

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(E◦[q, Z − q]) + x◦(H ′) + x◦(Hq) +
∑

T∈R

x◦(E◦
T )

≤ ⌊ b◦(Z′)+|H′|+3|R|
2

⌋ + x◦(δ(q))

≤ ⌊ b◦(Z)−1+|H|−1+3|R|
2

⌋+ 1

= ⌊ b◦(Z)+|H|+3|R|
2

⌋.

This impliesdef(Z,H,R) ≤ 0.
If Hq = ∅, then first consider the case whenE◦[p, Z − q] \H 6= ∅. Let f be an edge in

this set. Deleteq fromZ and takeH ′ = H + f . Then

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T ) + x◦(E◦[q, Z − q])− x◦(f)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2

⌋+ x◦(E◦
1 [q, Z − q])− x◦(f)

≤ ⌊ b◦(Z)−1+|H|+1+3|R|
2

⌋ + x◦(δ̇(q))− x◦(pq)− x◦(f)

≤ ⌊ b◦(Z)+|H|+3|R|
2

⌋

by Proposition 5.7. This impliesdef(Z,H,R) ≤ 0.
If E◦[p, Z − q] \ H = ∅ then letF1 = Hp − pq andF2 = δ(p) \ (H + pq). Define
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Z ′ = Z + p andH ′ = (H \ F1) ∪ F2. For the triplet(Z ′, H ′,R)

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦
1 [Z

′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T )− x◦(pq)− x◦(F2)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2

⌋ − x◦(pq)− x◦(F2)

= ⌊ b◦(Z)+|F |+|H|−|F1|+|F2|+3|R|
2

⌋ − x◦(pq)− x◦(F2)

≤ ⌊ b◦(Z)+|H|+3|R|
2

⌋+ |F2| − x◦(pq)− x◦(F2)

≤ ⌊ b◦(Z)+|H|+3|R|
2

⌋

by Proposition 5.7. This impliesdef(Z,H,R) ≤ 0.

(II) Shrinking (K,F,T):

The verification of(i), (ii), (iv) and(v) goes in the same way as in the previous case.
Choose an odd triplet(Z,H,R) of G◦ with (def(Z,H,R), |Z̄ ∪{p, q}|, |H|) lexicograph-
ically maximal. We start again with some technical propositions. These are only easy
observations but they greatly help us to reduce the number ofcases to be checked.

Proposition 5.12. Let T ∈ T with VT = {u, v, w}, VT ∩ K = {u, v}. Thenx(eTuv) +
x(eTuw) ≥ 1 andx(eTuv) + x(eTvw) ≥ 1.

Proof. Assume that one of the mentioned sums, sayx(eTuv) + x(eTuw), is strictly less than1.
Then(K,F + eTuw,T− T ) violates(iii), a contradiction.

Proposition 5.13.LetT ∈ T with VT = {u, v, w}, VT ∩K = {u, v}. If bothp, w 6∈ Z then
rT 6∈ Z.

Proof. It is easy to see, by using Proposition 5.12, that otherwise(Z − rT , H \ HrT ,R)
would be a lexicographically larger triplet, a contradiction.

Proposition 5.14. Let T ∈ T with VT = {u, v, w}, VT ∩ K = {u, v}. If p, w ∈ Z then
rT ∈ Z.

Proof. It is easy to see, by using Proposition 5.12, that otherwise(Z + rT , H \ HrT ,R)
would be a lexicographically larger triplet, a contradiction.

Proposition 5.15.LetT ∈ T with VT = {u, v, w}, VT ∩K = {u, v}. If p 6∈ Z andw ∈ Z
thenrT 6∈ Z.

Proof. Let wz = δ(w) \ ET and assume indirectly thatrT ∈ Z. If prT 6∈ H then(Z −
rT , H,R), if prT ∈ H andz ∈ Z then(Z − rT − w,H − prT + wz,R), and finally if
prT ∈ H andz 6∈ Z then(Z − rT − w,H − prT ,R) has deficiency at mostdef(Z,H,R)
and smaller|Z|, a contradiction.
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Case 1:p, q 6∈ Z
By Propositions 5.13 and 5.15,rT 6∈ Z for T ∈ T. Hence(iii) follows from the same

inequality in the original graph.

Case 2:p, q ∈ Z
For a forbidden triangleT ∈ T let VT = {uT , vT , wT} with uT , vT ∈ K. Define

T1 = {T ∈ T : rT , wT ∈ Z},

T2 = {T ∈ T : rT ∈ Z,wT 6∈ Z},

T3 = {T ∈ T : rT , wT 6∈ Z, prT ∈ H},

T4 = {T ∈ T : rT , wT 6∈ Z, prT 6∈ H}.

Propositions 5.13, 5.14 and 5.15 implyT = T1 ∪ T2 ∪ T3 ∪ T4. However,|T4| ≤ 1.
Indeed,x◦(δ̇(p)) = |F |+ |T|, and the degree ofp is |F |+ |T|+1, so any two edges incident
to p must havex◦ value together at least1. If |δ(Z)p \ Hp| ≥ 2, then the addition of two
edges from this set toH would not decrease the deficiency of the triplet, not increase |Z|
but increase|H|, a contradiction.

If T4 = ∅ then letS = K ∪ (Z ∩ K̄), I = {uTwT : rTwT1
∈ H} ∪ {vTwT : rTwT2

∈
H} ∪ (H ∩ E) andP = R ∪ T3. Then

x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x(E[S]) + x(I) +
∑

T∈P

x(ET )− x(E[K]) + x◦(pq) +
∑

T∈T1∪T2∪T3

x(eT ))− 2|T3|

= x(E[S]) + x(I) +
∑

T∈P

x(ET )− x(E[K]) + |F |+ 3|T|

− x(F )−
∑

T∈T

x(ET )− 2|T3|

≤ ⌊ b(S)+|I|+3|P|
2

⌋ − b(K)−|F |−3|T|−1
2

− 2|T3|

= b(K)+b◦(Z)−1−|F |−|T|−2|T1∪T2|+|H|−|T3|+3|R|+3|T3|−1
2

− b(K)−|F |−3|T|−1
2

− 2|T3|

= b◦(Z)+|H|+3|R|−1
2

− |T1 ∪ T2 ∪ T3|+ |T|

= b◦(Z)+|H|+3|R|−1
2

.

This impliesdef(Z,H,R) ≤ 0.
If |T4| = 1 then takeZ ′ = Z ∩ (K̄ ∪ {rT : T ∈ T}), F2 = {prT : T ∈ T2} and

H ′ = (H \Hq) ∪ F2. Thus
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x◦(E◦[Z]) + x◦(H) +
∑

T∈R

x◦(E◦
T )

= x◦(E◦[Z ′]) + x◦(H ′) +
∑

T∈R

x◦(E◦
T ) + x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

≤ ⌊ b◦(Z′)+|H′|+3|R|
2

⌋+ x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

≤ ⌊ b◦(Z)+|H|+3|R|−|F ◦|−1+|F2|
2

⌋+ x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

≤ ⌊ b◦(Z)+|H|+3|R|
2

⌋ − 1 + x◦(pq) + x◦(E◦[q, Z ′]) + x◦(Hq)

≤ ⌊ b◦(Z)+|H|+3|R|
2

⌋.

This impliesdef(Z,H,R) ≤ 0.

Case 3:p 6∈ Z, q ∈ Z The proof of this case, by using the above propositions, goes
exactly the same way as in case(I)/3.

Case 4:p ∈ Z, q 6∈ Z The proof of this case, by using the above propositions, goes
exactly the same way as in case(I)/4.

Remark 5.16. In the above, we only defined shrinking for triplets either ofType 1 or 2.
The definition could be easily generalized to shrink gadgetswith both triangles 1-fitting
and 2-fitting them. The reason for not introducing shrinkingin that way was the form of
description (P8).

6 Proof of Theorem 1.8

It is easy to see that eachT -free b-matching satisfies(i), (ii), (iv) and(v). To show that
(iii) indeed holds for aT -free b-matchingM ⊆ E, take an odd triplet(K,F,T) and add
up inequalitiesdM(v) ≤ b(v) for v ∈ K, |M ∩ F | ≤ |F |, |M ∩ET | ≤ 2 and|M ∩ eT | ≤ 1
for T ∈ T. This gives

2|M ∩E[K]|+ |M ∩ δ(K)|+ |M ∩F |+
∑

T∈T

(|M ∩ET |+ |M ∩ eT |) ≤ b(K)+ |F |+3|T|.

Clearly,|M ∩F |+ |M ∩ET| ≤ |M ∩ δ(K)|+
∑

T∈T |M ∩ eT |, so|M ∩E[K]|+ |M ∩
F | +

∑

T∈T |M ∩ ET | ≤ ⌊1
2
(b(K) + |F | + 3|T|)⌋, as required. The above proof easily

implies that(iii) is also valid for even triplets.
It remains to show that(i) − (v) completely determine theT -freeb-matching polytope,

that is, anyx ∈ R
E satisfying (P8) is a convex combination of incidence vectors ofT -free

b-matchings. Assume that this does not hold. Let us choosex to be a vertex of the polytope
described by (P8) not contained in theT -freeb-matching polytope.

We choose this counterexample in such a way that(|T |, l(V ), b(V ), |V |, |E|) is lexico-
graphically minimal.G is connected, otherwise one of its components would be a smaller
counterexample. Asx is a vertex, it satisfies|E| linearly independent constraints among
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(P8) with equality. We call a node, a triplet or a trianglex-tight if the corresponding in-
equality, which is of type(ii), (iii) or (iv), respectively, is satisfied with equality. Also,
the corresponding inequality is calledx-tight. We also use this notation for even triplets
satisfying(iii) with equality.

From now on, our aim is to show that there is a tight triplet or triangle whose shrink-
ing results in a lexicographically smaller problem. Then weshow that a proper convex
combination for the smaller problem can be transformed intoa convex combination for the
original problem givingx, thus leading to contradiction.

Proposition 6.1. For eachT ∈ T , VT does not span parallel edges.

Proof. Assume to the contrary thatVT = {u, v, w} spans parallel edges, say betweenv and
w. By (1), d(u), d(v), d(w) ≤ 3. We claim thatG is in fact consists of these three nodes,
or these three nodes plus an edge incident tou. Indeed,d(u) ≤ 3 implies that if|V | ≥ 4
thenu has a third neighbour different fromv andw, sayz, anduz is a cutting edge inG.
LetG1 andG2 denote the graphs consisting of a component ofG− uz plusuz. We denote
by x1, b1, T1 andx2, b2, T2 the natural restriction ofx, b andT to G1 andG2, respectively.
If both of these graphs have at least two nodes thenxi is a convex combination ofTi-free
bi-matchings ofGi. These could be glued together as to get a convex combinationof T -free
b-matchings ofG giving x, a contradiction.

u

v w

z

e1 e2

e3

e4

f

Figure 8:VT spanning parallel edges

SoG is in fact consists of four or three nodes. Let us consider thefirst case, the second
can be handled similarly (by using(v) of (P8). We use the notation of Figure 8. First
assume that both triangles are forbidden. Deletez from G. The graph thus arising is not
a counterexample, hence the restriction ofx to G − z is a convex combination ofT -free
b-matchings ofG−z. Let 1

k

∑

χMi
denote this combination and letλI =

1
k
|{i : Mi = {ej :

j ∈ I}}| for I ⊆ {1, 2, 3, 4}. Moreover, take a convex combination withλ12 as small as
possible. That means thatλ12 = 0 or λ3 = λ4 = λ34 = 0. If λ12 = 0 thenf can be added to
any of theseb-matchings, a contradiction. Soλ3 = λ4 = λ34 = 0 andλ12+λ13+λ14+λ23+
λ24+λ1+λ2 = 1. If λ12 ≤ 1−xf then we can add the edgef to some of theseb-matchings
with total coefficientsxf and so get a proper convex combination in the original graph,a
contradiction. Hencex(δ̇(v)) = xf + 2λ12 + λ13 + λ14 + λ23 + λ24 + λ34 + µ1 + µ2 > 2, a
contradiction.

Now assume that only one of the triangles, say{e1, e2, e3}, is forbidden. Deletez from
G. The graph thus arising is not a counterexample, hence the restriction ofx to G− z is a
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convex combination ofT -freeb-matchings ofG− z. Let 1
k

∑

χMi
denote this combination

and letλI = 1
k
|{i : Mi = {ej : j ∈ I}}| for I ⊆ {1, 2, 3, 4}. Moreover, take a convex

combination withλ12 as small as possible, and beside this,λ124 as small as possible. That
means thatλ12 = 0 or λ3 = λ4 = λ34 = 0, and alsoλ124 = 0 or λ3 = λ4 = λ34 = 0.
If both λ12 = λ124 = 0 thenf can be added to any of theseb-matchings, a contradiction.
If at least one ofλ12 andλ124 is greater than0 then if λ12 + λ124 ≤ 1 − xf then we can
add the edgef to some of theseb-matchings with total coefficientsxf and so get a proper
convex combination in the original graph, a contradiction.If λ12 + λ124 > 1 − xf then
x(δ̇(v)) = xf + 2λ12 + 2λ124 + λ13 + λ14 + λ23 + λ24 + λ1 + λ2 > 2, a contradiction.

Proposition 6.2. 0 < xe < 1 for eache ∈ E.

Proof. Clearly, edges withxe = 0 could be deleted, contradicting minimality.
If xe = 1 andT = ∅, deletee and decreaseb on its end-nodes by1 (if e is a loop onv then

decreaseb(v) by 2). However, the situation is more complicated ifT 6= ∅. If e ∈ ET for
someT ∈ T , it may happen that there is a proper convex combination in the smaller graph,
but it can not be extended to the original problem because a triangle may arise. Hence we
use a simple trick here to showxe < 1.

Assume thatxuv = 1 and letTuv ⊆ T denote the set of triangles containinguv (there are
at most two such triangles as (1) holds). Note that the edgeuv is well-defined as there exist
no parallel edges betweenu andv by Proposition 6.1. For a triangleT ∈ Tuv, let tT denote
its third node.

v

tT

zT zT

t′T

tT

u vu

x(tT zT )
x(tT zT )

1
2 2 1 1

12

1

T

Figure 9: Excluding saturated edges

By (1), tT has at most one neighbour different fromu andv, denoted byzT (if exists).
Deletee from G, decreaseb(u) andb(v) by one, for eachT ∈ Tuv decreaseb(tT ) by one,
delete -if exists-tT zT and add a new edget′T zT wheret′T is a new node. The graph thus
arising will be denoted byG′ = (V ′, E ′). The modified degree prescription is denoted by
b′ (with b′(t′T ) = 1 for a new node) and the natural image ofx onE ′ is denoted byx′ (that
is, x′(t′T zT ) = x(tT zT )). Let T ′ ⊆ T denote the set of triangles disjoint from the triangles
in Tuv. The degree condition implies that two triangles are node-disjoint if and only if they
are edge-disjoint. It is easy to check thatx′ satisfies (P8) in G′ with b′ andT ′.

As |T ′| < |T |, x′ is a convex combination of incidence vectors ofT ′-freeb′-matchings of
G′, sayx′ = 1

k

∑

χM ′
i
. Theseb′-matchings use at most one ofeTutT , e

T
vtT

for eachT ∈ Tuv. If
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we extendM ′
i byuv and edges{tT zT : T ∈ Tuv, t

′
T zT ∈ M ′

i}, we get aT -freeb-matching
Mi of G by (2) and Proposition 6.1.

It is easy to see thatx = 1
k

∑

χMi
, hencex is a convex combination ofT -free b-

matchings ofG, a contradiction.

So we may assume that0 < xe < 1 for each edgee ∈ E.

Proposition 6.3. For eachu, v ∈ V , x(E[u, v]) < 1.

Proof. If |E[u, v]| = 1 then the proposition follows from Proposition 6.2. Otherwise no
edge inE[u, v] is contained in a forbidden triangle by Proposition 6.1 and we can decrease
thex-values on them by one in total and also decreaseb(u), b(v) by one, thus obtaining a
smaller counterexample, a contradiction.

Lemma 6.4. There is nox-tight triangleT ∈ T .

Proof. Assume that there exists a tight triangleT and letVT = {t1, t2, t3}. ShrinkT to a
single nodet as in Definition 5.1, obtainingG◦, b◦, T ◦, x◦. By Lemma 5.3, these satisfy
(P8).

Note thatb◦(t) = 2 anddG◦(t) ≤ 3 follows by (1). As |T ◦| < |T |, x◦ is a convex
combination ofT ◦-free b◦-matchingsM◦

i of G◦. Let x◦ = 1
k

∑

χM◦
i

and letαjl =
1
k
|{i :

fj, fl ∈ Mi}|, βjk = 1
k
|{i : fj , gl ∈ Mi}| and finallyγjk = 1

k
|{i : gj , gl ∈ Mi}| where

f1, f2, f3, g1, g2, g3 are as in Definition 5.1. Asx◦(δ̇(t)) = 2, we have
∑

αjl +
∑

βjl +
∑

γjl = 1.

Proposition 6.5. There exist a proper convex combination for what
∑

βjj = 0.

Proof. Take such a combination in which
∑

βjj is minimal and assume thatβ11 > 0. This
immediately implies thatβ22, β23, β32, β33, γ23 = 0 as otherwise we could easily modify the
b◦-matchings and decrease

∑

βjj.
We have the following equalities.

α12 + α13 + β11 + β12 + β13 = x(f1),

α12 + α23 + β21 = x(f2),

α13 + α23 + β31 = x(f3),

β11 + β21 + β31 + γ12 + γ13 = x(t2t3)− x(f1),

β12 + γ12 = x(t1t3)− x(f2),

β13 + γ13 = x(t1t2)− x(f3).

From these and fromx(ET ) = 2 we getα23 − β11 = 1 − x(t2t3) > 0. Hence there is
anMi, sayM1, with f1, g1 ∈ M1 and another one, sayM2, with f2, f3 ∈ M2. The proof
of Theorem 4.1 of [12] implies that we can take an alternatingpathP in M1△M2 starting
at t′ such thatM1△P andM2△P are alsoT ◦-freeb◦-matchings ofG◦. Henceβ11 can be
decreased, and the proposition follows.
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Take a convex combination1
k

∑

χMi
described in Proposition 6.5. We extend theM◦

i ’s
to T -freeb-matchings ofG as follows: ifM◦

i ∩ δ(t) = {fj , fl} or {fj , gl} or {gj, gl} where
j 6= l then defineMi = M◦

i ∪ (ET − eTj,l).
It suffices to verify that theb-matchings thus arising areT -freeb-matchings ofG. Indeed,

they cannot contain any triangle inT ◦, and neither containT due to the construction. For
a triangleT ′ ∈ T which shares a node withT , by (1), T andT ′ must have an edge in
common. By Proposition 6.1, they do not have the same node-set but then (2) implies that
at least one of the edges ofT ′ is not inMi.

The convex combination of theMi’s givesx. To see this, it suffices to check that the
combination givesx(eTj,j+1) in total for eachj = 1, 2, 3. This is assured by the choice of
the coefficients asT is tight.

If x is ab-factor, that is,x(δ̇(v)) = b(v) for eachv ∈ V then eachT ∈ T is tight. By
Theorem 1.2 and Lemma 6.4,x is not ab-factor. So our aim is now to show that there
is anx-tight odd triplet(K,F,T) of Type 2 whose shrinking lexicographically decreases
(|T |, b(V ), l(V ), |V |, |E|), and the same holds for(K̄, F,T).

The next proposition states that, as one would expect,b ≤ d can be assumed.

Proposition 6.6. b(v) ≤ min{d(v), ⌈x(δ̇(v))⌉+ 1} for eachv ∈ V .

Proof. Assume thatb(v) > d(v) for somev ∈ V . Setb(v) := d(v). We claim that the
inequalities of (P8) remain valid, contradicting the minimal choice of the counterexample.
Assume indirectly that there is a triplet(K,F,T) with v ∈ K violating (iii) after the
modification. However, for the triplet(K−v, F \Fv ∪E[v,K−v],T) the left hand side of
(iii) decreases byx(l(v)) + x(Fv) while the right decreases by1

2
(d(v) + |Fv| − |E[v,K −

v]|) = |l(v)|+ |Fv| (compared to(K,F,T) after the modification), hence(K − v, F \Fv ∪
E[v,K − v],T) is a violating triplet even in the original problem.

If we setb′(v) := ⌈x(δ̇(v))⌉ for eachv ∈ V then(i), (ii), (iv) and(v) clearly remains
valid in (P8). Assume that there is an odd triplet(K,F,T) violating (iii) after the modifi-
cation. Inequalities of form(iii) are obtained by summing up inequalities of from(i) and
(ii), then dividing by two and taking the floor of the right hand side. But until the very last
step the inequality remains valid, so the violation, that is, the deficiency of the triplet can be
at most1

2
. Hence settingb′(v) := min{b(v), ⌈x(δ̇(v))⌉+1} assures that no violating triplet

arises.
The proposition follows by the choice of the counterexample.

SinceG is connected,|E| ≥ |V | − 1. If |E| = |V | − 1 or |E| = |V | thenG may
contain a triangle if and only ifG itself is a triangle or a triangle and a node connected by
an edge. These cases can be easily seen not to give a counterexample (similarly to the proof
of Proposition 6.1), while the remaining cases follow from Theorem 1.3. Hence we may
assume that|E| > |V |.

Proposition 6.7. Let (K,F ) be a tight pair,v ∈ K̄. If b(v) ≤ |Fv| then(K + v, F \ Fv) is
also tight. Moreover,̇δ(v) \ F = ∅.

Proof. By addingv toK, the left hand side of(iii) increases by at leastx(δ̇(v) \ F ) while
the right hand side may only decrease. The statement followsby Proposition 6.2.
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If there is anx-tight odd triplet(K,F,T) such thatT 6= ∅, then |T | decreases when
shrinking either(K,F,T) or (K̄, F,T), and we are done. So assume that this is not the
case. Recall that a tight triplet(K,F,T) with T = ∅ was called a tight pair.

We have already seen that there is no tight constraint of form(i), (iv) or (v), and now we
assumed that neither of form(iii) with T 6= ∅. Let us call anx-tight constraintbad if it is
of form (ii) for somev ∈ V , or it is of form (iii) for some odd pair(K,F ) and one of the
followings hold.

(I) l(K) = ∅, b(K) ≤ |F |

(II) l(K) = ∅, b(K) = |F |+ 1, |K| = 1

(III) l(K) = ∅, b(K) = |F | + 1, |K| =
2, |E[K]| ≤ 1

(IV) l(K̄) = ∅, b(K̄) ≤ |F |

(V) l(K̄) = ∅, b(K̄) = |F |+ 1, |K̄| = 1

(VI) l(K̄) = ∅, b(K̄) = |F | + 1, |K̄| =
2, |E[K̄]| ≤ 1

If the shrinking of(K,F ) or the shrinking of(K̄, F ) does not result in a lexicographically
smaller problem then(K,F ) must be bad (however, it may happen that we get a smaller
problem even in case of a bad pair asTK 6= ∅ or l(K), l(K̄) 6= ∅ would also assure that).

As we may assume that|E| > |V |, the existence of a tight odd pair(K,F ) whose
shrinking results in a lexicographically smaller problem and the same holds for(K̄, F ) is
assured by the following fundamental lemma.

Lemma 6.8.Under the assumption that there is no tight constraint of form(iii) withT 6= ∅,
the maximum number of linearly independent bad constraintsis at most|V |.

Proof. Take a maximal independent set of tight equalities of form(ii), and extend this to
a maximal independent set with bad equalities of type (IV) with |K| = 1, and then with
equalities of type (V). LetL denote the set of equalities thus obtained.

Claim 6.9. There is no bad pair(K,F ) independent fromL.

Proof. In the proof we will strongly rely on Proposition 5.6 severaltimes without mention-
ing it.

Assume that(K,F ) is of type (I) independent fromL. First of all, b(K) ≥ |F | − 1 as
otherwisex(E[K]) + x(F ) = ⌊1

2
(b(K) + |F |)⌋ ≤ |F | − 2, contradictingx(F ) ≥ |F | − 1.

If b(K) = |F | − 1 then fromx(E[K]) + x(F ) = |F | − 1 we getx(E[K]) = 0 and
x(F ) = b(K) which in turn implyE[K] = ∅ andF = δ(K), sox(δ(v)) = b(v) for each
v ∈ K. But this is a contradiction as(K,F ) is supposed to be independent from equalities
of form (ii). b(K) = |F | is not possible as(K,F ) is an odd pair.

Assume that(K,F ) is a bad pair of type (II), soK = {v}, F ⊆ δ(v), l(v) = ∅ and
b(v) = |F | + 1. Then the tightness of(v, F ) meansx(F ) = |F |, which is only possible if
F = ∅ by x < 1, contradicting independence.

Assume that(K,F ) is a bad pair of type (III) independent fromL and letK = {u, v}.
Let C be the set of parallel edges betweenu andv.

As b(u) + b(v) = |Fu| + |Fv| + 1, eitherb(u) ≤ |Fu| or b(v) ≤ |Fv|, say the first one.
In this casex(C) + x(Fu) ≤ b(u) ≤ |Fu|, sox(C) + x(Fu) + x(Fv) ≤ |Fu| + |Fv|. Here
Fv = ∅, otherwise even strict inequality holds byx(Fv) < |Fv|, contradicting the tightness
of (K,F ). SoFv = ∅. By the tightness of the pair,x(C) + x(Fu) = |Fu|. We assumed
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that b(u) ≤ |Fu|, so b(u) = |Fu| and b(v) = 1 implying δ(u) \ (C ∪ Fu) = ∅. But
then the tightness of the pair(K,F ) is equivalent tox(δ̇(u)) = b(u), contradicting linear
independence.

Assume now that(K,F ) is of type (IV) independent fromL with |K| ≥ 2. It can be
seen similarly to the earlier cases thatb(K̄) ≥ |F | − 1 must hold. Ifb(K̄) = |F | − 1 then
x(E[K̄]) + x(δ(K) \ F ) = 0, henceE[K̄] = ∅ andδ(K) = F . So we havex(E) =
x(E[K]) + x(δ(K)) = x(E[K]) + x(F ) = 1

2
(b(K) + |F | − 1) = 1

2
b(V ). That is,x is in

fact ab-factor, a contradiction.
If b(K̄) = |F | thenx(E) ≥ x(E[K])+x(F )+x(E[K̄ ]) = 1

2
(b(K)+|F |−1)+x(E[K̄]) =

⌊1
2
b(V )⌋ + x(E[K̄]). But x(E) ≤ ⌊1

2
b(V )⌋ soE[K̄] = ∅ and alsoδ(K) = F . That means

that K̄ consists of isolated nodesv1, ..., vk and δ(K) = F = δ(v1) ∪ ... ∪ δ(vk). Let
Fi = δ(vi). We claim thatb(vi) = |Fi| for eachi. Indeed, otherwise there is ani with
b(vi) ≥ |Fi| + 1 > d(vi), contradicting Proposition 6.6. Sob(vi) = |Fi| for eachi. Then
(K ∪{v1, ..., vk−1}, Fk) is also tight, and the tightness of(K,F ) is identical to the tightness
of this pair, a contradiction.

Now assume that(K,F ) is a bad pair of type (VI) independent fromL and letK̄ =
{u, v}. As b(u) + b(v) = |Fu| + |Fv| + 1, eitherb(u) ≤ |Fu| or b(v) ≤ |Fv|, say the first
one. By Proposition 6.7,(K + v, Fu) is also tight anḋδ(v) \ F = ∅, hence the tightness of
(K,F ) is equivalent to the tightness of(K+v, Fu), contradicting linear independence.

Claim 6.9 implies that an upper bound for|L| is also an upper bound for the maximum
number of independent bad constraints. Hence it suffices to bound|L|. We say that a bad
constraint inL correspondsto a nodev ∈ V if it is either of typex(δ̇(v)) = b(v), or of
type (IV) or (V) with K̄ = {v}. We give a bound on the number of bad constraints inL
corresponding to a nodev ∈ V .

Proposition 6.10. If (K,F ) is in L then(K,F ′) 6∈ L for F ′ ⊂ F .

Proof. Assume indirectly that(K,F ′) is in L for someF ′ ⊂ F . Thenx(F \ F ′) = |F\F ′|
2

from whatF ′ = ∅, |F | = 2, x(F ) = 1 follow by Propositions 5.6 and 6.2. But then each
node is saturated inK and(K,F ′) = (K, ∅) is not independent from equalities of form
(ii).

Claim 6.11. If x(δ̇(v)) = b(v) then there is no bad constraint of type (IV) or (V) inL
corresponding tov.

Proof. Let v be such thatx(δ̇(v)) = b(v) andx(E[K])) + x(F ) = b(K)+|F |−1
2

for some
F ⊆ δ(K) whereK = V − v. Recall thatl(v) = ∅ is assumed.

Assume first thatb(v) = |F |. By Proposition 6.7,̇δ(v) \ F = ∅. Hencex(δ̇(v)) = b(v)
is identical tox(F ) = |F |, a contradiction.

Assume now thatb(v) = |F | + 1. As x(δ(v)) = b(v) = |F | + 1 andx(F ) ≤ |F |,
x(δ(v) \ F ) ≥ 1 must hold. Hence we havex(E) = x(E[K]) + x(F ) + x(δ(v) \ F ) ≥
b(K)+|F |−1

2
+ 1 = b(V )

2
, which is only possible ifx is ab-factor, a contradiction.

Observe that if there is a bad constraint of type (IV) corresponding tov then this con-
straint is unique (namely(V − v, δ(v))). Moreover, there is no bad constraint of type (V)
corresponding tov by Proposition 6.10.
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Claim 6.12. For eachv ∈ V , there is at most one bad constraint of type (V) inL corre-
sponding tov.

Proof. Assume thatv is such thatx(E[K]))+x(F1) =
b(K)+|F1|−1

2
andx(E[K]))+x(F2) =

b(K)+|F2|−1
2

for differentF1, F2 ⊆ δ(K) whereK = V − v.

Proposition 6.13. |F1| = |F2|.

Proof. Assume to the contrary that|F1| > |F2|. (F1 \ F2) ⊆ F1 hencex(F1 \ F2) ≥
|F1 \ F2| − 1. On the other hand,(F1 \ F2) ⊆ (δ(K) \ F2), hencex(F1 \ F2) ≤ 1. These
imply |F1 \ F2| ≤ 2. By parity arguments,F2 ⊆ F1, contradicting Proposition 6.10.

Proposition 6.14. |F1 ∩ F2| = 0.

Proof. Assume thatF1 ∩ F2 = F 6= ∅. From the tightness of(K,F1) and (K,F2) we
get 2x(E[K]) + 2x(F ) + x(F1△F2) = b(K) + |F | + |F1△F2|

2
− 1 ≥ b(K) + |F |. On

the other hand, we know that2x(E[K]) + x(δ(K)) ≤ b(K) andx(F ) < |F | implying
2x(E[K]) + 2x(F ) + x(δ(K) \ F ) < b(K) + |F |, a contradiction.

Proposition 6.15. |F1| = |F2| = 1

Proof. By Proposition 5.6,x(F1) ≤ 1 asF1 ⊆ δ(K) \ F2, hence|F1| ≤ 2 by the same
proposition.

Assume that|F1| = 2. From the tightness of(K,F1) and(K,F2) we get

2x(E[K]) + x(F1) + x(F2) = b(K) + 1.

On the other hand, we know that2x(E[K]) + x(δ(K)) ≤ b(K), a contradiction.

Let F1 = f1, F2 = f2. Clearly,x(f1) = x(f2).

Proposition 6.16.δ(v) = {f1, f2}

Proof. We havex(E[K])+x(f1) =
1
2
b(K) andx(E[K])+x(f2) =

1
2
b(K), so2x(E[K])+

x(f1) + x(f2) = b(K). That means that each node is saturated inK by thex-values on
E[K] and{f1, f2}, hence there is no edgef ∈ δ(K) \ {f1, f2} by Proposition 6.2.

Proposition 6.16 implies that there are at most two bad constraints of type (V) inL
corresponding to a node. Assume thatv is such that there are exactly two such constraints.
The proof of Proposition 6.16 implies that all the other nodes are saturated byx, hencev is
unique with this property by Claim 6.11.

We claim thatT = ∅. Indeed, assume first that there is a forbidden triangleT ∈ T
containingv. Let f1 = vu andf2 = vw be the two edges incident tov. Bothu andw have
degree3 as they are saturated andx < 1. Let e1 = δ(u) \ ET ande2 = δ(w) \ ET . It is
easy to see thatx(e1) = x(e2) > x(f1) = x(f2). Also, x(ei) > 1

2
by x < 1, the previous

observation andx(ei) + x(fi) + x(uw) = 2.
Edgese1, e2, uw do not form the edge-set of a forbidden triangleT ′ as otherwisex(ET )+

x(ET ′) = x(δ(u)) + x(δ(w)) = 4, hence bothT andT ′ are tight, a contradiction.
Delete the edgesuv, uw from G, shrinku andw in a single nodez with b(z) = 2 and

add a new edgevz to the graph withx(vz) = 2−x(e1)−x(e2). LetG′, b′, T ′, x′ denote the
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lexicographically smaller problem thus arising. An easy case-check shows thatx′ satisfies
(P8) in G′ with b′ and T ′ hence it is a convex combination ofT ′-free b′-matchings of
G′. This convex combination can be extended to the original problem in a straightforward
manner thus givingx, a contradiction.

Proposition 6.17.There is no triangleT ∈ T whose nodes are all saturated.

Proof. Assume thatx(δ(v)) = 2 for eachv ∈ VT for someT ∈ T . Recall thatVT does
not span parallel edges by Proposition 6.1. Then2x(ET ) + x(δ(VT )) = 6, and sox(ET ) +
x(δ(VT )) ≥ 5−2 = 4. On the other hand,(VT , δ(VT )) is an odd pair, sox(ET )+x(δ(VT )) ≤
⌊6+3

2
⌋) = 4. Hence we have equality everywhere, implyingx(ET ) = 2, a contradiction.

By Claim 6.17, there is noT ∈ T with VT ⊆ V − v either. Letf1 = vu andf2 = vw
be the two edges incident tov. Deletev fromG and add a new edge betweenu andw with
x-valuex(f1) = x(f2) = C. LetG′, x′ denote the graph and vector thus arising.

Proposition 6.18.x′ satisfies (P8) in G′.

Proof. It only suffices to verify(iii). Assume that there is an odd pair(Z,H) with Z ⊆
V − v,H ⊆ δ(Z) \ {f1, f2} violating (iii) in G′. It is easy to see thatu, w ∈ Z must
hold otherwise there would be a violating pair in the original problem, too. That means
thatx(E[Z]) + x(H) > b(Z)+|H|−1

2
− C. In other words, as each node different fromv is

saturated,b(Z)− x(E[Z])− x(δ(Z) \H) > b(Z)+|H|−1
2

−C, sox(E[Z]) + x(δ(Z) \H) <
b(Z)−|H|+1

2
+C. If (Z,H) is odd then(V \ (Z+ v), H) is also odd andx(E[V \ (Z+ v)])+

x(H) ≤ (V \(Z+v))+|H|−1
2

. Summing up these we getx(E) < b(V −v)
2

+ C.
As both(V − v, f1) and(Vv, f2) are tight,2x(E[V − v]) + x({f1, f2}) = b(V − v), that

is, 2x(E) = b(V − v) + 2C, a contradiction.

As G′, x′ provides a lexicographically smaller problem,x′ is a convex combination of
b-matchings (in fact factors) ofG′. Theseb-matchings easily extends toG giving x, a
contradiction.

Claims 6.9, 6.11 and 6.12 imply that|L| ≤ |V |, and we are done.

As |E| > |V |, Lemma 6.8 implies that there exists a tight odd triplet(K,F,T) whose
shrinking lexicographically decreases the problem, and the same holds for(K̄, F,T). More
precisely, there is a tight triplet(K,F,T) with eitherT 6= ∅ or being independent fromL
defined earlier. Take such a triplet with|K| being minimal and letG◦

1 = (V ◦
1 , E

◦
1), b

◦
1, x

◦
1, T

◦
1

andG◦
2 = (V ◦

2 , E
◦
2), b

◦
2, x

◦
2, T

◦
2 denote the problems arising through shrinking(K,F,T) and

(K̄, F,T), respectively. We refer to the new nodesp, q in these graphs byp1, q1 andp2, q2,
respectively. By the minimality of the counterexample,x◦

i is a convex combination ofT ◦
i-

freeb◦i -matchings ofG◦
i , say,x◦

1 =
1
k

∑

χMi
andx◦

2 =
1
2

∑

χNj
for somek ∈ Z+ (note that

x◦
i is rational, being a vertex of a rational polytope). The following proposition is an easy

observation.
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Proposition 6.19.The tightness of(K,F,T) implies that exactly one of the followings holds
for eachMi:

(δ(p1)− p1q1) ⊆ Mi, |(δ(q1)− p1q1) ∩Mi| ≤ 1, or

|(δ(p1)− p1q1) \Mi| = 1, p1q1 ∈ Mi, (δ(q1)− p1q1) ∩Mi = ∅.

Similarly, forNj ’s:

(δ(p2)− p2q2) ⊆ Nj, |(δ(q2)− p2q2) ∩Nj | ≤ 1, or

|(δ(p2)− p2q2) \Nj | = 1, p2q2 ∈ Nj , (δ(q2)− p2q2) ∩Nj = ∅.

Each edgee ∈ δ(K) \ (F ∪ ET) is contained in exactlykx(e) number ofMi’s andNj ’s.
By the above observation, each of theseMi’s contains the entireF and edgesprT , rTw1

or prT , rTw2 for eachT ∈ T, while each of theNj ’s contains the entireF and edges
prT , rT sT , tTw or prT , rT tT , sTv. However, it is easy to see that, as they are parallel, the
role of edgesrTw1 andrTw2 can be ’exchanged’ in such a way that the total number ofMi’s
with prT , rTw1 ∈ Mi is equal to the number ofNj ’s with prT , rT tT , sTv ∈ Nj . This makes
possible to pair theseb◦i -matchings and ’glue’ them together to getkx(e) b-matchings of
G containing the edgee. Theb-matching obtained by gluing anMi with prT , rTw1 ∈ Mi

and anNj ’s with prT , rT tT , sTv ∈ Nj containseTuv andeTuw from ET , and similarly to the
other case whereprT , rTw2 ∈ Mi andprT , rTsT , tTv ∈ Nj. This can be done for each edge
e ∈ δ(K) \ (F ∪ ET).

Similarly, for each edgee ∈ F there are exactlyk(1− x(e)) Mi’s andNj ’s that does not
containe. Notice that these contain all edges inδ(pi) − e and none inδ(K) − (F ∪ ET).
Again, pair and glue these together to getb-matchings ofG not containinge.

The number ofMi’s with lT ∈ Mi or rTw1, rTw2 ∈ Mi for someT ∈ T is equal to the
number ofNj ’s with rT sT , rT tT ∈ Nj. However, we have to pair these matchings together
carefully. Note, thatT ◦

2 consists of triangles disjoint fromK. Hence it may happen that
there is a forbidden triangleT ′ ∈ T such thatVT ′ ⊆ K and there is a triangleT ∈ T with
|VT∩VT ′| = 2. In this case, we are not allowed to pair anMi and anNj for whatlT ∈ Mi and
the two remaining edges ofT ′ not contained byT is in Nj . We can easily avoid this unless
the sum of the coefficients of theseNj ’s is more than1 − x◦

1(lT ) = x(ET ) − 1. Consider
a convex combination in which the sum of the coefficients ofb◦2-matchings containing the
edges ofT ′ different from eT is minimal. If this value is positive then there is noNj

containing none of these two edges. But this implies thatx(ET ′) > 2(x(ET ) − 1) + (1 −
(x(ET ) − 1)) + x(eT ) = x(ET ) + x(eT ) ≥ 2, a contradiction. The last inequality follows
from Proposition 5.6.

So the pairing can be done. However, it is left to prove that the b-matchings thus arising
are alsoT -free.

Lemma 6.20.Theb-matchings thus obtained areT -free.

Proof. The only triangles possibly contained in one of theb-matchings could be those in
T − (T ◦

1 ∪ T ◦
2 ). Moreover, by the above, a bad triangle should have nodes both in K and

K̄.
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Due to the construction, a triangleT ∈ T is not contained in theb-matchings obtained.
Also, aT with ET ∩ET 6= ∅ is not contained by (1), (2) and Proposition 6.19. Assume that
T shares no edge with triangles inT.

If |ET ∩ F | = 0 then eachMi contains at most one ofT ’s edges going betweenK and
K̄ as|Mi ∩ (δ(K) \ (F ∪ ET))| ≤ 1, henceT is not contained by theb-matchings.

Let VT = {r, s, t}. Recall that(K,F,T) is such that eitherT 6= ∅ or it is independent
fromL. The following proposition will be useful.

Proposition 6.21.There is no tight even triplet inG.

Proof. Assume to the contrary that(Z,H,R) is a tight even pair, that is,x(E[Z])+x(H)+
∑

T∈R x(ET ) = b(Z)+|H|+3|R|
2

. By 0 < x < 1, this immediately impliesH = δ(Z) = ∅,

which is only possible ifZ = V asG is connected. Butx(E) = b(V )
2

means thatx is a
b-factor, a contradiction.

We distinguish the following cases.

Case 1:|ET ∩ F | = 1, |VT ∩K| = 1

Assume thatVT∩K = r andrt ∈ F . Letu be the third neighbour ofr, if exists. Ifu ∈ K
thenx(E[K− r])+x(F − rt+ ru)+

∑

T∈T x(ET ) > x(E[K])+x(F )+
∑

T∈T x(ET )−1
while b(K − r)+ |F − rt|+3|T| = b(K)+ |F |+3|T| − 2. Hence(K− r, F − rt+ ru,T)
would violate(iii), a contradiction.

If u ∈ K̄ andru ∈ F thenx(E[K − r])+ x(F − rt− ru)+
∑

T∈T x(ET ) > x(E[K]) +
x(F ) +

∑

T∈T x(ET )− 2 while b(K − r) + |F − rt− ru|+3|T| = b(K) + |F |+3|T| − 4.
Hence(K − r, F \ δ(r),T) would violate(iii), a contradiction.

If u ∈ K̄ andru 6∈ F or r has no third neighbour thenx(E[K − r]) + x(F − rt) +
∑

T∈T x(ET ) > x(E[K]) + x(F ) +
∑

T∈T x(ET )− 1 while b(K − r) + |F − rt|+ 3|T| =
b(K) + |F | + 3|T| − 3, a contradiction as(K − r, F − rt,T) is an even triplet that would
violate(iii) which is not possible.

Case 2:|ET ∩ F | = 1, |VT ∩K| = 2

Assume thatK ∩ VT = {r, s} andrt ∈ F . Let u be the third neighbour ofs, if exists. If
u ∈ K thenx(E[K−s])+x(F+su+rs)+

∑

T∈T x(ET ) = x(E[K])+x(F )+
∑

T∈T x(ET )
while b(K−s)+|F +su+rs|+3|T| = b(K)+|F |+3|T|. Hence(K−s, F +su+rs,T) is
also tight and its tightness is identical to that of the original triplet. However,|K| decreased
andT did not change, contradicting the minimality ofK.

If u ∈ K̄ andsu ∈ F thenx(E[K − s])+x(F − su+ rs)+
∑

T∈T x(ET ) > x(E[K])+
x(F ) +

∑

T∈T x(ET )− 1 while b(K − s) + |F − su+ rs|+3|T| = b(K) + |F |+3|T| − 2.
Hence(K − s, F − su+ rs,T) would violate(iii), a contradiction.

If u ∈ K̄ and su 6∈ F or s has no third neighbour thenx(E[K − s]) + x(F ) +
∑

T∈T x(ET ) > x(E[K]) + x(F ) +
∑

T∈T x(ET ) − 1 while b(K − s) + |F | + 3|T| =
b(K) + |F |+ 3|T| − 2. Hence(K − s, F,T) would violate(iii), a contradiction.
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Case 3:|ET ∩ F | = 2, |VT ∩K| = 1

Assume thatVT∩K = r andrs, rt ∈ F . Letu be the third neighbour ofr, if exists. Ifu ∈
K thenx(E[K−r])+x(F −rs−rt)+

∑

T∈T x(ET ) ≥ x(E[K])+x(F )+
∑

T∈T x(ET )−2
while b(K − r) + |F − rs − rt| + 3|T| ≤ b(K) + |F | + 3|T| − 4. Hence we must have
equality everywhere, sox(δ(r)) = 2 and(K − r, F − rs− rt,T) is tight. The tightness of
(K − r, F − rs − rt,T) is identical to that of the original triplet, whileT did not change.
However,|K| decreased, contradicting the minimality ofK.

If u ∈ K̄ andru ∈ F thenx(E[K−r])+x(F−rs−rt−ru)+
∑

T∈T x(ET ) ≥ x(E[K])+
x(F )+

∑

T∈T x(ET )−2 while b(K−r)+|F−rs−rt−ru|+3|T| = b(K)+|F |+3|T|−5.
We must have equality everywhere as otherwise(K − s, F − rs − rt − ru,T) would be
an even triplet violating(iii). That is,x(δ(r)) = 2 and (K − s, F − rs − rt − ru,T)
is tight. Note that|K| 6= 1 as eitherT 6= ∅ or the triplet is independent fromL. Hence
(K − s, F − rs− rt− ru,T) is a tight even triplet, contradicting Proposition 6.21.

If u ∈ K̄ andru 6∈ F or r has no third neighbour thenx(E[K − r]) + x(F − rs− rt) +
∑

T∈T x(ET ) > x(E[K])+x(F )+
∑

T∈T x(ET )−2 while b(K−r)+|F−rs−rt|+3|T| =
b(K) + |F |+3|T| − 4. Hence(K − r, F − rs− rt,T) would violate(iii), a contradiction.

Case 4:|ET ∩ F | = 2, |VT ∩K| = 2

Assume thatK ∩ VT = {r, s} andrt, st ∈ F . Letu be the third neighbour ofr, if exists.
If u ∈ K̄ andru ∈ F thenx(E[K − r]) + x(F − ru − rt) +

∑

T∈T x(ET ) ≥ x(E[K]) +
x(F ) +

∑

T∈T x(ET )− 2 while b(K − r) + |F − ru− rt|+3|T| = b(K) + |F |+3|T| − 4.
Hencex(δ(r)) = 2, (K − r, F − ru − rt,T) is also tight and is independent fromL if
the original triplet was so (note thatK − r 6= ∅). However,|K| decreased andT did not
change, contradicting the minimality ofK.

If u ∈ K̄ andru 6∈ F or r has no third neighbour thenx(E[K − r]) + x(F − rt+ rs) +
∑

T∈T x(ET ) > x(E[K])+x(F )+
∑

T∈T x(ET )−1 while b(K−r)+|F−rt+rs|+3|T| =
b(K) + |F |+3|T| − 2. Hence(K − r, F − rt+ rs,T) would violate(iii), a contradiction.

The same can be told about the third neighbour ofs denoted byv, if exists. So the only
remaining case is when bothu, v ∈ K. Thenx(E[K−r−s])+x(F −rs−rt+ru+sv)+
∑

T∈T x(ET ) > x(E[K]) + x(F ) +
∑

T∈T x(ET )− 2 while b(K − r− s) + |F − rs− rt+
ru+ sv|+ 3|T| = b(K) + |F |+ 3|T| − 4. Hence(K − r − s, F − rs− rt+ ru+ sv,T)
would violate(iii), a contradiction.

By Lemma 6.20, theb-matchings constructed above altogether yieldx as a convex com-
bination ofT -freeb-matchings ofG, a contradiction.

7 Inequalities for arbitrary graphs

The problem of giving a complete description of the triangle-free 2-matching polytope of
arbitrary graphs is still open. As mentioned in Section 1, assumption (1) is essential: Theo-
rem 1.8 is false if we remove the degree bounddG(v) ≤ 3 on nodes of forbidden triangles,
as shown by the following example.
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1 1

1221

2

1/2
1/21/2

1/2 1/21/21/2

1/2 1/2

Figure 10: A counterexample for the non-subcubic case

The values on the nodes and on the edges representb andx, respectively, andT contains
the triangle in the center. One may check thatx satisfies (P8) with total value9

2
, but the

maximum size of aT -freeb-matchings is4, hencex is definitely not contained in theT -free
b-matching polytope.

Again, instead of the triangle-free 2-matching problem we investigate the slightly more
generalT -free b-matching problem under restriction (2). In the sequel, we define a new
class of inequalities valid for theT -freeb-matching polytope.

K1

K2

K3

K4

Figure 11: A puli

A puli (named after the famous breed of Hungarian dog) is a triplet(K, F,T) whereK
is a collection of disjoint subsets ofV , F is a subset of edges leavingK (that is,F ⊆
δ(∪K∈KK)), T is a set of edge-disjoint forbidden triangles such thatF ∩ ET = ∅. More
precisely,T is the union ofTc andTf . HereTc is a set of triangles connecting the members
of K, that is,|Tc| = |K| − 1, each triangleT ∈ Tc 2-fits ∪K∈KK but none ofK ∈ K, and
there is aT ∈ Tc with VT ∩K 6= ∅ for eachK ∈ K. Tf contains triangles1- or 2-fitting
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K2

: triangle inTf
K

: triangle inṪc
K

: triangle inTc
K \ Ṫc

K

T1

T2

T3

T4

gT4

fT4eT3

gT2

fT2

gT1

fT1

T5

eT5

Figure 12: A tuft of the puli of Figure11

one of the members ofK and is divided into disjoint subsetsTf
1 andTf

2 according to this.
Figure 11 shows a puli as an example.

Let K ∈ K, Tf
K ⊆ Tf be the set of non-connecting,Tc

K ⊆ Tc
K be the set of connecting

triangles incident toK andFK = F ∩ δ(K). We denoteTf
K ∪ Tc

K by TK . Moreover, we
assign a subseṫTc

K of Tc
K to K. The quartet(K,FK ,TK, Ṫ

c
K) is then called atuft of the

puli. For a triangleT ∈ T
f
K , we use again the notion of special edgeeT , that is, for a triangle

T ∈ T
f
1 we defineeT = ET \ δ(K), while for a triangleT ∈ T

f
2 we defineeT = EK ∩ ET .

For a triangleTc
K , the unique edge inET \ δ(K) is denoted byfT while its edge leaving

K and not entering any other member ofK is denoted bygT . Using these notations, the
following inequalities are clearly valid for theT -freeb-matching polytope.

(i) xe ≤ 1 (e ∈ E),

(ii) − xe ≤ 0 (e ∈ E),

(iii) x(δ(v)) ≤ b(v) (v ∈ V ),

(iv) x(ET ) ≤ 2 (T ∈ T).

By summing up(i) for e ∈ FK , (ii) for e ∈ δ(K) \ (FK ∪ETK
), (iii) for v ∈ K, (iv) for

T ∈ T
f
K ∪ Ṫc

K , (i) for edges of formeT for someT ∈ T
f
K or of formfT for someT ∈ Ṫc

K

and(i) for edgese ∈ (ET − fT ) for someT ∈ Tc
K \ Ṫc

K , we get

2x(E[K]) + 2x(FK) + 2
∑

T∈TK

x(ET )− 2
∑

T∈Tc
K
\Ṫc

K

x(fT ) ≤

≤ b(K) + |FK |+ 3|Tf
K|+ 2|Tc

K |+ |Ṫc
K |.

That is,

x(E[K]) + x(FK) +
∑

T∈TK

x(ET )−
∑

T∈Tc
K
\Ṫc

K

x(fT ) ≤ (4)

≤ ⌊
b(K)+|FK |+3|Tf

K
|+2|Tc

K |+|Ṫc
K |

2
⌋
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is a valid inequality for theT -freeb-matching polytope.
By summing up(i) for e ∈ FK , (ii) for e ∈ δ(K) \ (FK ∪ {gT | T ∈ Ṫc

K}), (iii) for
v ∈ K, (iv) for T ∈ T

f
K , (i) for edges of formeT for someT ∈ T

f
K and(i) for edgesgT

for someT ∈ Ṫc
K , we get

2x(E[K]) + 2x(FK) + 2
∑

T∈Tf
K

x(ET ) + 2
∑

T∈Ṫc
K

x(gT ) ≤ b(K) + |FK |+ 3|Tf
K |+ |Ṫc

K|.

That is,

x(E[K]) + x(FK) +
∑

T∈Tf
K

x(ET ) +
∑

T∈Ṫc
K

x(gT ) ≤ ⌊
b(K)+|FK |+3|Tf

K
|+|Ṫc

K
|

2
⌋ (5)

is also a valid inequality for theT -freeb-matching polytope.
Let (K, F,T) be a puli and assume that(Ki, FKi

,TKi
, Ṫc

Ki
) are tufts (i = 1, ..., |K|) such

that setsṪc
Ki

are disjoint and∪iṪ
c
Ki

= Tc
K. By summing up inequalities (4) and (5) for a

tuft we get

2
∑

i

x(E[Ki]) + 2
∑

i

x(FKi
) + 2

∑

T∈TK

x(ET ) ≤

≤
∑

i

⌊
b(Ki)+|FKi

|+3|Tf
Ki

|+2|Tc
Ki

|+|Ṫc
Ki

|

2
⌋ +

∑

i

⌊
b(Ki)+|FKi

|+3|Tf
Ki

|+|Ṫc
Ki

|

2
⌋.

For ani,

⌊
b(Ki)+|FKi

|+3|Tf
Ki

|+2|Tc
Ki

|+|Ṫc
Ki

|

2
⌋+ ⌊

b(Ki)+|FKi
|+3|Tf

Ki
|+|Ṫc

Ki
|

2
⌋ =

= b(Ki) + |FKi
|+ 3|Tf

Ki
|+ |Tc

Ki
|+ |Ṫc

Ki
| − χi,

whereχi is 1 if b(Ki) + |FKi
| + 3|Tf

Ki
| + |Ṫc

Ki
| is odd and0 otherwise. We call the tuft

(Ki, FKi
,TKi

, Ṫc
Ki
) odd in the first case.

However, we can use a trick if the tuft is even butTc
K \ Ṫc

K 6= ∅, called apre-odd tuft.
Consider such a tuft and letTspec be a triangle inTc

K \ Ṫc
K . Let e1 ande2 denote the edges

in ETspec
− fTspec

. By a simple modification of the above we get inequalities

x(E[K]) + x(FK) +
∑

T∈TK

x(ET )−
∑

T∈Tc
K
\Ṫc

K

x(fT )− x(e2) ≤

≤ ⌊
b(K)+|FK |+3|Tf

K
|+2|Tc

K
|+|Ṫc

K
|−1

2
⌋

and

x(E[K]) + x(FK) +
∑

T∈Tf
K

x(ET ) +
∑

T∈Ṫc
K

x(gT ) + x(e2) ≤ ⌊
b(K)+|FK |+3|Tf

K
|+|Ṫc

K
|+1

2
⌋.
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The sum of the right sides gives

⌊
b(Ki)+|FKi

|+3|Tf
Ki

|+2|Tc
Ki

|+|Ṫc
Ki

|−1

2
⌋+ ⌊

b(Ki)+|FKi
|+3|Tf

Ki
|+|Ṫc

Ki
|+1

2
⌋ =

= b(Ki) + |FKi
|+ 3|Tf

Ki
|+ |Tc

Ki
|+ |Ṫc

Ki
| − 1

Hence we have
∑

i

x(E[Ki]) +
∑

i

x(FKi
) +

∑

T∈TK

x(ET ) ≤

≤ ⌊
∑

i

b(Ki)+|FKi
|+3|Tf

Ki
|+|Tc

Ki
|+|Ṫc

Ki
|−χi

2
⌋,

whereχi is 1 if the ith tuft is odd or pre-odd and0 otherwise.
Given a puli(K, F,T), fix aKfix ∈ K. We can assign the triangles inTc to the members

of K\Kfix in such a way that eachK ∈ K\Kfix corresponds to an odd tuft (this is possible
as the members ofK together with the triangles inTc have a ’tree-structure’, hence we may
start from the leaves). After thatṪc

Kfix
also becomes fixed. It is easy to check that ifKfix

corresponds at the end to a tuft which is not odd nor pre-odd thenb(Kfix)+|FKfix
|+|TKfix

|
must be even. However, we chooseKfix arbitrarily, so if there is aK ∈ K with b(K) +
|FK |+ |TK | odd then

∑

i

x(E[Ki]) +
∑

i

x(FKi
) +

∑

T∈TK

x(ET ) ≤

≤ ⌊ b(K)+|F |+3|Tf |+2|Tc|−1
2

⌋

holds as|K| = |Tc|+ 1, or for short,

x(∪iE[Ki]) + x(F ) + x(ET) ≤ ⌊ b(K)+|F |+3|Tf |+2|Tc|−1
2

⌋.

We call a puli(K, F,T) essentialif b(K) + |F |+ |Tf | is even and there is aK ∈ K with
b(K) + |FK |+ |TK| odd. The above observations suggest the following conjecture.

Conjecture 7.1. Let G = (V,E) be a simple graph,b : V → Z+ andT a collection of
triangles satisfying (2). TheT -freeb-matching polytope is determined by

(i) 0 ≤ xe ≤ 1 (e ∈ E),

(ii) x(δ̇(v)) ≤ b(v) (v ∈ V ),

(iii) x(E[K]) + x(F ) + x(ET) ≤ ((K,F,T) odd

⌊ b(K)+|F |+3|T|
2

⌋ triplet of Type 2), (P9)

(iv) x(∪iE[Ki]) + x(F ) + x(ET) ≤ ((K, F,T)

⌊ b(K)+|F |+3|Tf |+2|Tc|−1
2

⌋ essential puli),

(v) x(ET ) ≤ 2 (T ∈ T ).

Let us return to the example of Figure 10. The graph itself consists of an essential puli,
as shown on Figure 13 where the central triangle -denoted byT - can be assigned either to
K1 orK2. Then(iii) givesx(E[K1]) + x(E[K2]) + x(ET ) ≤ ⌊8+2−1

2
⌋ = 4, while we have

x(E[K1])+x(E[K2])+x(ET ) = 4.5, showing thatx is indeed not contained in theT -free
b-matching polytope.
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1 1
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K1 K2

T

Figure 13: A violating puli

8 Conclusion

We gave a new proof of the polyhedral description ofb-factors, based on a newly introduced
contraction operation. The proof easily extended to the polyhedral description ofT -freeb-
factors under assumptions (1) and (2). The description (P7) is what one would naturally
expect having the description (P2) of b-factors and (P4) of uncapacitatedT -free 2-factors
at hand. Hartvigsen and Li showed that the polyhedral description ofT -free2-matchings is
far more complicated, and proved (P6) in [9]. We gave a slight generalization of their nice
result by extending our contraction techniques.

Yet giving a polyhedral description of triangle-free (or, more generally,T -free)2-factors
and2-matchings of arbitrary graphs is still open. One might wonder whether (P8) could
possibly be a valid description for the general case, without the restrictive assumption that
the degree of nodes incident to triangles is at most three. Unfortunately, the answer is
negative as shown by the counterexample of Figure 10.

The examination of the general case led us to the notion of puli-inequalities which form
a new class of valid inequalities for theT -free b-matching polytope. Based on our ob-
servations, we proposed a polyhedral description ofT -freeb-matchings for simple graphs
satisfying (2). We believe that our method can be applied to the general case by further
extending the notion of shrinking.
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