
Egerváry Research Group
on Combinatorial Optimization

Technical reportS

TR-2011-13. Published by the Egerváry Research Group, Pázmány P. sétány 1/C,
H�1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587�4451.

Covering minimum cost arborescences

Attila Bernáth and Gyula Pap

December 2011

EGRES Technical Report No. 2011-13 1

Covering minimum cost arborescences

Attila Bernáth? and Gyula Pap??

Abstract

Given a digraph D = (V,A) with a designated root node r ∈ V and arc-costs

c : A→ R, we consider the problem of �nding a minimum cardinality subset H
of the arc set A such that H intersects every minimum cost r-arborescence. We

give a polynomial algorithm for �nding such an arc set H. The algorithm solves

a weighted version as well, in which a nonnegative weight function w : A→ R+

is also given, and we want to �nd a subset H of the arc set such that H intersects

every minimum cost r-arborescence, and w(H) is minimum.

1 Introduction

Let D = (V,A) be a digraph with vertex set V and arc set A. A spanning arborescence
is a subset B ⊆ A that is a spanning tree in the undirected sense, and every node has
in-degree at most one. Thus there is exactly one node, the root node, with in-degree
zero. Equivalently, a spanning arborescence is a subset B ⊆ A with the property that
there is a root node r ∈ V such that %B(r) = 0, and %B(v) = 1 for v ∈ V − r, and
B contains no cycle. An arborescence will mean a spanning arborescence, unless
stated otherwise. If r ∈ V is the root of the spanning arborescence B then we will
say that B is an r-arborescence.
The Minimum Cost Arborescence Problem is the following: given a digraph D =

(V,A), a designated root node r ∈ V and a cost function c : A → R, �nd an r-
arborescence B ⊆ A such that the cost c(B) =

∑
b∈B c(b) of B is smallest possible.

Fulkerson [2] has given a two-phase algorithm for solving this problem, and he also
characterized minimum cost arborescences. Naoyuki Kamiyama in [4] raised the fol-
lowing question.

Problem 1. Given a digraph D = (V,A), a designated root node r ∈ V and a
cost function c : A → R, �nd a subset H of the arc set such that H intersects every
minimum cost r-arborescence, and |H| is minimum.

?MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös University,
Pázmány Péter sétány 1/C, Budapest, Hungary, H-1117. E-mail: bernath@cs.elte.hu.

??MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös University,
Pázmány Péter sétány 1/C, Budapest, Hungary, H-1117. E-mail: gyuszko@cs.elte.hu.

December 2011

Section 2. The problem and its variants 2

The minimum in Problem 1 measures the robustness of the minimum cost arbores-
cences, since it asks to delete a minimum cardinality set of arcs in order to destroy
all minimum cost r-arborescences.
This problem was raised and investigated by Naoyuki Kamiyama in [4], where he

solved special cases of this problem and he investigated some necessary and su�cient
conditions for the minimum in this problem. In this paper we give a polynomial time
algorithm solving Problem 1. In fact, our algorithm will solve the following, more
general problem, too.

Problem 2. Given a digraph D = (V,A), a designated root node r ∈ V , a cost
function c : A → R and a nonnegative weight function w : A → R+, �nd a subset H
of the arc set such that H intersects every minimum cost r-arborescence, and w(H)
is minimum.

The rest of this paper is organized as follows. In Section 2 we give variants of the
problem based on Fulkerson's characterization of minimum cost arborescences. These
variants are all equivalent with Problem 1 as simple reductions show, but we deal with
the variant that can be handled more conveniently. In Section 3 we solve the special
case of covering all arborescences: this is indeed a very special case, but the answer
is very useful in the solution of the general case. Section 4 contains our main result
broken down into two steps: in Section 4.1 we prove a min-min formula that gives
a useful reformulation of our problem, and �after introducing some essential results
and techniques in Section 4.2� we �nally give a polynomial time algorithm solving
Problems 1 and 2 in Section 4.3.

2 The problem and its variants

In this paper we investigate Problem 1 and the more general Problem 2. One interpre-
tation of these problems is that we want to cover the minimum cost common bases of
two matroids : one matroid being the graphic matroid of D (in the undirected sense),
the other being a partition matroid with partition classes δin(v) for every v ∈ V . A
related problem for matroids, the problem of covering all minimum cost bases of a
matroid is solved in [3]. For sake of simplicity we will mostly speak about Problem
1, and in Section 4.3 we sketch the necessary modi�cations of our algorithm needed
to solve Problem 2. Note that Problem 2 with an integer weight function w can be
reduced to Problem 1 by replacing an arc a ∈ A (of weight w(a)) with w(a) parallel
copies (each of weight 1): this reduction is however not polynomial. On the other
hand the algorithm we give for Problem 1 can be simply modi�ed to solve Problem 2
in strongly polynomial time.
Let us give some more de�nitions. The arc set of the digraph D will also be denoted

by A(D). Given a digraph D = (V,A) and a node set Z ⊆ V , let D[Z] be the digraph
obtained from D by deleting the nodes of V −Z (and all the arcs incident with them).
If B ⊆ A is a subset of the arc set, then we will sometimes abuse the notation by
identifying B and the graph (V,B): thus B[Z] is obtained from (V,B) by deleting the

EGRES Technical Report No. 2011-13

Section 2. The problem and its variants 3

nodes of V −Z (and the arcs of B incident with them). The set of arcs of D entering
Z is denoted δinD (Z), the number of these arcs is %D(Z) = |δinD (Z)|.
The following theorem of Fulkerson characterizes the minimum cost arborescences

and leads us to a more convenient, but equivalent problem.

Theorem 2.1 (Fulkerson, [2]). There exists a subset A′ ⊆ A of arcs (called tight
arcs) and a laminar family L ⊆ 2V−r such that an r-arborescence is of minimum cost
if and only if it uses only tight arcs and it enters every member of L exactly once.
The set A′ and L can be found in polynomial time.

Since non-tight arcs do not play a role in our problems, we can forget about them,
so we assume that A′ = A from now on.
Let L be a laminar family of subsets of V . A spanning arborescence B ⊆ A in D

is called an L-nice arborescence if both of the following hold.

1. |δinB (F)| ≤ 1 for all F ∈ L, and

2. |δinB (F)| = 0 for all F ∈ L containing the root r of B.

We point out that the second condition in the above de�nition is needed because
we don't want to �x the root of the arborescences: this will be natural in the solution
we give for Problem 1. The result of Fulkerson leads us to the following problem.

Problem 3. Given a digraph D = (V,A), a designated root node r ∈ V and a
laminar family L ⊆ 2V , �nd a subset H of the arc set such that H intersects every
r-rooted L-nice arborescence and |H| is minimum.

Note that in this problem we allow that r ∈ F for some members F ∈ L. By
Fulkerson's Theorem above, if we have a polynomial algorithm for Problem 3 then we
can also solve Problem 1 in polynomial time with this algorithm. However, this can
be reversed by the next claim.

Claim 2.2. If we have a polynomial algorithm solving Problem 1 then we can also
solve Problem 3 in polynomial time.

Proof. Let the cost of an arc a ∈ A be equal to the number of sets F ∈ L such that
a enters F . Then an r-arborescence is of minimum cost if and only if it is L-nice, if
there exists an L-nice arborescence at all. 2

We point out that the construction in the above proof also shows how to �nd an
L-nice arborescence, if it exists at all. So we can turn our attention to Problem 3.
However, in order to have a more compact answer, it is more convenient to consider
the following, equivalent problem instead, in which the root is not designated.

Problem 4. Given a digraph D = (V,A) and a laminar family L ⊆ 2V , �nd a subset
H of the arc set such that H intersects every L-nice arborescence and |H| is minimum.

Claim 2.3. There exists a polynomial algorithm solving Problem 3 if and only if there
exists a polynomial algorithm solving Problem 4.

EGRES Technical Report No. 2011-13

Section 3. Covering all arborescences � a special case 4

Proof. Assume that there exists a polynomial time algorithm for Problem 4 and con-
sider an instance of Problem 3. Since arcs entering r will not be used in an optimal
solution of Problem 3, we can assume that there are no such arcs. But then the L-nice
arborescences are all rooted in r, so our algorithm covering all L-nice arborescences
can be used for solving Problem 3, too.
For the other direction assume that we have a polynomial time algorith solving

Problem 3 and consider an instance of Problem 4 given with D = (V,A) and L ⊆ 2V .
Let V ′ = V + r′ with a new node r′ and let D′ = (V ′, A′) where A′ consists of the arcs
in A and an arc of multiplicity |A|+1 from r′ to every v ∈ V . Finally let L′ = L+{V }.
Now consider Problem 3 with input D′, r′ and L′. Observe that L-nice arborescences
in D and (r′-rooted) L′-nice arborescences in D′ correspond to each-other in a natural
way, and an optimal solution to this instance of Problem 3 will not contain any arc of
form r′v (if it contains one then it has to contain all parallel copies, but we included
those with a large multiplicity). 2

The main result of this paper is a polynomial algorithm solving Problem 4, and
thus, by Claims 2.2 and 2.3, for Problems 1 and 3. For a digraph D = (V,A), and
a laminar family L of subsets of V , let γ(D,L) denote the minimum number of arcs
deleted from D to obtain a digraph that does not contain an L-nice arborescence,
that is,

γ(D,L) := min{|H| : H ⊆ A such that D −H
contains no L-nice arborescence }. (1)

3 Covering all arborescences � a special case

In the proof of our main result below, we will use its special case when the laminar
family L is empty. This special case amounts to the following well-known characteri-
zation of the existence of a spanning arborescence.

Lemma 3.1. For any digraph D = (V,A) exactly one of the following two alternatives
holds:

1. there exists a spanning arborescence,

2. there exist two disjoint non-empty subsets Z1, Z2 ⊂ V such that %D(Z1) =
%D(Z2) = 0.

This characterization also implies a formula to determine the minimum number of
edges to be deleted to destroy all arborescences. The characterization is based on
double cuts.

De�nition 3.2. For a digraphD = (V,A), a double cut δin(Z1)∪δin(Z2) is determined
by a pair of non-empty disjoint node subsets Z1, Z2 ⊆ V . The minimum cadinality of
a double cut is denoted by µ(D), that is

µ(D) := min{|δin(Z1)|+ |δin(Z2)| : Z1 ∩ Z2 = ∅ 6= Z1, Z2 (V }. (2)

EGRES Technical Report No. 2011-13

Section 4. Covering nice arborescences 5

Corollary 3.3. For any digraph D = (V,A) the following equation holds: γ(D, ∅) =
µ(D).

We point out that a minimum double cut can be found in polynomial time by a
simple reduction to minimum cut. Furthermore we will need the following observation.

Lemma 3.4. Given a digraph D = (V,A) let R = {r ∈ V : there exists an r-
rooted spanning arborescence in D}. Then D[R] is a strongly connected digraph, and
%D(R) = 0.

4 Covering nice arborescences

Given a laminar family L ⊆ 2V , for F ∈ L ∪ {V }, let LF := {F ′ ∈ L, F ′ ⊆ F}.
A simple, albeit quite important observation is that members of the laminar family
also induce a nice arborescence with respect to the laminar family, thus we obtain the
following Claim.

Claim 4.1. For any L-nice arborescence B, and any F ∈ L∪{V }, B[F] is an LF -nice
arborescence in D[F].

The following observation is crucial in our proofs. Given a digraph D = (V,A) and
a laminar family L ⊆ 2V , for an arbitrary member F ∈ L and arc a = xy ∈ A leaving
F , let D̃ be the graph obtained from D by changing the tail of a for an arbitrary
other node x′ ∈ F , that is D̃ = D − xy + x′y (where x, x′ ∈ F and y /∈ F). This
operation will be called a tail-relocation. Then clearly there is a natural bijection
between the arcs of D and those of D̃, but even more importantly, this bijection also
induces a bijection between the L-nice arborescences in D and those in D̃. This is
formulated in the following claim.

Claim 4.2. Let B ⊆ A and xy ∈ B. Then B − xy+ x′y is an L-nice arborescence in
D̃ if and only if B is an L-nice arborescence in D.

The claim also implies that γ(D,L) = γ(D̃,L).

4.1 A "min-min" formula

Our approach to determine γ(D,L) is broken down into two steps. First, we prove a
"min-min" formula, that is, we show that a set H that attains the minimum in (1)
is equal to a special arc subset called an L-double-cut. The second step will be the
construction of an algorithm to �nd a minimum cardinality L-double-cut.
So what is this �rst step � the min-min formula all about? It expresses that in

order to to cover optimally the L-nice arborescences we need to consider the problem
of covering the LF -nice arborescences for every F ∈ L ∪ {V }.

De�nition 4.3. For a set Z ⊆ V , let LZ denote the family of sets in L not disjoint
from Z, that is, let

LZ := {F ∈ L : F ∩ Z 6= ∅}. (3)

EGRES Technical Report No. 2011-13

4.1 A "min-min" formula 6

Then an L-cut M(Z) is de�ned as the set of arcs entering Z, but not leaving any set
in LZ , that is, let

M(Z) := MD,L(Z) := δinD (Z)−
⋃
F∈LZ

(
δoutD (F)

)
. (4)

Note that for a set F ∈ L ∪ {V } this de�nition of LF does not contradict with
the de�nition given in the beginning of Section 4. Thus M(Z) consists of those arcs
entering Z, but not leaving any of those sets in L that have non-empty intersection
with Z. A set function f is given by the cardinality of an L-cut, that is, we de�ne

f(Z) := fD(Z) := fD,L(Z) := |MD,L(Z)|. (5)

It is useful to observe that

fD,L(Z) ≥ fD[F],LF (Z ∩ F) for any F ∈ L. (6)

The motivation for f and M(Z) is that H = M(Z) is a set of arcs the deletion of
which destroys all nice arborescences rooted outside of Z, as claimed by the following
lemma.

Lemma 4.4. For any ∅ 6= Z (V , there is no L-nice arborescence in D − M(Z)
rooted in a node s ∈ V − Z.

Proof. Let D̄ = D −M(Z). We prove the lemma by induction on |L|: the base case
when L = ∅ is obvious. So let |L| > 0 and assume that P ⊆ A−M(Z) is an s-rooted
L-nice arborescence in D̄ (where s ∈ V −Z). First observe that if F ∈ LZ is arbitrary
then, by the induction hypothesis, the root of the LF -nice arborescence P [F] must
be in F ∩ Z. Let v ∈ Z be arbitrary and consider the unique path in P from s to v:
assume that a ∈ A(D̄) is the �rst arc on this path that enters Z. Then there must
exist a set F ∈ LZ such that a leaves F . But the root of P [F] must precede a on this
path, and it lies in Z, a contradiction. 2

For any F ∈ L ∪ {V } and nonempty disjoint subsets Z1, Z2 ⊆ F the set of arcs
in MD[F],LF (Z1) ∪MD[F],LF (Z2) will be called an L-double cut, and we introduce the
following notation for the minimum cardinality of an L-double cut:

ΘF := ΘF,D := ΘF,D,L := min{fD[F],LF (Z1)+fD[F],LF (Z2) : ∅ 6= Z1, Z2 ⊆ F,Z1∩Z2 = ∅}.

The following simple observation is worth mentioning.

Claim 4.5. Given a digraph D = (V,A) and a laminar family L ⊆ 2V , then fD,L(Z) ≤
%D(Z) holds for every Z ⊆ V . Consequently, ΘF,D,L ≤ µ(D[F]) holds for any F ∈
L ∪ {V }.

Note that the tail-relocation operation introduced above does not change f -value
of any set Z ⊆ V , that is fD,L(Z) = fD′,L(Z), if D′ is obtained from D by (one or
several) tail-relocation. Consequently, this operation does not modify the Θ value,
either, that is ΘF,D,L = ΘF,D′,L for any F ∈ L ∪ {V }. The following "min-min"
theorem motivates the de�nition of Θ.

EGRES Technical Report No. 2011-13

4.1 A "min-min" formula 7

Theorem 4.6. For a digraph D = (V,A), and a laminar family L of subsets of V ,
the minimum number of arcs to be deleted from D to obtain a digraph that does not
contain an L-nice arborescence is attained on an L-double cut, that is

γ(D,L) = min
F∈L∪{V }

ΘF,D,L.

Proof. By Lemma 4.4, γ(D,L) ≤ minF∈L∪{V }ΘF , since if we delete an arc setMD[F](Z1)∪
MD[F](Z2) for some F ∈ L∪{V } and non-empty disjoint Z1, Z2 ⊆ F , then no LF -nice
arborescence survives in D[F] (since its root can neither be in F −Z1, nor in F −Z2,
by Lemma 4.4, and F = (F − Z1) ∪ (F − Z2)).
Assume that H ⊆ A is such that |H| < minF∈L∪{V }ΘF : we will show that there

exists an L-nice arborescence in D̄ = D−H, proving the theorem. It su�ces to show
the following lemma.

Lemma 4.7. If fD̄[F](Z1)+fD̄[F](Z2) > 0 for any F ∈ L∪{V } and non-empty disjoint
sets Z1, Z2 ⊆ F , then there exists a L-nice arborescence in D̄.

Proof. We will use induction on |L|+ |V |+ |A(D̄)|. If L = ∅ then the lemma is true
by Lemma 3.1. Otherwise let F ∈ L be an inclusionwise minimal member of L: again
by Lemma 3.1, there exists a spanning arborescence in D̄[F]. Let R be the subset of
nodes of F that can be the root of a spanning arborescence in D̄[F], i.e. R = {r ∈ F :
there exists an r-rooted arborescence (spanning F) in D̄[F]}.

1. Assume �rst that |R| ≥ 2 and let D̄1 = D̄/R obtained by contracting R. For any
set Z ⊆ V which is either disjoint form R, or contains R, let Z/R be its (well-
de�ned) image after the contraction and let L1 = {X/R : X ∈ L}. By induction,
there exists an L1-nice arborescence P in D̄1, since fD̄[X/R](Z/R) = fD̄[X](Z)
for any X/R ∈ L1 and Z/R ⊆ X/R. It is clear that we can create an L-nice
arborescence in D̄ from P : we describe one possible way. Consider the unique
arc in P that enters F and assume that the pre-image of this arc has head
r ∈ R. Delete every arc from P induced by F/R and substitute them with
an arbitrary r-rooted arborescence (spanning F) of D̄[F]. This clearly gives an
L-nice arborescence.

2. So we can assume that R = {r}. Next assume that there exists an arc uv ∈ A(D̄)
entering F with r 6= v. Let D̄2 = D̄ − uv: we claim that there exists an L-
nice arborescence in D̄2 (which is clearly an L-nice arborescence in D̄, too).
If this does not hold then by the induction there must exist a set F ′ ∈ L
and non-empty disjoint subsets Z1, Z2 ⊆ F ′ with

∑
i=1,2 fD̄2[F ′](Zi) = 0. Since∑

i=1,2 fD̄[F ′](Zi) > 0, the arc uv must be equal to (say) MD̄[F ′],L(Z1) (while
MD̄[F ′],L(Z2) = ∅). This implies that uv enters Z1, while r ∈ Z1 must also hold,
otherwise fD̄[F ′](Z1) ≥ 2 would hold, since v is reachable from r in D̄[F ′]. Let
Z ′1 = Z1 − (F − r) and observe that fD̄[F ′](Z

′
1) = 0: this is because the arcs

in δin
D̄[F ′]

(Z ′1) − δin
D̄[F ′]

(Z1) all leave F , since %D̄[F](r) = 0 by Lemma 3.4. Thus

fD̄[F ′](Z
′
1) + fD̄[F ′](Z2) = 0, a contradiction.

EGRES Technical Report No. 2011-13

4.2 Double cuts and arborescences 8

3. So we can also assume that the arcs of D̄ entering F all enter r. Let L2 =
L − {F}: then clearly fD̄[F ′],L2(Z) ≥ fD̄[F ′],L(Z) for any F ′ ∈ L2 and Z ⊆ F ′,
so by induction there exists an L2-nice arborescence in D̄: by our assumptions
this is also L-nice, so the theorem is proved.

2

4.2 Double cuts and arborescences

In this section we give some important results for the main theorem.

De�nition 4.8. A family of sets F ⊆ 2V of a �nite ground set V is said to satisfy
the Helly-property, if any sub-family X of pairwise intersecting members of F has a
non-empty intersection, i.e. X ⊆ F and X ∩X ′ 6= ∅ for every X,X ′ ∈ X implies that
∩X 6= ∅.

The following de�nition is taken from [1].

De�nition 4.9. Given a digraph G = (V,A), a non-empty subset of nodes X ⊆ V is
called in-solid, if %(Y) > %(X) holds for every nonempty Y (X.

Theorem 4.10 (Bárász, Becker, Frank [1]). The family of in-solid sets of a digraph
satis�es the Helly-property.

The authors of [1] prove in fact more: they show that the family of in-solid sets
is a subtree-hypergraph, but we will only use the Helly property here. The following
theorem formulates the key observation for the main result.

Theorem 4.11. In a digraph G = (V,A) there exists a node t ∈ V such that %(Z) ≥
µ(G)

2
for every non-empty Z ⊆ V − t.

Proof. Consider the family X = {X ⊆ V : X is in-solid and %(X) < µ(G)
2
}. If there

were two disjoint members X,X ′ ∈ X then %(X) + %(X ′) < µ(G) would a contradict
the de�nition of µ(G). Therefore, by the Helly-property of the in-solid sets, there
exists a node t ∈ ∩X . This node satis�es the requirements of the theorem, since if
there was a non-empty Z ⊆ V − t with %(Z) < µ(G)

2
, then Z would necessarily contain

an in-solid set Z ′ ⊆ Z with %(Z ′) < %(Z) (this follows from the de�nition of in-solid
sets), contradicting the choice of t. 2

In a digraph G = (V,A), a node t ∈ V with the property %(Z) ≥ µ(G)
2

for every
non-empty Z ⊆ V − t will be called an anchor node of G.

EGRES Technical Report No. 2011-13

4.3 A polynomial-time algorithm 9

4.3 A polynomial-time algorithm

In this section we present a polynomial time algorithm to determine the robustness of
nice arborescences, which also implies a polynomial time algorithm to determine the
robustness of minimum cost arborescences. A sketch of the algorithm goes as follows.
For a minimal member F of L, we apply Theorem 4.11, and �nd its anchor node tF .
We replace the tail of every arc leaving F by tF , remove F from L, and repeat until L
goes empty. This way we construct a sequence of digraphs on the same node set: let
D′ be the last member of this sequence. Then for any t ∈ ∪L we construct another
digraph Dt from D′: for every F ∈ L with t ∈ F and every arc of D′ leaving F we
replace the tail of this arc with t. Then we determine minimum double cuts in D′[F]
for every F ∈ L∪{V }, and we also determine minimum double cuts in Dt[F] for every
F ∈ L∪ {V } with t ∈ F : this way we have determined O(n2) double cuts altogether.
Each of these double cuts also determines an L-double cut in D, and we pick the one
with the smallest cardinality, to claim that it actually is optimal.

Algorithm COVERING_NICE_ARBORESCENCES
begin

INPUT A digraph D = (V,A) and a laminar family L ⊆ 2V

OUTPUT γ(D,L)
1.1. Let D0 = D, i = 1 and L′ = L.
1.2. While L′ 6= ∅ do
1.3. Choose an inclusionwise minimal set F ∈ L′
1.4. Let tF ∈ F be such that %Di−1[F](Z) ≥ µ(Di−1[F])

2
for every non-empty Z ⊆

F − tF (this node exists by Thm 4.11 applied to G = Di−1[F])
1.5. Di is obtained from Di−1 by changing the tail of every arc leaving F to tF
1.6. Let i = i+ 1 and L′ = L′ − F
1.7. Let D′ = D|L|.
1.8. For every t ∈ ∪L
1.9. Let Dt be obtained from D′ by changing the tail of every arc leaving a set F ∈ L

with t ∈ F to t
1.10. Return min{min{µ(D′[F]) : F ∈ L ∪ {V }},min{µ(Dt[F] : t ∈ ∪L, F ∈ L ∪

{V }, t ∈ F}}.
end

The algorithm above is formulated in a way that it returns the optimum γ(D,L) in
question, but by the correspondance between the arc set of D and that of D′ and Dt

in the algorithm, clearly we can also return the optimal arc set, too. It is also clear
that the algorithm can be formulated to run in strongly polynomial time for Problem
2, too: we only need to modify the de�nition of µ(G) and the tail-relocation operation
in a natural way such that the weights are taken into account.

Theorem 4.12. The Algorithm COVERING_NICE_ARBORESCENCES returns a cor-
rect answer.

Proof. First of all, since ΘF,D = ΘF,D′ = ΘF,Dt for any F ∈ L∪ {V } and t ∈ F ∩∪L,
and ΘF,D′ ≤ µ(D′[F]) and ΘF,Dt ≤ µ(Dt[F]), the algorithm returns an upper bound
for the optimum γ(D,L) in question by Theorem 4.6.

EGRES Technical Report No. 2011-13

4.3 A polynomial-time algorithm 10

On the other hand, assume that F is an inclusionwise minimal member of L∪{V }
such that the optimum γ(D,L) = ΘF,D (such a set exists again by Theorem 4.6).
Assume furthermore that the non-empty disjoint sets Z1, Z2 ⊆ F are such that ΘF,D =
fD[F](Z1) + fD[F](Z2). The following sequence of observations proves the theorem.

1. First observe, that any member F ′ ∈ L which is a proper subset of F can
intersect at most one of Z1 and Z2. Assume the contrary, and note that
fD[F](Zi) ≥ fD[F ′](Zi ∩ F ′) holds for i = 1, 2, contradicting the minimal choice
of F .

2. Next observe that there do not exist two disjoint members F ′, F ′′ ∈ LZ1∪Z2 that
are proper subsets of F such that tF ′ and tF ′′ are both outside Z1 ∪ Z2. To see
this assume again the contrary and let F ′, F ′′ be two inclusionwise minimal such
sets. By exchanging the roles of Z1 and Z2 or the roles of F ′ and F ′′ we arrive
at the following two cases: either both F ′ and F ′′ intersect Z1, or F

′ intersects
Z1 and F ′′ intersects Z2. The proof is analogous for both cases. Assume �rst
that both F ′ and F ′′ intersect Z1. Then we have

γ(D,L) = ΘF,D = ΘF,D′ = fD′[F](Z1) + fD′[F](Z2) ≥
≥ fD′[F](Z1) ≥ fD′[F ′](Z1 ∩ F ′) + fD′[F ′′](Z1 ∩ F ′′) =

= %D′[F ′](Z1 ∩ F ′) + %D′[F ′′](Z1 ∩ F ′′) ≥

≥ µ(D′[F ′])

2
+
µ(D′[F ′′])

2
> γ(D,L), (7)

a contradiction. Here the second inequality follows from the de�nition of the
function f , the equality following it is because tF ′′′ ∈ Z1 if F

′′′ ∈ LZ1 is a proper
subset of F ′ or F ′′. The next inequality follows from the de�nition of tF ′ and
tF ′′ , and the last (strict) inequality is by the minimal choice of F .

In the other case, when F ′ intersects Z1 and F ′′ intersects Z2, we get the con-
tradiction in a similar way:

γ(D,L) = ΘF,D = ΘF,D′ = fD′[F](Z1) + fD′[F](Z2) ≥
≥ fD′[F ′](Z1 ∩ F ′) + fD′[F ′′](Z2 ∩ F ′′) = %D′[F ′](Z1 ∩ F ′) + %D′[F ′′](Z2 ∩ F ′′) ≥

≥ µ(D′[F ′])

2
+
µ(D′[F ′′])

2
> γ(D,L). (8)

3. Therefore we are left with two cases. In the �rst case assume that tF ′ ∈ Z1 ∪
Z2 for any F ′ ∈ LZ1∪Z2 that is proper subsets of F . In that case we have
that fD′[F](Zi) = %D′[F](Zi) for both i = 1, 2, and thus γ(D,L) = ΘF,D′ =∑

i=1,2 %D′[F](Zi) ≥ µ(D′[F]) ≥ ΘF,D′ .

4. In our last case there exists a unique inclusionwise minimal F ′ ∈ LZ1∪Z2 such
that F ′ is proper subsets of F and tF ′ /∈ Z1∪Z2. Assume without loss of general-
ity that F ′ intersects Z1 and choose an arbitrary t ∈ F ′ ∩Z1. Then fDt[F](Zi) =
%Dt[F](Zi) for both i = 1, 2, and thus γ(D,L) = ΘF,Dt =

∑
i=1,2 %Dt[F](Zi) ≥

µ(Dt[F]) ≥ ΘF,Dt .

2

EGRES Technical Report No. 2011-13

Section 5. Acknowledgements 11

5 Acknowledgements

We thank Naoyuki Kamiyama for calling our attention to this problem at the 7th
Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications in
Kyoto. We would like to thank Kristóf Bérczi, András Frank, Erika Kovács, Tamás
Király and Zoltán Király of the Egerváry Research Group for useful discussions and
remarks. The authors received a grant (no. CK 80124) from the National Devel-
opment Agency of Hungary, based on a source from the Research and Technology
Innovation Fund.

References

[1] Mihály Bárász, Johanna Becker, and András Frank, An algorithm for source loca-
tion in directed graphs, Oper. Res. Lett. 33 (2005), no. 3, 221�230.

[2] D. R. Fulkerson, Packing rooted directed cuts in a weighted directed graph, Math-
ematical Programming 6 (1974), 1�13, 10.1007/BF01580218.

[3] The EGRES Group, Covering minimum cost spanning trees, EGRES QP-2011-08,
www.cs.elte.hu/egres.

[4] Naoyuki Kamiyama, Robustness of minimum cost arborescences, ISAAC (Takao
Asano, Shin-Ichi Nakano, Yoshio Okamoto, and Osamu Watanabe, eds.), Lecture
Notes in Computer Science, vol. 7074, Springer, 2011, pp. 130�139.

EGRES Technical Report No. 2011-13

	Introduction
	The problem and its variants
	Covering all arborescences – a special case
	Covering nice arborescences
	A "min-min" formula
	Double cuts and arborescences
	A polynomial-time algorithm

	Acknowledgements

