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Geometric Sensitivity of Rigid Graphs

Tibor Jordán?, Gábor Domokos??, and Krisztina Tóth? ? ?

Abstract

Let (G, p) be an infinitesimally rigid d-dimensional bar-and-joint framework
and let L be an equilibrium load on p. The load can be resolved by appropriate
stresses wi,j , ij ∈ E(G), in the bars of the framework. Our goal is to identify
the following parts (zones) of the framework:

(i) when the location of an unloaded joint v is slightly perturbed, and the
same load is applied, the stress will change in some of the bars. We call the
set of these bars the influenced zone of v (with respect to L, p and the modified
configuration p′),

(ii) let S be a designated set of joints and suppose that each joint with a
non-zero load belongs to S. The active zone of S (with respect to p and L) is
the set of those bars in which the stress, which resolves L, is non-zero.

We show that if (G, p) is generic and d = 2 then, for almost all loads, these
zones depend only on the graph G of the framework and can be computed by
efficient combinatorial methods.

1 Introduction

Let (G, p) be an infinitesimally rigid d-dimensional bar-and-joint framework and let
L be an equilibrium load on p. The load can be resolved by appropriate stresses wi,j,
ij ∈ E(G), in the bars of the framework. Our goal is to identify the following parts
(zones) of the framework:

(i) when the location of an unloaded joint v is slightly perturbed, and the same
load is applied, the stress will change in some of the bars. We call the set of these
bars the influenced zone of v (with respect to L, p and the modified configuration p′),

(ii) let S be a designated set of joints and suppose that each joint with a non-zero
load belongs to S. The active zone of S (with respect to p and L) is the set of those
bars in which the stress, which resolves L, is non-zero.
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Section 1. Introduction 2

We show that if (G, p) is generic and d = 2 then, for almost all loads, these zones de-
pend only on the graph G of the framework and are independent of the configurations
p, p′ and the load L. See Figure 1.

We give an efficient combinatorial algorithm for finding these zones. As a corollary
we also obtain that the influenced zone of a vertex is monotone increasing when new
constraints (bars) are added to the framework.

These results may be useful when one needs to recompute the stresses due to minor
changes in the geometry of the framework. Identifying the influenced zone by a quick
combinatorial algorithm can serve as a preprocessing step which reduces the size of
the problem.

Our results may also be used in the analysis and design of highly geometrically
sensitive (non-sensitive, resp.) generic frameworks (graphs), in which a small pertur-
bation of any vertex results in the change of stresses in the whole (resp. in just a
small part of the) framework. For example, if the goal is to attach (a small number
of) devices to some of the bars that can observe a small perturbation of some joint
by sensing the change of stress in the bar, a highly sensitive framework seems more
advantageous. On the other hand, recomputing the stresses is easier if the framework
is non-sensitive.

Figure 1: Two loaded pinned frameworks with the same underlying graph. The non-
zero components of the loads are denoted by arrows. In the first framework, which
is non-generic, the influenced zone (the thick bars) of vertex 13 is smaller than its
influenced zone in the second framework, which is generic.

We note that some of the notions and ideas we shall use are from [11, 12], where
the notions of influenced and active zones (in minimally rigid resp. rigid frameworks)
as well as some of the results with proof ideas appeared.

The organization of the paper is as follows. In Section 2 we recall some basic
definitions and results related to bar-and-joint frameworks. In Section 3 we give
bounds on these zones which are valid for all minimally rigid d-dimensional frameworks
and loads. After a few combinatorial lemmas, given in Section 4, we show that for
minimally rigid two-dimensional generic frameworks these bounds are tight and give
rise to combinatorial characterizations for the influenced zones and active zones. These
results are in Section 5. In Section 6 we extend our results to arbitrary rigid two-
dimensional generic frameworks. Section 7 is devoted to some concluding remarks.
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1.1 Notation 3

1.1 Notation

Graphs in this paper are undirected and simple (that is, no loops and multiple edges
are allowed). Let G = (V,E) be a graph. For X ⊆ V let G[X] be the induced
subgraph of G on vertex set X and EG(X) be the set of edges of G[X]. The number
of edges in G[X] is denoted by iG(X). The degree of X in G, denoted by dG(X), is the
number of edges of G with exactly one end-vertex in X. For v ∈ V , dG(v) denotes the
degree of v and NG(v) the set of neighbours of v in G. We will suppress the subscript
G when the graph is clear from the context.

Let (G, p) be a framework and let H be a subgraph of G. For simplicity we may
use (H, p) to denote the framework with underlying graph H and for which the con-
figuration of the vertices of H is determined by the restriction of p to V (H).

2 Preliminaries

In this section we introduce some basic notions of rigidity theory along with some
preliminary lemmas. See [3, 13, 14] for a detailed introduction to the theory of rigid
graphs and frameworks.

A d-dimensional (bar-and-joint) framework (G, p) is a pair, where G = (V,E) is a
graph and p : V → Rd is a map. We say that p is a configuration of V and (G, p) is a
realization of G in Rd. The rigidity matrix of the framework is the matrix R(G, p) of
size |E| × d|V |, where, for each edge vivj ∈ E, in the row corresponding to vivj, the
entries in the d columns corresponding to vertices i and j contain the d coordinates
of (p(vi)−p(vj)) and (p(vj)−p(vi)), respectively, and the remaining entries are zeros.

Lemma 2.1. [13, Lemma 11.1.3] Let (G, p) be a framework in Rd. Then
rankR(G, p) ≤ S(n, d), where n = |V (G)| and

S(n, d) =

{
nd−

(
d+1

2

)
if n ≥ d+ 2(

n
2

)
if n ≤ d+ 1.

A framework (G, p) for which R(G, p) has rank S(n, d) is said to be infinitesimally
rigid in Rd. We say that (G, p) is independent if the rows of R(G, p) are linearly
independent. An independent and infinitesimally rigid framework is called minimally
infinitesimally rigid.

Infinitesimal rigidity can also be characterized by equilibrium loads and infinitesimal
motions as follows. An equilibrium load on a configuration p of point set V is an
assignment L : V → Rd of vectors Li to the vertices “without net translational
or rotational component”. More precisely, an equilibrium load is any vector in Rdn

orthogonal to the kernel of R(Kn, p), where Kn is the complete graph on n vertices. In
particular, the d-tuples of any row of the rigidity matrix R(Kn, p) form an equilibrium
load on p. Thus the row space of R(G, p) is a subset of the space of equilibrium loads.
The equilibrium loads form a subspace of Rdn of dimension S(n, d) (provided that the
affine span of the points is Rd, or they are affine independent).
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Section 2. Preliminaries 4

A resolution of equilibrium load L on (G, p) is a stress, which is an assignment of
scalars ω : E → R to the edges such that for each vertex i ∈ V :

Li +
∑

j:ij∈E

wi,j(pi − pj) = 0. (1)

Let Ri,j(p) denote the row of R(G, p) corresponding to edge (i, j). With this notation
we have that

L+
∑
ij∈E

wi,jRi,j(p) = 0. (2)

By definition, (G, p) is infinitesimally rigid if the dimension of the row space equals
the dimension of the equilibrium loads. Since the row space is contained in the space
of equilibrium loads, the two spaces are the same for infinitesimally rigid frameworks.

A self-stress on framework (G, p) is an assignment ω : E → R such that, for each
vertex i ∈ V : ∑

j:ij∈E

wi,j(pi − pj) = 0. (3)

Thus a self-stress is a resolution of the zero equilibrium load. The self-stresses are
the row dependencies of the rigidity matrix R(G, p). If the framework is independent
then the resolution of an equilibrium load is unique. However, if the framework is
dependent then we can add any multiple of a self-stress to a given resolution to get
another resolution.

An infinitesimal motion of (G, p) is an assigment of velocities to the vertices u :
V → Rd, such that for each edge ij ∈ E we have (pi− pj)(ui− uj) = 0. Equivalently,
an infinitesimal motion is a solution to the system of linear equations R(G, p)x = 0.
An infinitesimal motion is trivial if it belongs to the kernel of R(Kn, p).

Let S(G, p) be the vector space of self-stresses of (G, p) and let M(G, p) be the
vector space of infinitesimal motions of (G, p). We shall use the following well-known
fact: for a d-dimensional framework (G, p) we have

|E| − dim(S(G, p)) = d|V | − dim(M(G, p)) (4)

We also need the following basic result.

Theorem 2.2. [13, Theorem 3.1.1] Let (G, p) be a d-dimensional framework. Then
the following are equivalent:
(i) (G, p) is infinitesimally rigid,
(ii) every equilibrium load on p has a resolution in the bars of (G, p),
(iii) every infinitesimal motion of (G, p) is trivial.

The next lemma gives a similar connection between stresses and motions for a
designated pair of vertices.

Lemma 2.3. [13, Theorems 3.1.3, 9.3.1] Let (G, p) be a d-dimensional framework
and h, k ∈ V (G). Then the following are equivalent:
(i) Rh,k(p) cannot be resolved,
(ii) every self-stress ω on E ∪ {hk} is zero on hk,
(iii) there is an infinitesimal motion u on (G, p), such that (ph − pk)(uh − uk) 6= 0.
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Section 2. Preliminaries 5

We shall also use the following simple operation. Given a graph G = (V,E), the
vertex d-addition operation adds a new vertex v0 and d new edges v0v1, ..., v0vd for
some vi ∈ V , 1 ≤ i ≤ d. The corresponding geometric operation on (G, p) adds a new
vertex positioned at p0 and inserts d new bars from p0 to pi, 1 ≤ i ≤ d.

Lemma 2.4. [13, Lemma 11.1.1] Let (G, p) be a d-dimensional framework and let
(G′, p) be obtained from (G, p) by a vertex d-addition. If p0, p1, ..., pd are in general
position in d-space then rank R(G′, p) = rank R(G, p) + d.

We shall also need the next simple fact.

Lemma 2.5. Let p be a configuration of point set P in Rd and let Q ⊆ P . Let
q = p|Q denote the corresponding configuration of point set Q. Suppose that L is an
equilibrium load on p such that L(v) = 0 for all v ∈ P−Q. Then L|q is an equilibrium
load on q.

Generic rigidity

The rigidity matrix of (G, p) defines the rigidity matroid of (G, p) on the ground set E
by linear independence of the rows of the rigidity matrix. (See [9, 10] for basic concepts
in matroid theory.) A framework (G, p) is generic if for each subset of edges (rows)
the corresponding submatrix of R(G, p) has maximum rank (over all realizations of
G)1. Thus the infinitesimal rigidity of a generic framework (G, p) depends only on
G and any two generic frameworks (G, p) and (G, p′) have the same rigidity matroid.
We call this the d-dimensional rigidity matroid Rd(G) of graph G. We denote the
rank of Rd(G) by rd(G).

We say that a graph G = (V,E) is rigid in Rd if rd(G) = S(n, d). We say that G is
M -independent or an M -circuit in Rd if E is independent or a circuit, respectively, in
Rd(G). If G is both independent and rigid then G is said to be minimally rigid.

Lemma 2.1 implies the following necessary condition for G to be M -independent.

Lemma 2.6. If G = (V,E) is M-independent in Rd then i(X) ≤ S(|X|, d) for all
X ⊆ V .

Laman proved that for d = 2 the above sparsity condition is also sufficient.

Theorem 2.7. [7] A graph G = (V,E) is M-independent in R2 if and only if

i(X) ≤ 2|X| − 3 for all X ⊂ V with |X| ≥ 2. (5)

It follows that G is minimally rigid in R2 if and only if |E| = 2|V | − 3 and (5) holds.
It remains an open problem to find good characterizations for independence or,

more generally, the rank function in the d-dimensional rigidity matroid of a graph
when d ≥ 3.

1For example, if the set of coordinates of the points p(v), v ∈ V , is algebraically independent
over the rationals (that is, if the coordinates do not satisfy any non-zero polynomial with rational
coefficients) then (G, p) is generic.
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Section 3. Influenced zones and active zones in minimally rigid frameworks 6

Stresses and internal forces

The definition of a stress above is different from what the word means in the engineer-
ing literature. The engineering definition of a stress in a bar is the magnitude of the
internal force per unit area of the cross section of the bar (in trusses). By assuming
that the cross sections are equal, we have

ωi,j(pi − pj) = σi,j
(pi − pj)
|pi − pj|

,

where σi,j is the “engineering stress”.
It is easy to see that the active zone of a set of vertices in a minimally rigid graph

remains unchanged if we use σ instead of ω: it is due to the uniqueness of the stress
which resolves an equilibrium load. The influenced zone of a vertex, however, may be
different when we consider σ instead of ω.

3 Influenced zones and active zones in minimally

rigid frameworks

Let (G, p) be a minimally infinitesimally rigid framework in Rd and let v ∈ V (G) be a
designated vertex. Consider an equilibrium load L : V → Rd with L(v) = 0. Let ω be
the stress in (G, p) which resolves L. Let (G, p′) be another minimally infinitesimally
rigid realization of G in which p′(v) 6= p(v) but p′(u) = p(u) for all u ∈ V (G) with
u 6= v. Then L is also an equilibrium load on (G, p′). Let ω′ be the stress in (G, p′)
which resolves L.

The influenced zone of v, denoted by Iv(G,L, p, p
′), is the set of those edges ij ∈

E(G) for which ωij 6= w′ij.

Theorem 3.1. Let H be a subgraph of G with (NG(v) ∪ {v}) ⊆ V (H) and suppose
that the subframework (H, p) is minimally infinitesimally rigid. Then

Iv(G,L, p, p
′) ⊆ E(H). (6)

Proof: Let G∗ be the graph obtained from G by adding a new vertex v′ and new
edges v′u for all u ∈ NG(v). Consider the framework (G∗, p∗), where p∗(u) = p(u) for
all u ∈ V (G) and p∗(v′) = p′(v). We may extend the stress ω to G∗ by defining the
stress to be zero on the edges incident with v′. By using a similar extension, we may
also think of ω′ as a stress on G∗. Then we can define ω∗ = ω − ω′ and deduce that

ω∗ is a self-stress on (G∗, p∗). (7)

Since (G, p′) is infinitesimally rigid, dG(v) ≥ d and the points pi, i ∈ NG(v)∪{v}, are
not in a hyperplane. Hence it follows from Lemma 2.4 that (H, p) can be extended to
an infinitesimally rigid subframework (H∗, p∗) of (G∗, p∗) by adding v′ and a properly
chosen set of d edges incident with v′. It also follows that (G∗, p∗) is infinitesimally
rigid.
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Section 4. Cores in two-dimensional minimally rigid graphs 7

Hence the remaining dG(v) − d edges incident with v′ are all redundant
in (G∗, p∗) (that is, deleting such an edge does not destroy infinitesimal
rigidity), which implies that for all edges e ∈ E(G) − E(H) we must have
rank R(G∗, p∗) = rank R(G∗ − e, p∗) + 1. Thus we must also have ω∗(e) = 0 and the
theorem follows. •

Let (G, p) be a minimally infinitesimally rigid framework and let S ⊆ V be a
designated vertex-set. Let L be an equilibrium load on (G, p) with {v ∈ V : L(v) 6=
0} ⊆ S. The active zone of S, with respect to p and L, denoted by AS(G,L, p), is the
set of those edges in which the stress, which resolves L, is non-zero.

Theorem 3.2. Let H be a subgraph of G with S ⊆ V (H) and suppose that the
subframework (H, p) is minimally infinitesimally rigid. Then

AS(G,L, p) ⊆ E(H). (8)

Proof: Since LH , the restriction of L to V (H), is an equilibrium load on (H, p),
there is a stress ω on the edge set E(H) which resolves LH . We may extend ω to the
edges of E(G) − E(H) by zeros to obtain a stress on E(G) which resolves L. Since
the resolution of L is unique, the theorem follows. •

We shall prove that if (G, p) is a two-dimensional generic framework then there
is a unique smallest subgraph H satisfying the conditions of Theorems 3.1 and 3.2,
respectively. Furthermore, for typical loads, we have equality in (6) and (8) for this
smallest subgraph H. To verify these claims we need a few combinatorial lemmas
which are given in the next section.

4 Cores in two-dimensional minimally rigid graphs

In the rest of this paper we shall consider generic frameworks and the case when d = 2.
We shall suppress explicit reference to the dimension.

Let G = (V,E) be a minimally rigid graph. For a given S ⊆ V with |S| ≥ 2 let
CS be a minimal minimally rigid subgraph of G with S ⊆ V (CS). It follows from the
next well-known lemma (see e.g. [4]) that CS is unique.

Lemma 4.1. [4, Lemma 2.3] Let G = (V,E) be an M-independent graph and let
G1, G2 be minimally rigid subgraphs of G with |V (G1) ∩ V (G2)| ≥ 2. Then G1 ∩ G2

is minimally rigid.

The unique minimal minimally rigid subgraph CS of G with S ⊆ V (CS) is called
the rigid core (or simply the core) of vertex set S in G and is denoted by CS(G).
When S = {a, b} for some a, b ∈ V then we may also use the notation Ca,b(G).

We say that a pair a, b is loose in (a not necessarily rigid) graph G if there is no
rigid subgraph H of G with a, b ∈ V (H). It can be seen that a, b is loose if and
only if for every generic realization (G, p) there is an infinitesimal motion u with
(pa − pb)(ua − ub) 6= 0.

Before proving the main combinatorial lemma, we recall another well-known result.
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Section 4. Cores in two-dimensional minimally rigid graphs 8

Lemma 4.2. [4, Corollary 2.14] Let G1 = (V1, E1) and G2 = (V2, E2) be two rigid
graphs with |V1 ∩ V2| ≥ 2. Then G1 ∪G2 is rigid.

Lemma 4.3. Let G be a minimally rigid graph and let S ⊆ V with |S| ≥ 2. Let B be
a set of new edges on S for which S̄ = (S,EG(S) ∪B) is minimally rigid. Then
(i) CS(G) = ∪ab∈E(S̄)Ca,b(G);
(ii) For each e ∈ E(CS(G))−E(S) there is a pair a, b ∈ S with ab ∈ B such that a, b
is loose in CS(G)− e.

Proof: Let C = ∪ab∈E(S̄)Ca,b(G). To prove (i) first observe that, by definition,
Ca,b(G) ⊆ CS(G) and hence C ⊆ CS(G). Thus, since S ⊆ C, it remains to prove that
C is minimally rigid. To see this note that C can be obtained from the minimally
rigid graph S̄ by attaching the subgraphs Ca,b(G), for all ab ∈ B (which preserves
rigidity by Lemma 4.2 and makes all edges of B redundant) and then deleting the
edges of B.

Next consider (ii). For a contradiction suppose that each pair a, b with ab ∈ B is
part of a rigid subgraph in G− e. Hence e is not an edge of Ca,b(G), for all pairs a, b
with ab ∈ B. Now (i) implies e /∈ E(CS(G)), a contradiction. This proves (ii). •

Note that (i) holds for any set B of new edges for which S̄ = (S,EG(S) ∪ B)
is minimally rigid. It also implies that to find the core of S it suffices to have a
subroutine for finding the core Ca,b(G) of a given vertex pair a, b (and a proper set B
of new edges). Furthermore Ca,b(G) + ab is the unique M -circuit of G + ab2. These
observations imply that there is an efficient algorithm for finding the core CS(G), see
Section 7.

See Figure 2 for an illustration.
A rigid graph G is said to be redundantly rigid if G− e is rigid for all e ∈ E(G).

Lemma 4.4. Let H be a minimally rigid graph with a designated vertex v of degree
at least three. Let H∗ be obtained from H by adding a new vertex v′ and edges from v′

to each vertex in NH(v). Suppose that CN(v)(H) = H. Then H∗ is redundantly rigid.

Proof: Since H is rigid, it follows from Lemma 2.4 that H∗ is rigid. In fact, by
adding an arbitrary pair of edges incident with v′ to H we obtain a rigid spanning
subgraph of H∗, by Lemma 2.4. Since the degree of v′ in H∗ is at least three, it follows
that there is a rigid spanning subgraph of H∗ not containing e, for all edges e incident
with v′. Thus H∗ − e is rigid. By symmetry, the same conclusion holds for all edges
e incident with v.

Next consider an edge e not incident with v or v′ and suppose, for a contradiction,
that H∗ − e is not rigid. Let v′a, v′b, v′w be three edges. Since H − e + v′a + v′b is
M -independent and H ′ = H − e+ v′a+ v′b+ v′w is not (for otherwise H∗ − e would
be rigid) it follows that v′w belongs to an M -circuit C of H ′. Since C has minimum

2This follows from (5). The count implies that the following three statements are equivalent: (a)
H = (V,E) is an M -circuit; (b) |E| = 2|V | − 2 and H − e is minimally rigid for all e ∈ E; (c)
|E| = 2|V | − 2 and i(X) ≤ 2|X| − 3 for all X ⊆ V with 2 ≤ |X| ≤ |V | − 1. For example, K4, K3,3

plus an edge, and K3,4 are all M -circuits.
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Section 5. Influenced zones and active zones in minimally rigid graphs 9

a

b

c

p
x

yq

r

Figure 2: This graph G is minimally rigid. Let S = {a, b, c}. For B = {ab, bc, ca}
we have that S̄ = (S,EG(S) ∪ B) is minimally rigid (a triangle). The vertex sets of
the subgraphs Ca,b and Cb,c are {a, b, p, q} and {b, c, q, r}, respectively, while Ca,c has
vertex set {a, p, b, q, r, c}. Thus CS is the minimally rigid subgraph of G on vertices
{a, b, c, p, q, r}. By adding an edge xy to G we obtain a rigid graph Ḡ in which another
minimally rigid spanning subgraph is H = Ḡ−pq. The core of S in H is the minimally
rigid subgraph of H on vertex set T = {a, b, c, p, q, r, x, y}. The graph Ḡ+B has seven
M -connected components: the subgraph induced by T and the remaining six edges
as singleton components. Thus the active zone of S in Ḡ is the edge set of Ḡ[T ].

degree three, C must contain v′a and v′b. Now K = C − v′w is a rigid subgraph
of H ′ (and of H∗ − e) which contains vertices a, b. Furthermore, since dK(v′) = 2,
K − v′ is a rigid subgraph of H − e which contains a, b. Thus e /∈ Ca,b(H) for all
pairs a, b ∈ NH(v). Hence, by Lemma 4.3(i), e /∈ CN(v)(H), which contradicts our
assumption. This completes the proof. •

5 Influenced zones and active zones in minimally

rigid graphs

Consider a minimally rigid generic framework (G, p) and let v ∈ V (G) be a designated
vertex. The equilibrium loads L on (G, p) satisfying L(v) = 0 form a subspace Lv of
dimension 2n− 5 in the space of all equilibrium loads on (G, p), where n = |V (G)|.

Recall from the proof of Theorem 3.1 that we used G∗ to denote the graph obtained
from G by adding a new vertex v′ and new edges v′u for all u ∈ NG(v) and (G∗, p∗)
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Section 5. Influenced zones and active zones in minimally rigid graphs 10

to denote the framework, in which p∗(u) = p(u) for all u ∈ V (G) and p∗(v′) = p′(v),
where p′(v) is the modified position of v. We also defined the self-stress ω∗ = ω − ω′
on (G∗, p∗), where ω and ω′ denoted the stresses resolving a given equilibrium load
L ∈ Lv on (G, p) and (G, p′), respectively.

Theorem 5.1. Let (G, p) be a minimally rigid generic framework and let (G, p′) be
obtained from (G, p) by relocating v so that (G∗, p∗) is also generic. Suppose that
dG(v) ≥ 3. Then for all equilibrium loads L ∈ Lv, with the exception of finitely
many proper subspaces, each edge e ∈ E(CN(v)(G)) belongs to the influenced zone
Iv(G,L, p, p

′).

Proof: Let k = dG(v). Let H = CN(v)(G) and let H∗ be obtained from H by adding
a new vertex v′ and edges from v′ to each vertex of NH(v). Thus H∗ is a subgraph of
G∗. Since k ≥ 3, we have v ∈ CN(v)(G). Clearly, H = CN(v)(H).

By Theorem 3.1, and since (G, p) is generic, ω∗(e) = 0 for all e ∈ E(G∗)− E(H∗).
Thus the restriction of ω∗ to E(H∗) is a self-stress on (H∗, p∗). Note that for a given
L ∈ Lv the values of the unique stress, which resolves L, on the edges of δ(v) belong
to the projection of S(H∗, p∗) to δ(v). Since (H∗, p∗) is infinitesimally rigid and has
n+ 1 vertices and 2n− 3 + k edges, we have dim S(H∗, p∗) = k − 2 by (4).

Now suppose that ω∗(f) = 0 for some edge f ∈ E(H∗). Lemma 4.4 and the
fact that (G∗, p∗) is generic imply that (H∗ − f, p∗) is infinitesimally rigid. Thus
dim S(H∗ − f, p∗) = k − 3.

Consider the projection Sf
v of the space S(H∗ − f, p∗) to δ(v). Let Lf

v denote the
space of those equilibrium loads L ∈ Lv for which the projection of ω, the unique
stress in (G, p) which resolves L, to the edges of δ(v), belongs to Sf

v . For this space
we have dim Lf

v ≤ dim Sf
v + |E(G− v)| ≤ k− 3 + 2n− 3− k = 2n− 6. Thus Lf

v is a
proper subspace of Lv,as claimed. •

Note that the subspaces Lf
v depend on p′(v). We say that an equilibrium load

L ∈ Lv is typical (with respect to G, p, and p′) if L does not belong to Lf
v for any

f ∈ E(H∗). Note that all loads in the vector space Lv, except the members of a finite
number of smaller dimensional proper subspaces, are typical. It follows from the proof
of the theorem that if k = 3 then all non-zero loads are typical.

By Theorems 3.1 and 5.1 we have

Theorem 5.2. Let (G, p) be a minimally rigid generic framework and let (G, p′) be
obtained from (G, p) by relocating v so that (G∗, p∗) is also generic. Suppose that
dG(v) ≥ 3 and let L ∈ Lv be typical with respect to G, p, and p′. Then

Iv(G,L, p, p
′) = E(CN(v)(G)). (9)

Thus, when the framework is generic and the load is typical with respect to G, p,
and p′, the influenced zone depends only on the graph and we may simply denote it
by Iv(G) and call it the influenced zone of v in G.

Note that the case when dG(v) = 2 is straightforward: in this case the stress on
each edge incident with v is zero, for all L ∈ Lv, and hence the influenced zone is
empty.
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5.1 Active zones in minimally rigid graphs

Consider a minimally rigid generic framework (G, p) and a designated set S ⊆ V with
|S| ≥ 2. Let H = G[S]. The equilibrium loads L on (G, p) with {v ∈ V : L(v) 6=
0} ⊆ S correspond to equilibrium loads on (H, p) and form a vector space LS of
dimension 2|S| − 3. Let C = CS(G) be the core of S in G. For each e ∈ E(C) the
equilibrium loads of LS that can be written as

∑
ij∈E(C)−ewi,jRi,j(p) form a subspace

Le
S of dimension at most 2|S|−4, since there is a pair a, b ∈ S for which the equilibrium

load Ra,b(p) cannot be obtained in this form. For edges e ∈ E(H) this follows from
the independence of the framework, while for edges e ∈ E(C) − E(H) it follows by
Lemmas 2.3 and 4.3(ii). We say that an equilibrium load L ∈ LS is typical with respect
to G,S and p if L does not belong to Le

S for any e ∈ E(C). Note that all loads in
the vector space LS, except the members of a finite number of smaller dimensional
proper subspaces, are typical. Thus we have:

Theorem 5.3. Let (G, p) be a minimally rigid generic framework. Then for all equlib-
rium loads L ∈ LS, with the exception of finitely many proper subspaces, the stress ω
on (G, p) which resolves L satisfies ω(e) 6= 0 for all edges e ∈ E(CS(G)).

By Theorems 3.2 and 5.3 we obtain the following characterization of active zones
in minimally rigid generic frameworks.

Theorem 5.4. Let (G, p) be a minimally rigid generic framework and let L ∈ LS be
an equilibrium load which is typical with respect to G,S, and p. Then

AS(G,L, p) = E(CS(G)).

Thus, when the framework is generic and the load is typical with respect to G,S
and p, the active zone depends only on the graph and we may simply denote it by
AS(G) and call it the active zone of S in G.

By comparing Theorems 5.2 and 5.4 we can deduce that the influenced zone of v
equals the active zone of its neighbour set.

Corollary 5.5. Suppose that dG(v) ≥ 3. Then Iv(G) = AN(v)(G).

6 Rigid graphs

In this section we consider the general case of rigid two-dimensional generic frame-
works. Let G = (V,E) be a rigid graph and let S ⊆ V with |S| ≥ 2. We say that
e ∈ E is in the active zone of S in G if there is a minimally rigid spanning subgraph
H of G for which e is in the active zone of S in H. To characterize the active zones of
rigid graphs and to develop an efficient algorithm for identifying them we need some
basic concepts from matroid theory.

Given a matroid M = (E, I), we define a relation on E by saying that e, f ∈ E
are related if e = f or if there is a circuit C in M with e, f ∈ C. It is well-known
that this is an equivalence relation. The equivalence classes are called the components
of M. If M has at least two elements and only one component then M is said to
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be connected. IfM has components E1, E2, . . . , Et andMi is the matroid restriction
of M onto Ei then M = M1 ⊕M2 . . . ⊕Mt, where ⊕ denotes the direct sum of
matroids. A matroid M is connected if and only if for every proper subset F ⊂ E
there is a circuit C with C∩F 6= ∅ 6= C−F . Let B be a base ofM and let e ∈ E−B.
Then the fundamental circuit of e with respect to B is the unique circuit in B + e.
See [9] for more details.

We say that a graph G = (V,E) is M-connected if R(G) is connected. For example,
K3,m is M -connected for all m ≥ 4. The M-components of G are the subgraphs of
G induced by the components of R(G). The M -components are also vertex-induced
subgraphs of G. It is not hard to see that if G is M -connected then G is (redundantly)
rigid. See [4, Section 3] for further properties of M -connected graphs.

We shall need the following lemma.

Lemma 6.1. LetM = (E∪D, I) be a connected matroid with rank function r, where
D 6= ∅, and suppose that r(E ∪D) = r(E). Then for every f ∈ E there exists a base
H ⊆ E such that f is in the fundamental circuit of some element e ∈ D with respect
to H.

Proof: Since M is connected, there is a circuit Cf with f ∈ Cf and Cf ∩ D 6= ∅.
Suppose that Cf , with these properties, is chosen so that |Cf ∩ D| is as small as
possible. We claim that |Cf ∩ D| = 1 must hold. For a contradiction suppose that
|Cf∩D| ≥ 2 and let e ∈ Cf∩D. Take some base H ′ ⊆ E and let Ce be the fundamental
circuit of e with respect to H ′. Now f ∈ Ce would contradict our assumption, so
f ∈ Cf − Ce must hold. By applying the strong circuit axiom3 to circuits Cf , Ce, we
obtain that there is a circuit C ⊆ Cf ∪ Ce with f ∈ C and e /∈ C. By the choice of
Cf we must have C ∩ D = ∅. Clearly, C ∩ Ce 6= ∅ and (C ∪ Ce) ∩ D = {e}. Thus,
using the fact that the restriction of M to C ∪Ce is connected, we obtain that there
is a circuit C ′ ⊆ C ∪ Ce with f, e ∈ C ′. The claim follows, since |C ′ ∩D| = 1.

Now let H ⊆ E be a base with (Cf − e) ⊆ H. Then f is in the fundamental circuit
of e ∈ D with respect to H, as required. •

Theorem 6.2. Let G = (V,E) be a rigid graph, S ⊆ V with |S| ≥ 2, and let B
be a set of new edges on S for which (S,EG(S) ∪ B) is rigid. Then an edge f ∈ E
belongs to the active zone of S in G if and only if the M-component containing f in
G′ = (V,E ∪B) intersects EG(S) ∪B.

Proof: Let f be an edge in the active zone of S in G. If f ∈ EG(S) then the M -
component of f in G′ clearly intersects EG(S) ∪ B. Now suppose that f /∈ EG(S).
Let H be a minimally rigid spanning subgraph of G for which f is in the active zone
of S in H. Thus by Lemma 4.3 and Theorem 5.3 f ∈ Ca,b(H) for some a, b ∈ S with
ab ∈ B′, where B′ is some arbitrarily chosen set of edges which makes H[S] minimally
rigid. Since (S,EG(S) ∪ B) is rigid, we may suppose that B′ ⊆ EG(S) ∪ B. Since

3Let C,C ′ be two circuits of some matroid with e ∈ C ∩ C ′ and f ∈ C − C ′. Then there is a
circuit C ′′ ⊆ C ∪ C ′ with e /∈ C ′′ and f ∈ C ′′.
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Ca,b(H) + ab is an M -circuit in G′, it follows that the M -component of G′ containing
f contains ab and hence intersects EG(S) ∪B.

Conversely, suppose that the M -component K containing the edge f ∈ E in G′

intersects EG(S) ∪ B. Since each edge of G is in some minimally rigid spanning
subgraph H of G and EH(S) belongs to the active zone of S in H, every edge f ∈
EG(S) belongs to the active zone of S in G. So we may suppose that f /∈ EG(S).

First suppose that K∩B = ∅. Then there is an M -circuit C in G′ with f ∈ E(C) ⊆
E and EG(S) ∩ E(C) 6= ∅. Let e = ab ∈ EG(S) ∩ E(C). Consider a minimally rigid
spanning subgraph H of G containing C − e. Since there is a unique M -circuit in
H + e (namely, C) and f /∈ EG(S), it is easy to see that H[S] + e is M -independent
and hence there is a set B′ with e ∈ B′ such that (S,EH(S) +B′) is minimally rigid.
Since ab ∈ B′ and f ∈ Ca,b(H), Lemma 4.3 and Theorem 5.3 imply that f belongs to
the active zone of S in H, and therefore also in G.

Next suppose that K ∩ B 6= ∅. It is easy to see that G[V (K)] is rigid4. By
applying Lemma 6.1 (withM = R(K), E = E(K)−B, and D = E(K)∩B) we can
deduce that there exists an M -circuit C in K with f ∈ E(C) and |E(C) ∩ B| = 1.
Let e = ab be the common edge of C and B. Consider a minimally rigid spanning
subgraph H of G containing C − e. As above, we get that f ∈ Ca,b in H. Hence,
by Lemma 4.3 and Theorem 5.3, f belongs to the active zone of S in H and also in G. •

Since the M -components in a graph are monotone increasing with respect to edge
addition, we obtain the following corollary.

Theorem 6.3. Let G = (V,E) be a rigid graph, S ⊆ V with |S| ≥ 2, and let u, v be
a pair of non-adjacent vertices in G. Then the active zone of S in G is a subset of
the active zone of S in G+ uv.

We can also deduce an equivalent characterization of the active zones which will be
used in the next subsection.

Theorem 6.4. Let G = (V,E) be a rigid graph, S ⊆ V with |S| ≥ 2, and let H be
a minimally rigid spanning subgraph of G. Let K = {K1, K2, ..., Kt} be the family of
M-components of G. Then an edge f ∈ E belongs to the active zone of S in G if and
only if the M-component of G containing f intersects E(CS(H)).

Proof: Consider an M -component Ki of G for which e ∈ E(Ki) holds for some
e ∈ E(CS(H)). Let f ∈ E(Ki) be an edge. Since E(CS(H)) ⊆ AS(G) by Theorem
5.4, we may assume that f /∈ E(CS(H)). Since e, f belong to the same M -component
of G, there is a circuit C in G with e, f ∈ C. Let B be a set of new edges on S for
which (S,EG(S) ∪ B) is rigid. Since e ∈ AS(G), e belongs to an M -component K of
G′ = (V,E ∪ B) intersecting EG(S) ∪ B by Theorem 6.2. Hence, by the existence of
C, f must belong to the same M -component K of G′. Thus f also belongs to the
active zone of S in G by Theorem 6.2.

4If V (K) = V then the claim follows from the fact that G is rigid. Otherwise G′ has at least two
M -components K1,K2, ...,Kt and we have 2|V | − 3 = r(G′) =

∑t
1 r(Ki) =

∑t
1 2|V (Ki)| − 3. Since

the M -components of G form a refinement of the M -components of G′, we have 2|V | − 3 = r(G) =∑t
1 r(G[V (Ki)], which implies that r(G[V (K)] = 2|V (K)| − 3. Thus G[V (K)] is rigid.
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Conversely, consider an edge f in the active zone of S in G. For all edges
uv ∈ E with {u, v} ⊂ V (CS(H)) the M -component of G containing uv inter-
sects E(CS(H)), thus we may assume that at least one end-vertex of f is not
included in the vertex set of CS(H). In particular, f is not induced by S in G.
By definition and Theorem 5.4 there is a minimally rigid spanning subgraph H ′

of G for which f ∈ E(CS(H ′)). Let B′ be a set of new edges on S for which
(S,EH′(S) ∪ B′) is minimally rigid. It follows from Lemma 4.3(i) that there is
a circuit Cf in H ′ + b, for some edge b = xy ∈ B′, with f, b ∈ Cf . Now either
xy ∈ E(CS(H)) or there is a circuit Ce in CS(H) + b with e, b ∈ Ce, for some
e ∈ E(CS(H)). In both cases we can deduce (by applying the strong circuit
axiom in the latter case) that there is a circuit C in G containing f and at least one
edge of E(CS(H)). Thus the M -component containing f in G intersects E(CS(H)). •

Note that the active zone of S does not depend on the choice of H.

6.1 Influenced zones in rigid graphs

Let G = (V,E) be a rigid graph and let v ∈ V with dG(v) ≥ 3. Based on Corollary
5.5 we define the influenced zone Iv(G) of v to be the active zone ANG

(G) of its set
of neighbours. By applying Theorem 6.4 we can now deduce:

Theorem 6.5. Let G = (V,E) be a rigid graph and let v ∈ V with dG(v) ≥ 3. Let
H be a minimally rigid spanning subgraph of G. Then an edge f ∈ E belongs to the
influenced zone of v in G if and only if the M-component of G containing f intersects
E(CNG(v)(H)).

We remark that, since the set δ(v) of edges incident with v in G is independent, we
may choose a minimally rigid spanning subgraph H of G which contains δ(v). Also
note that if dG(v) = 2 holds then the influenced zone of v in G is clearly empty, as in
the minimally rigid case.

7 Concluding remarks

We note that our results about influenced and active zones easily extend to frameworks
in which some vertices are pinned down. This can be verified by considering the
unpinned framework obtained by adding new bars connecting the pinned joints so
that the new bars form a minimally rigid subframework on the set of pinned vertices,
see Figure 3. We omit the details.

Algorithms

¿From the algorithmic point of view our results imply that in order to find the active
zone of a subset or the influenced zone of a vertex we need subroutines for testing
rigidity, finding a minimally rigid spanning subgraph in a rigid graph, or finding
the M -components of a graph. There exist efficient algorithms for these algorithmic
problems that run in O(n2) time, see e.g [1].
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Figure 3: A pinned framework and the corresponding unpinned framework.

The sensitivity index

One way to measure the geometric sensitivity of a generic framework is as follows. As
in [11] define the joint sensitivity index of G by

s(G) =

∑
v∈V |Iv(G)|
|V |2

.

Following [5] we call a minimally rigid graph G special if every proper rigid subgraph
H of G is complete (and hence is a complete graph on two or three vertices). The
graphs K3,3 and the prism are both special, as well as all graphs which can be obtained
from K3,3 by the following operation: replace two incident edges ab, bc by six edges
aa′, a′b, bc′, c′c, ac′, a′c, where a′, c′ are new vertices. Thus the family of special graphs
is infinite. A special graph on at least six vertices has minimum degree three. Thus,
by Theorem 5.2, for all v ∈ V (G) we have that Iv(G) is a minimally rigid subgraph
on at least four vertices and hence V (Iv(G)) = V (G) must hold. This implies that
special graphs are highly sensitive.

Lemma 7.1. Let G be a special graph on at least six vertices. Then s(G) = 1.

Not only special graphs may have the highest joint sensitivity index. For example,
the minimally rigid graph G′ obtained by connecting the minimally rigid graph K4−e
and a four-cycle C4 by four disjoint edges has s(G′) = 1, but is not special.

To find families of lowest sensitivity first observe that in a minimally rigid graph
G = (V,E) with |V | ≥ 4 we cannot have adjacent vertices of degree two. Thus, since
G has no cut-vertices, we must have |V3| ≥ 2, where V3 is the set of vertices of degree
at least three. Furthermore, for each v ∈ V3 we have |Iv(G)| ≥ dG(v) + 1. Hence we
have∑
v∈V

|Iv(G)| ≥
∑
v∈V

(dG(v)− 2) + 3|V3| ≥ 2|E| − 2|V |+ 6 = 4|V | − 6− 2|V |+ 6 = 2|V |.

This bound is attained for the graph obtained from K2,n−2 by adding an edge to the
smaller colour class.
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For graphs with minimum degree at least three we have∑
v∈V

|Iv(G)| ≥
∑
v∈V

(dG(v) + 1) = 5|V | − 6.

To get close to this bound we need graphs in which for all vertices v (except possibly a
few vertices of small degree) G[N(v) + v] is rigid. Such graphs can easily be obtained
from a graph which is constructed from a triangle by repeated applications of the
operation which adds a new vertex v and two edges va, vb, where ab is an edge
incident with a degree two vertex.

Open questions

Finally we discuss a few open questions which remain unsolved. The first one is
related to Theorem 5.2, which asserts that for generic frameworks (G, p) and typical
loads L the influenced zone depends only on the graph G, where typical is defined
with respect to G, p, and p′. Now suppose that the load L is given, which is in some
sense typical. For which set of configurations p′ can we deduce (9)?

A challenging problem is to prove (at least partial) results about the case when
d ≥ 3. For d = 3 we can show, by combinatorial methods, that the minimal minimally
rigid subgraph CS of a minimally rigid graph G satisfying S ⊆ V (CS) is unique, where
S ⊆ V (G) with |S| ≥ 2 is a given vertex set. Thus we may define the core of S as in
the two-dimensional case.

On the other hand, finding the active zone of S seems to be at least as hard as
finding the fundamental circuit of an edge with respect to a minimally rigid graph,
which is a difficult unsolved problem for d ≥ 3. This follows from the fact that when
S = {a, b}, the active zone of S equals the unique M -circuit H of G+ ab, minus ab.

Furthermore, as the following example shows, the core Ca,b and H − ab may be
different, unlike the two-dimensional case. Take the well-known double banana graph.
Denote the hinge pair by x, y and the internal vertices of the bananas by {a, b, c} and
{p, q, r}, respectively. Let G be the graph obtained by deleting the edge ax and adding
a new vertex v and new edges va, vx, vp, vq. This graph G is minimally rigid in R3.
We have Ca,x = G while the unique M -circuit in G+ ax is the double banana.
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