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Special skew-supermodular functions and a
generalization of Mader’s splitting-off theorem

Attila Bernath*, Tamas Kiraly™, and Laszlo6 Végh***

Abstract

In this note we give a slight extension of Mader’s undirected splitting-off the-
orem with a simple proof, and we investigate some related questions. Frank used
Mader’s theorem for solving the local edge-connectivity augmentation problem
which is the following: given a graph Go = (V, Ey) and a symmetric function
r:V xV — Z, find a graph G = (V, F) with a minimum number of edges
such that A\g,+a(u,v) > r(u,v) for every pair of nodes w,v. In the solution
Frank introduces the set function R,(X) = max{r(z,y) : z € X,y € V — X}
for any X C V and he reproves Mader’s theorem using the following three
properties of this function: (i) symmetry, (ii) skew-supermodularity and (iii)
R (X UY) < max{R,(X),R,(Y)} for every pair of sets X,¥Y C V. We give
a proof where (iii) is only required for disjoint pairs of sets X, Y C V, and we
show examples of functions satisfying Properties (i)-(ii) and this weaker form of

(ii).

1 Introduction

In this note we give a relatively simple proof of a slight extension of Mader’s undirected
splitting-off theorem and investigate some related questions. For basic definitions and
notation see [4].

Mader proved his lemma in [5]. Frank used this result in order to solve the local
edge-connectivity augmentation problem in [2]. Our discussion follows that of
Frank. The local edge-connectivity augmentation problem is the following.

Problem 1.1 (Local edge-connectivity augmentation problem). Let Gy =
(V, Ey) be a graph and r : 'V x V. — Z, be a symmetric function (also called the
edge-connectivity requirement ). Find a graph G = (V, E) with a minimum number of
edges such that Ag,+c(u,v) > r(u,v) for every pair of nodes u,v.
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Section 2. Preliminaries 2

Frank [2] showed how to reduce the problem above to the degree-specified ver-
sion of the problem which is the following.

Problem 1.2 (Local edge-connectivity augmentation problem - degree-spec-
ified version). Let Gy be a graph, r : V x V. — Z, be a symmelric function and
m : V. — Z, be a function on the nodes. Does there exist a graph G such that
Aaora(u,v) > r(u,v) for every pair of nodes u,v and dg(v) = m(v) for every node
veV?

We will only deal with this version here. In order to simplify the treatment we will
assume that r(u,v) > 1 for any pair of nodes u,v € V (Frank solved the problem
above in general, but some technical difficulties arise if we also allow 1 among the
requirements, and we want to avoid these difficulties here).

Let us introduce the set function R, : 2 — Z with R,.(0) = R,(V) =0 and

R.(X)=max{r(z,y):x € X,y e V— X} forany X with ) £ X #£V. (1)

Note that the graph G with dg(v) = m(v) for every node v € V is a solution to
Problem [1.2]if and only if dg(X) > R.(X) — dg,(X) holds for every X C V (see also
[2]). With these notations Mader’s Splitting Theorem states the following.

Theorem 1.3 (Mader’s Splitting Theorem). Let G be a graph, let r: V XV — Z>,
be a symmetric function and let m :'V — Z, be a degree-specification. There exist a
graph G such that dg(v) = m(v) for every node v € V and dg(X) > R.(X) — dg,(X)
holds for every X C V if and only if m(V') is even and m(X) > R.(X) — dg,(X)
holds for every X C V.

In Frank’s [3] proof of this lemma the following properties of the function R, play
an important role.

1. R, is symmetric (i.e. R.(X) = R.(V — X) for every X C V),
2. R, is skew-supermodular (to be defined later), and
3. R(XUY) <max{R,(X),R.(Y)} for every pair of sets X,Y C V.

In this note we investigate the relationship between these properties. It turns out
that the first and the third properties together already imply the second one, and a
function satisfying these 3 properties is essentially of form given above in (). We also
show that we can prove Mader’s theorem by relaxing the 3rd property the following
way: we only require it for disjoint pairs X,Y C V. We give examples showing that
this indeed extends Mader’s theorem.

2 Preliminaries

Let V be a finite ground set. For subsets X, Y of V let X be V —X (the ground set will
be clear from the context). If X has only one element x, then we will not distinguish
between X and its only element z. The characteristic function xx: V — Z of the
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subset X is defined by xx(v) = 1ifv € X, xx(v) =0if v ¢ X. Sets X, Y C V are
properly intersecting if X NY, X —Y and Y — X are all nonempty. If furthermore
X UY #V then we say that they are crossing.

A set function p : 2V — Z U {—o0} is called skew-supermodular if at least one of
the following two inequalities holds for every XY C V:

p(X)+p(Y) <p(XNY)+p(XUY), (NU)
p(X) +p(Y) < p(X =Y) +p(Y - X). (=)

If p:2Y — ZU{—o0} is a skew-supermodular function and (NU) holds for some
sets X, Y C V then we say that X and Y satisfy (NU): if we do not explicitly say
which function is meant then we always mean p. The same notation is used for (—).

A set function is symmetric if p(X) = p(V — X) for every X C V. Any function
m : V — R also induces a set function (that will also be denoted by m) with the
definition m(X) = Y .y m(v) for any X C V.

For a graph G = (V, E) and a set X C V we say that an edge e € F enters X
if one endpoint of e is in X and the other endpoint of e is outside of X, and we
define dg(X) = |{e € E : e enters X }| (the degree of X in ). This is a symmetric
submodular function. For two set functions d, p we say that d covers p if d(X) > p(X)
for any X C V (d > p for short). We say that the graph G covers p if dg covers
p. For ST C V let A\g(S,T) denote the maximum number of edge-disjoint paths
starting in S and ending in T (we say that Aq(S,T) = oo if SNT # (). By Menger’s
theorem

A¢(S,T) =min{dg(X): TC X CV —S}.

A function m : V' — Z, on the nodes will be called a the degree-specification if
m(V) is even and m(v) < m(V — o) for any v € V. A graph G is said to satisfy the
degree-specification m if m(v) = dg(v) holds for every v € V. It is easy to check
that if G satisfies the degree-specification m then we can transform G into a loopless
graph G’ such that G’ satisfies m and dg (X) > dg(X) holds for every X C V. This
way we will avoid loop edges and the problem whether they should or should not
count in the degree of singleton sets.

Given a symmetric skew-supermodular function p and a degree-specification m :
V — Z,, we want to decide whether there exists a graph G covering p and satisfying
the degree-specification m. An important necessary condition is the following:

m(X) > p(X) holds for every X C V. (2)

We say that the degree-specification m is admissible (with respect to p) if
holds. For anode v € V' we say that v is positive if m(v) > 0, and neutral otherwise.
The set of positive nodes will be denoted by V. Let u,v € VT be two distinct positive
nodes. The operation splitting-off (at v and v) is the following: let

m' =m — X{u,v} and p/ =p— d(Vv{m’})’ (3)

where dy g4} is the degree function of the graph (V, {uv}) having only one edge. If
m/(X) > p/(X) for any X C V', then we say that the splitting off is admissible. We
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will usually use the notation that after the splitting off operation we substitute p by p/
and m by m/. This way an (admissible) splitting-off preserves the relevant properties
of an (admissible) degree-specification.

A set X is dangerous if m(X)—p(X) < 1 and it is called tight if m(X)—p(X) = 0.
Clearly, splitting off at v and v is admissible if and only if there is no dangerous set
X containing both v and v. We will also say that such a dangerous set X blocks
the splitting at v and v, or simply that X blocks v and v.

Mader’s splitting-off theorem can be formulated with a special skew-supermodular
function. In this note we investigate how special this function is and we show that we
can prove Mader’s theorem for a a slightly broader class of functions, too.

Let M, = max{p(X) : X C V}. A set X with p(X) = M, will be called p-
maximal. Clearly, if M, < 0 then any splitting-off is admissible. Note that by the
skew-supermodularity of p, for two p-maximal sets X and Y either both of X NY and
X UY or both of X —Y and Y — X are also p-maximal.

We will also be interested in another inequality for a set function R:

R(XUY) < max{R(X),R(Y)}. (4)

Mader’s splitting theorem is concerned with the special set function R = R, defined
in . Observe that the function R, is symmetric and skew-supermodular, and it
satisfies R, (X UY) < max{R,(X), R.(Y)} for every pair of sets X,Y C V.

3 Special skew-supermodular functions

In this subsection we describe symmetric set functions R that satisfy for every
pair of subsets X,Y C V. Observe that applied for an arbitrary subset X C V
and Y =V — X gives that R(V) < R(X), i.e. V (and ) minimizes such a function
R. Thus we will assume that R(()) = R(V) = 0, since we can always achieve this by
adding a constant.

Let us give an example of such a function.

Definition 3.1. Let P be a path with node set V(P) =V (in other words, a linear
ordering of V; P will denote the edge set of the path) and assume that we are given
arbitrary nonnegative numbers ¢ : P — R, on the edges of this path. Define the
function Rp. with Rp.(X) = max{c(xy) : 2y € P,xv € X,y € V — X} for any X with
0 7é X 7é V' and RP,C(®> - RP,C(V) =0.

It turns out that this definition gives every function satisfying our requirements.
Note that Rp, is also of form R, if we take r(z,y) = min{c(uv) : uv € Pz, y|}, where
Pz, y] denotes the subpath of P between x and y (note that this function value r(x, y)
can also be considered as the maximum flow value between x and y in the very simple
undirected path-network P with edge-capacities c).

Lemma 3.2. If the function R : 2 — R is symmetric (with R(0) = R(V) = 0)
and it satisfies for every pair of subsets X,Y C 'V, then R is of form Rp. with a
suitably chosen path P and values c: P — R,
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Proof. First we prove a proposition whose origin is not clear, but which appeared as
a question in the Schweitzer mathematics competition of ELTE. The current proof
(to the best of our knowledge) is due to Gyula Pap.

Claim 1. The function R can only take at most n different values.

Proof. Let the different values of the function be 0 = a; < a; < .... For any i let
H(i) = {X CV : R(X) < a;} (for example H(1) contains the minimizers of R,
and H(i) € H(i + 1) for every 7). By the symmetry and (4)), H(¢) is closed under
complementation and union, i.e. XY € H(i) implies that V — X and X UY are
also in H(i) (note that this also implies that X N Y, X — Y)Y — X € H(i)). Let us
define P(i) to be the system containing the (inclusionwise) minimal members of H (1)
for every i. Observe that P(7) is a partition and H(i) = {JX : X C P(i)}. Since
H(i) € H(i+ 1), the partition P(i + 1) is a (proper) refinement of P(7) for every i.
But we cannot refine a partition more than |V| = n times. |

In fact the above proof also shows how to prove the lemma. We define the total
ordering of the elements (i.e. the path) the following way: initially all the nodes
of V' are incomparable and we refine this partial ordering step by step. For sake of
simplicity, let P(—1) = {V'} be the trivial partition. If a member X € P(i) is the
union of X, X, ..., X; of some members of P(i + 1) (where i > —1) then refine the
partial ordering by saying that z; is less than x; for every z; € X;,z, € X; and
1 < j < k <t (note that the indexing of the sets Xi, Xs,..., X; can be arbitrarily
chosen). The assignment of the ¢ values is also straightforward: c¢(uv) = min{a; : P(7)
separates u from v}. |

Finally we give an example of a set function that is symmetric and skew-supermodular,
satisfies for every pair of disjoint sets X,Y C V, but which cannot be written in
the form R, (since it fails to satisfy for a pair of non-disjoint sets X,Y’). This ex-
ample shows that the proof we give for Mader’s theorem proves indeed a more general
result.

Definition 3.3. Let 1 = ay,ao, ..., a1 = |V| be positive integers such that a; divides
a1 foreveryj =1,2,...k, and by > by > --- > b, > 0 are nonnegative reals. Define
the set function Rp : 2¥ — Z as follows: let Rp(X) = b; if and only if a; divides | X|,
but a1 does not divide | X| (where j <k, and let Rp(0) = Rp(V) =0).

Note that Rp is indeed symmetric and that holds for any pair of disjoint sets
X,Y CV (however it might fail for non-disjoint pairs).

Lemma 3.4. The function Rp is skew-supermodular.

Proof. In order to show the skew-supermodularity of R, observe that we only need
to check the case when X and Y cross each other. Assume that Rp(X) = b; and
Rp(Y) = b, where 1 < j <[ <k, ie. a; divides |X| and ¢; divides |Y|, but a;44
does not divide |X| and a;4; does not divide |Y|. Observe that a;,; cannot divide
both | X — Y| and |X NY/, since that would imply a;i1||X|. For the same reason,
a;j+1 cannot divide both of |[Y — X| and | X UY|. If a;41 does not divide | X U Y|
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and | X NY|, then (NU) holds, so we are done. If a;;; does not divide | X — Y| and
|Y — X|, then again we are done since (—) holds. So assume that a;;; divides, say,
| X UY| and |X — Y/, then it does not divide |[X NY| and |Y — X| (the other case is
analogous). But then we use the obesrvation that a;;1 does not divide both of |Y — X|
and | X NY, so either (NU) or (—) holds again, finishing the proof. |

Let us investigate some special cases of the function R defined above. If £ = 1 then
the function is the one used in global edge-connectivity augmentation: Rp — dg, is
the function to be covered if GG is to be made b;-edge-connected. Assume that k = 2
and as = |V'|/2, where |V| is even. One can immediately see that a graph H = G+ G
covers Rp if and only if H is either b;-edge-connected, or H consists of two b;-edge-
connectivity components Vi, V5 of equal size (i.e. |Vi| = |V3| and Vo =V — V4), and
dp (V1) > by. Thus the problem of covering the function Rp — dg, is equivalent with
the problem where we want to augment GGy to become a b;-edge-connected graph, but
we allow one cut of smaller capacity, if that cut exactly halves the node set.

4 Generalization of Mader’s Theorem

In this section we prove Theorem which slightly extends Mader’s Theorem (The-
orem [1.3). The proof we give is similar to the proof of Mader’s theorem (proof of
Lemma 4.2 on page 58) given in [I]. A different (but also simple) proof of the same
result (i.e. Theorem [4.2)) was given in [7] (Section 5.1.3 on page 88).

First we prove the following lemma. This proof can also be found in [I]: we only
include it to be self-contained. This lemma was also found by Nutov [6].

Lemma 4.1. Let p: 2V — ZU{—o00} be a symmetric skew-supermodular function and
m:V — Z; be an admissible degree-specification. If M, = max{p(X): X CV} > 1,
then there 1s an admissible splitting-off.

Proof. Let Y be a minimal set satisfying p(Y) = M,,. By symmetry, p(V —Y) = M,
too, so we can choose a minimal set Z C V — Y satisfying p(Z) = M,. Since M, > 1
we can choose y € Y,z € Z with m(y),m(z) > 0. We claim that the splitting
at y and z is admissible. Suppose for contradiction that it is not and consider a
dangerous set X containing y and z. Since X is dangerous and p(Y') = M, we have
p(X)+p(Y) > m(X)—1+4M,. On the other hand, p(X —=Y) < m(X-Y) <m(X)-1
and p(Y — X) < M, by the choice of Y, so p(X = Y) +p(Y — X) <m(X) — 1+ M,.
Thus p(X)+p(Y) > p(X —=Y)+p(Y — X), and, by the skew-supermodularity of p, X
and Y must satisfy (NU), which means that p(X NY) +p(XUY) > p(X) +p(Y) >
m(X) — 1+ M,.

Using m(XNY) =m(X)—m(X-Y) <m(X)—m(z) <m(X)—1and p(XUY) <
M,, we obtain that p(X NY) +p(X UY) < m(X) — 1 + M, hence equality holds,
which implies that m(X —Y) =1 and p(X UY) = M,. Now X UY and Z cannot
satisfy (—) since this would give p(Z — (X UY')) = M, contradicting the minimality
of Z. Therefore X UY and Z satisfy (NU) implying that p(Z N (X UY)) = M,
which, by the minimality of Z, is only possible if Z C X UY. But then Z C X — Y,
s02< M,=p(Z) <m(Z) <m(X —Y) =1 gives a contradiction. |
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Finally we give a simple proof of a slight extension of Mader’s classical Splitting
Theorem. The example in Definition shows that this theorem is indeed more
general than Theorem [1.3] of Mader.

Theorem 4.2. Let R : 2V — Zso be a symmetric skew-supermodular function satisfy-
ing RIXUY) <max{R(X), R(Y)} for any disjoint pair X,Y C V. Let furthermore
Gy be a graph and m : V — Z, be a degree-specification. Then there exists a loopless
graph G such that dg(v) = m(v) for every node v € V and dg(X) > R(X) — dg,(X)
holds for every X CV if and only if m(X) > R(X) —dg,(X) holds for every X C V.

Proof. The necessity of the conditions is clear so we prove the sufficiency. Let p(X) =
R(X) — dg,(X) for any X C V: clearly p is symmetric and skew-supermodular,
and our condition says that m is p-admissible. If we prove that there exists an
admissible splitting-off then the theorem is proved. First note that if there exists
a node v € V with m(v) = m(V — v) then the splitting-off at v and an arbitrary
other positive node u is admissible: if there was a dangerous set X containing both
w and v then p(V — X) = p(X) > m(X) =1 > m(v) + m(u) — 1 > m(v) and
m(V —X) <m(V —v—u) <m(v) — 1 would contradict the admissibility of m (for
the set V' — X). This also implies that the number of positive nodes is at least 3.
Suppose that there is no admissible splitting-off: by Lemma |4.1] we can assume that
p(X) <1 for any X C V. Furthermore observe that m(v) <1 holds for every v € V:
if m(v) > 2 for some v € V then any set X containing v and some other positive node
has m(X) > 3, so it cannot be dangerous by p(X) < 1, contradicting our assumption.
Let x,y, z be 3 distinct positive nodes and let XY, Z be 3 maximal dangerous sets
with y,z € X, z,z € Y and =,y € Z. Consider the following two cases.

Case I.: Assume that two of these three sets (wlog. X and Y') satisfy (NU). Note
that this implies that p(XUY) = p(XNY) = 1. Substitute Z by a minimal dangerous
set Z' containing x and y. Observe that (—) cannot hold for Z’ and X UY, since that
would imply p(Z'— (X UY)) = 1, contradicting m(Z' — (X UY')) = 0. Therefore (NU)
for Z' and X UY and the minimality of Z’ gives that Z/ C X UY. Similarly, (NU)
cannot hold for Z/ and X NY, since that would imply p(Z'NXNY') = 1, contradicting
m(Z'N X NY)=0. Therefore (—) for Z" and X NY and the minimality of Z’ gives
that ZZN X NY = (. We can assume that R(Y NZ’) < R(XNZ') and thus by by our
assumption (4)) for the disjoint sets X N Z" and Y N Z" we have R(Z') < R(X N Z").
Since p(X NZ') < 1,dg,(XNZ)>RXnNZ)—1. Similarly, p(Y N Z') <1 and
R(Y NZ") > 2 together give that dg,(Y NZ') > 1. f dg,( X NZ',Y NZ") =0 then
these two give that dg,(Z') = dg,(X N Z') +dg,(Y NZ') > R(XNZ) > R(Z),
contradicting the fact that p(Z’) = 1. Therefore dg (X NZ', Y NZ') > 0, but then X
and Y cannot satisfy (NU) with equality, a contradiction.

Case I1.: Assume that X,Y and Z pairwise satisfy (—). This implies that p(X—-Y) =
1, consequently Z and X —Y cannot satisfy (—), since m((X—Y)—2) = 0. Thus they
satisfy (NU) which implies by the maximality of Z that X — (Y U Z) = (. Similarly
we can prove that Y —(ZUX) = Z— (X UY') = 0. Using that m(V —(XUYUZ)) > 1
we can deduce that R(X UY U Z) > 2. However, since X, Y and Z pairwise satisfy
(—) with equality, there must not be an edge of G[V] leaving X UY U Z. But this
would imply that p(X UY U Z) > 2, contradicting Lemma |
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