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Abstract

In this note we give a slight extension of Mader's undirected splitting-o� the-

orem with a simple proof, and we investigate some related questions. Frank used

Mader's theorem for solving the local edge-connectivity augmentation problem

which is the following: given a graph G0 = (V,E0) and a symmetric function

r : V × V → Z+, �nd a graph G = (V,E) with a minimum number of edges

such that λG0+G(u, v) ≥ r(u, v) for every pair of nodes u, v. In the solution

Frank introduces the set function Rr(X) = max{r(x, y) : x ∈ X, y ∈ V − X}
for any X ⊆ V and he reproves Mader's theorem using the following three

properties of this function: (i) symmetry, (ii) skew-supermodularity and (iii)

Rr(X ∪ Y ) ≤ max{Rr(X), Rr(Y )} for every pair of sets X,Y ⊆ V . We give

a proof where (iii) is only required for disjoint pairs of sets X,Y ⊆ V , and we

show examples of functions satisfying Properties (i)-(ii) and this weaker form of

(iii).

1 Introduction

In this note we give a relatively simple proof of a slight extension of Mader's undirected
splitting-o� theorem and investigate some related questions. For basic de�nitions and
notation see [4].
Mader proved his lemma in [5]. Frank used this result in order to solve the local

edge-connectivity augmentation problem in [2]. Our discussion follows that of
Frank. The local edge-connectivity augmentation problem is the following.

Problem 1.1 (Local edge-connectivity augmentation problem). Let G0 =
(V,E0) be a graph and r : V × V → Z+ be a symmetric function (also called the
edge-connectivity requirement). Find a graph G = (V,E) with a minimum number of
edges such that λG0+G(u, v) ≥ r(u, v) for every pair of nodes u, v.
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Section 2. Preliminaries 2

Frank [2] showed how to reduce the problem above to the degree-speci�ed ver-
sion of the problem which is the following.

Problem 1.2 (Local edge-connectivity augmentation problem - degree-spec-
i�ed version). Let G0 be a graph, r : V × V → Z+ be a symmetric function and
m : V → Z+ be a function on the nodes. Does there exist a graph G such that
λG0+G(u, v) ≥ r(u, v) for every pair of nodes u, v and dG(v) = m(v) for every node
v ∈ V ?

We will only deal with this version here. In order to simplify the treatment we will
assume that r(u, v) > 1 for any pair of nodes u, v ∈ V (Frank solved the problem
above in general, but some technical di�culties arise if we also allow 1 among the
requirements, and we want to avoid these di�culties here).
Let us introduce the set function Rr : 2

V → Z with Rr(∅) = Rr(V ) = 0 and

Rr(X) = max{r(x, y) : x ∈ X, y ∈ V −X} for any X with ∅ 6= X 6= V. (1)

Note that the graph G with dG(v) = m(v) for every node v ∈ V is a solution to
Problem 1.2 if and only if dG(X) ≥ Rr(X)− dG0(X) holds for every X ⊆ V (see also
[2]). With these notations Mader's Splitting Theorem states the following.

Theorem 1.3 (Mader's Splitting Theorem). Let G0 be a graph, let r : V × V → Z≥2
be a symmetric function and let m : V → Z+ be a degree-speci�cation. There exist a
graph G such that dG(v) = m(v) for every node v ∈ V and dG(X) ≥ Rr(X)− dG0(X)
holds for every X ⊆ V if and only if m(V ) is even and m(X) ≥ Rr(X) − dG0(X)
holds for every X ⊆ V .

In Frank's [3] proof of this lemma the following properties of the function Rr play
an important role.

1. Rr is symmetric (i.e. Rr(X) = Rr(V −X) for every X ⊆ V ),

2. Rr is skew-supermodular (to be de�ned later), and

3. Rr(X ∪ Y ) ≤ max{Rr(X), Rr(Y )} for every pair of sets X, Y ⊆ V .

In this note we investigate the relationship between these properties. It turns out
that the �rst and the third properties together already imply the second one, and a
function satisfying these 3 properties is essentially of form given above in (1). We also
show that we can prove Mader's theorem by relaxing the 3rd property the following
way: we only require it for disjoint pairs X, Y ⊆ V . We give examples showing that
this indeed extends Mader's theorem.

2 Preliminaries

Let V be a �nite ground set. For subsets X, Y of V letX be V −X (the ground set will
be clear from the context). If X has only one element x, then we will not distinguish
between X and its only element x. The characteristic function χX : V → Z of the
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subset X is de�ned by χX(v) = 1 if v ∈ X, χX(v) = 0 if v /∈ X. Sets X, Y ⊆ V are
properly intersecting if X ∩Y,X −Y and Y −X are all nonempty. If furthermore
X ∪ Y 6= V then we say that they are crossing.
A set function p : 2V → Z ∪ {−∞} is called skew-supermodular if at least one of

the following two inequalities holds for every X, Y ⊆ V :

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ), (∩∪)
p(X) + p(Y ) ≤ p(X − Y ) + p(Y −X). (−)

If p : 2V → Z ∪ {−∞} is a skew-supermodular function and (∩∪) holds for some
sets X, Y ⊆ V then we say that X and Y satisfy (∩∪) : if we do not explicitly say
which function is meant then we always mean p. The same notation is used for (−) .
A set function is symmetric if p(X) = p(V − X) for every X ⊆ V . Any function

m : V → R also induces a set function (that will also be denoted by m) with the
de�nition m(X) =

∑
v∈X m(v) for any X ⊆ V .

For a graph G = (V,E) and a set X ⊆ V we say that an edge e ∈ E enters X
if one endpoint of e is in X and the other endpoint of e is outside of X, and we
de�ne dG(X) = |{e ∈ E : e enters X}| (the degree of X in G). This is a symmetric
submodular function. For two set functions d, p we say that d covers p if d(X) ≥ p(X)
for any X ⊆ V (d ≥ p for short). We say that the graph G covers p if dG covers
p. For S, T ⊆ V let λG(S, T ) denote the maximum number of edge-disjoint paths
starting in S and ending in T (we say that λG(S, T ) =∞ if S ∩ T 6= ∅). By Menger's
theorem

λG(S, T ) = min{dG(X) : T ⊆ X ⊆ V − S}.

A function m : V → Z+ on the nodes will be called a the degree-speci�cation if
m(V ) is even and m(v) ≤ m(V − v) for any v ∈ V . A graph G is said to satisfy the
degree-speci�cation m if m(v) = dG(v) holds for every v ∈ V . It is easy to check
that if G satis�es the degree-speci�cation m then we can transform G into a loopless
graph G′ such that G′ satis�es m and dG′(X) ≥ dG(X) holds for every X ⊆ V . This
way we will avoid loop edges and the problem whether they should or should not
count in the degree of singleton sets.
Given a symmetric skew-supermodular function p and a degree-speci�cation m :

V → Z+, we want to decide whether there exists a graph G covering p and satisfying
the degree-speci�cation m. An important necessary condition is the following:

m(X) ≥ p(X) holds for every X ⊆ V. (2)

We say that the degree-speci�cation m is admissible (with respect to p) if (2)
holds. For a node v ∈ V we say that v is positive ifm(v) > 0, and neutral otherwise.
The set of positive nodes will be denoted by V +. Let u, v ∈ V + be two distinct positive
nodes. The operation splitting-o� (at u and v) is the following: let

m′ = m− χ{u,v} and p′ = p− d(V,{uv}), (3)

where d(V,{uv}) is the degree function of the graph (V, {uv}) having only one edge. If
m′(X) ≥ p′(X) for any X ⊆ V , then we say that the splitting o� is admissible. We
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will usually use the notation that after the splitting o� operation we substitute p by p′

and m by m′. This way an (admissible) splitting-o� preserves the relevant properties
of an (admissible) degree-speci�cation.
A setX is dangerous ifm(X)−p(X) ≤ 1 and it is called tight ifm(X)−p(X) = 0.

Clearly, splitting o� at u and v is admissible if and only if there is no dangerous set
X containing both u and v. We will also say that such a dangerous set X blocks
the splitting at u and v, or simply that X blocks u and v.
Mader's splitting-o� theorem can be formulated with a special skew-supermodular

function. In this note we investigate how special this function is and we show that we
can prove Mader's theorem for a a slightly broader class of functions, too.
Let Mp = max{p(X) : X ⊆ V }. A set X with p(X) = Mp will be called p-

maximal. Clearly, if Mp ≤ 0 then any splitting-o� is admissible. Note that by the
skew-supermodularity of p, for two p-maximal sets X and Y either both of X ∩Y and
X ∪ Y or both of X − Y and Y −X are also p-maximal.
We will also be interested in another inequality for a set function R:

R(X ∪ Y ) ≤ max{R(X), R(Y )}. (4)

Mader's splitting theorem is concerned with the special set function R = Rr de�ned
in (1). Observe that the function Rr is symmetric and skew-supermodular, and it
satis�es Rr(X ∪ Y ) ≤ max{Rr(X), Rr(Y )} for every pair of sets X, Y ⊆ V .

3 Special skew-supermodular functions

In this subsection we describe symmetric set functions R that satisfy (4) for every
pair of subsets X, Y ⊆ V . Observe that (4) applied for an arbitrary subset X ⊆ V
and Y = V −X gives that R(V ) ≤ R(X), i.e. V (and ∅) minimizes such a function
R. Thus we will assume that R(∅) = R(V ) = 0, since we can always achieve this by
adding a constant.
Let us give an example of such a function.

De�nition 3.1. Let P be a path with node set V (P ) = V (in other words, a linear
ordering of V ; P will denote the edge set of the path) and assume that we are given
arbitrary nonnegative numbers c : P → R+ on the edges of this path. De�ne the
function RP,c with RP,c(X) = max{c(xy) : xy ∈ P, x ∈ X, y ∈ V −X} for any X with
∅ 6= X 6= V and RP,c(∅) = RP,c(V ) = 0.

It turns out that this de�nition gives every function satisfying our requirements.
Note that RP,c is also of form Rr if we take r(x, y) = min{c(uv) : uv ∈ P [x, y]}, where
P [x, y] denotes the subpath of P between x and y (note that this function value r(x, y)
can also be considered as the maximum �ow value between x and y in the very simple
undirected path-network P with edge-capacities c).

Lemma 3.2. If the function R : 2V → R is symmetric (with R(∅) = R(V ) = 0)
and it satis�es (4) for every pair of subsets X, Y ⊆ V , then R is of form RP,c with a
suitably chosen path P and values c : P → R+.
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Proof. First we prove a proposition whose origin is not clear, but which appeared as
a question in the Schweitzer mathematics competition of ELTE. The current proof
(to the best of our knowledge) is due to Gyula Pap.

Claim 1. The function R can only take at most n di�erent values.

Proof. Let the di�erent values of the function be 0 = a1 < a2 < . . . . For any i let
H(i) = {X ⊆ V : R(X) ≤ ai} (for example H(1) contains the minimizers of R,
and H(i) ( H(i + 1) for every i). By the symmetry and (4), H(i) is closed under
complementation and union, i.e. X, Y ∈ H(i) implies that V − X and X ∪ Y are
also in H(i) (note that this also implies that X ∩ Y,X − Y, Y − X ∈ H(i)). Let us
de�ne P(i) to be the system containing the (inclusionwise) minimal members of H(i)
for every i. Observe that P(i) is a partition and H(i) = {

⋃
X : X ⊆ P(i)}. Since

H(i) ( H(i + 1), the partition P(i + 1) is a (proper) re�nement of P(i) for every i.
But we cannot re�ne a partition more than |V | = n times. �

In fact the above proof also shows how to prove the lemma. We de�ne the total
ordering of the elements (i.e. the path) the following way: initially all the nodes
of V are incomparable and we re�ne this partial ordering step by step. For sake of
simplicity, let P(−1) = {V } be the trivial partition. If a member X ∈ P(i) is the
union of X1, X2, . . . , Xt of some members of P(i+ 1) (where i ≥ −1) then re�ne the
partial ordering by saying that xj is less than xk for every xj ∈ Xj, xk ∈ Xk and
1 ≤ j < k ≤ t (note that the indexing of the sets X1, X2, . . . , Xt can be arbitrarily
chosen). The assignment of the c values is also straightforward: c(uv) = min{ai : P(i)
separates u from v}. �

Finally we give an example of a set function that is symmetric and skew-supermodular,
satis�es (4) for every pair of disjoint sets X, Y ⊆ V , but which cannot be written in
the form Rr (since it fails to satisfy (4) for a pair of non-disjoint sets X, Y ). This ex-
ample shows that the proof we give for Mader's theorem proves indeed a more general
result.

De�nition 3.3. Let 1 = a1, a2, . . . , ak+1 = |V | be positive integers such that aj divides
aj+1 for every j = 1, 2, . . . , k, and b1 > b2 > · · · > bk ≥ 0 are nonnegative reals. De�ne
the set function RF : 2V → Z as follows: let RF (X) = bj if and only if aj divides |X|,
but aj+1 does not divide |X| (where j ≤ k, and let RF (∅) = RF (V ) = 0).

Note that RF is indeed symmetric and that (4) holds for any pair of disjoint sets
X, Y ⊆ V (however it might fail for non-disjoint pairs).

Lemma 3.4. The function RF is skew-supermodular.

Proof. In order to show the skew-supermodularity of RF , observe that we only need
to check the case when X and Y cross each other. Assume that RF (X) = bj and
RF (Y ) = bl, where 1 ≤ j ≤ l ≤ k, i.e. aj divides |X| and al divides |Y |, but aj+1

does not divide |X| and al+1 does not divide |Y |. Observe that aj+1 cannot divide
both |X − Y | and |X ∩ Y |, since that would imply aj+1| |X|. For the same reason,
aj+1 cannot divide both of |Y − X| and |X ∪ Y |. If aj+1 does not divide |X ∪ Y |

EGRES Technical Report No. 2011-10



Section 4. Generalization of Mader's Theorem 6

and |X ∩ Y |, then (∩∪) holds, so we are done. If aj+1 does not divide |X − Y | and
|Y −X|, then again we are done since (−) holds. So assume that aj+1 divides, say,
|X ∪ Y | and |X − Y |, then it does not divide |X ∩ Y | and |Y −X| (the other case is
analogous). But then we use the obesrvation that al+1 does not divide both of |Y −X|
and |X ∩ Y |, so either (∩∪) or (−) holds again, �nishing the proof. �

Let us investigate some special cases of the function RF de�ned above. If k = 1 then
the function is the one used in global edge-connectivity augmentation: RF − dG0 is
the function to be covered if G0 is to be made b1-edge-connected. Assume that k = 2
and a2 = |V |/2, where |V | is even. One can immediately see that a graph H = G+G0

covers RF if and only if H is either b1-edge-connected, or H consists of two b1-edge-
connectivity components V1, V2 of equal size (i.e. |V1| = |V2| and V2 = V − V1), and
dH(V1) ≥ b2. Thus the problem of covering the function RF − dG0 is equivalent with
the problem where we want to augment G0 to become a b1-edge-connected graph, but
we allow one cut of smaller capacity, if that cut exactly halves the node set.

4 Generalization of Mader's Theorem

In this section we prove Theorem 4.2 which slightly extends Mader's Theorem (The-
orem 1.3). The proof we give is similar to the proof of Mader's theorem (proof of
Lemma 4.2 on page 58) given in [1]. A di�erent (but also simple) proof of the same
result (i.e. Theorem 4.2) was given in [7] (Section 5.1.3 on page 88).
First we prove the following lemma. This proof can also be found in [1]: we only

include it to be self-contained. This lemma was also found by Nutov [6].

Lemma 4.1. Let p : 2V → Z∪{−∞} be a symmetric skew-supermodular function and
m : V → Z+ be an admissible degree-speci�cation. If Mp = max{p(X) : X ⊆ V } > 1,
then there is an admissible splitting-o�.

Proof. Let Y be a minimal set satisfying p(Y ) =Mp. By symmetry, p(V − Y ) = Mp

too, so we can choose a minimal set Z ⊆ V − Y satisfying p(Z) =Mp. Since Mp ≥ 1
we can choose y ∈ Y, z ∈ Z with m(y),m(z) > 0. We claim that the splitting
at y and z is admissible. Suppose for contradiction that it is not and consider a
dangerous set X containing y and z. Since X is dangerous and p(Y ) = Mp, we have
p(X)+p(Y ) ≥ m(X)−1+Mp. On the other hand, p(X−Y ) ≤ m(X−Y ) ≤ m(X)−1
and p(Y −X) < Mp by the choice of Y , so p(X − Y ) + p(Y −X) < m(X)− 1 +Mp.
Thus p(X)+p(Y ) > p(X−Y )+p(Y −X), and, by the skew-supermodularity of p, X
and Y must satisfy (∩∪) , which means that p(X ∩ Y ) + p(X ∪ Y ) ≥ p(X) + p(Y ) ≥
m(X)− 1 +Mp.
Using m(X∩Y ) = m(X)−m(X−Y ) ≤ m(X)−m(z) ≤ m(X)−1 and p(X∪Y ) ≤

Mp, we obtain that p(X ∩ Y ) + p(X ∪ Y ) ≤ m(X) − 1 +Mp, hence equality holds,
which implies that m(X − Y ) = 1 and p(X ∪ Y ) = Mp. Now X ∪ Y and Z cannot
satisfy (−) since this would give p(Z − (X ∪ Y )) =Mp, contradicting the minimality
of Z. Therefore X ∪ Y and Z satisfy (∩∪) implying that p(Z ∩ (X ∪ Y )) = Mp,
which, by the minimality of Z, is only possible if Z ⊆ X ∪ Y . But then Z ⊆ X − Y ,
so 2 ≤Mp = p(Z) ≤ m(Z) ≤ m(X − Y ) = 1 gives a contradiction. �

EGRES Technical Report No. 2011-10



Section 4. Generalization of Mader's Theorem 7

Finally we give a simple proof of a slight extension of Mader's classical Splitting
Theorem. The example in De�nition 3.3 shows that this theorem is indeed more
general than Theorem 1.3 of Mader.

Theorem 4.2. Let R : 2V → Z≥2 be a symmetric skew-supermodular function satisfy-
ing R(X ∪Y ) ≤ max{R(X), R(Y )} for any disjoint pair X, Y ⊆ V . Let furthermore
G0 be a graph and m : V → Z+ be a degree-speci�cation. Then there exists a loopless
graph G such that dG(v) = m(v) for every node v ∈ V and dG(X) ≥ R(X)− dG0(X)
holds for every X ⊆ V if and only if m(X) ≥ R(X)−dG0(X) holds for every X ⊆ V .

Proof. The necessity of the conditions is clear so we prove the su�ciency. Let p(X) =
R(X) − dG0(X) for any X ⊆ V : clearly p is symmetric and skew-supermodular,
and our condition says that m is p-admissible. If we prove that there exists an
admissible splitting-o� then the theorem is proved. First note that if there exists
a node v ∈ V with m(v) = m(V − v) then the splitting-o� at v and an arbitrary
other positive node u is admissible: if there was a dangerous set X containing both
u and v then p(V − X) = p(X) ≥ m(X) − 1 ≥ m(v) + m(u) − 1 ≥ m(v) and
m(V −X) ≤ m(V − v − u) ≤ m(v)− 1 would contradict the admissibility of m (for
the set V − X). This also implies that the number of positive nodes is at least 3.
Suppose that there is no admissible splitting-o�: by Lemma 4.1, we can assume that
p(X) ≤ 1 for any X ⊆ V . Furthermore observe that m(v) ≤ 1 holds for every v ∈ V :
if m(v) ≥ 2 for some v ∈ V then any set X containing v and some other positive node
has m(X) ≥ 3, so it cannot be dangerous by p(X) ≤ 1, contradicting our assumption.
Let x, y, z be 3 distinct positive nodes and let X, Y, Z be 3 maximal dangerous sets
with y, z ∈ X, z, x ∈ Y and x, y ∈ Z. Consider the following two cases.
Case I.: Assume that two of these three sets (wlog. X and Y ) satisfy (∩∪) . Note
that this implies that p(X∪Y ) = p(X∩Y ) = 1. Substitute Z by a minimal dangerous
set Z ′ containing x and y. Observe that (−) cannot hold for Z ′ and X ∪Y , since that
would imply p(Z ′− (X∪Y )) = 1, contradicting m(Z ′− (X∪Y )) = 0. Therefore (∩∪)
for Z ′ and X ∪ Y and the minimality of Z ′ gives that Z ′ ⊆ X ∪ Y . Similarly, (∩∪)
cannot hold for Z ′ and X∩Y , since that would imply p(Z ′∩X∩Y ) = 1, contradicting
m(Z ′ ∩X ∩ Y ) = 0. Therefore (−) for Z ′ and X ∩ Y and the minimality of Z ′ gives
that Z ′∩X ∩Y = ∅. We can assume that R(Y ∩Z ′) ≤ R(X ∩Z ′) and thus by by our
assumption (4) for the disjoint sets X ∩ Z ′ and Y ∩ Z ′ we have R(Z ′) ≤ R(X ∩ Z ′).
Since p(X ∩ Z ′) ≤ 1, dG0(X ∩ Z ′) ≥ R(X ∩ Z ′) − 1. Similarly, p(Y ∩ Z ′) ≤ 1 and
R(Y ∩ Z ′) ≥ 2 together give that dG0(Y ∩ Z ′) ≥ 1. If dG0(X ∩ Z ′, Y ∩ Z ′) = 0 then
these two give that dG0(Z

′) = dG0(X ∩ Z ′) + dG0(Y ∩ Z ′) ≥ R(X ∩ Z ′) ≥ R(Z ′),
contradicting the fact that p(Z ′) = 1. Therefore dG0(X ∩Z ′, Y ∩Z ′) > 0, but then X
and Y cannot satisfy (∩∪) with equality, a contradiction.
Case II.: Assume thatX, Y and Z pairwise satisfy (−) . This implies that p(X−Y ) =
1, consequently Z andX−Y cannot satisfy (−) , sincem((X−Y )−Z) = 0. Thus they
satisfy (∩∪) which implies by the maximality of Z that X − (Y ∪ Z) = ∅. Similarly
we can prove that Y −(Z∪X) = Z−(X∪Y ) = ∅. Using that m(V −(X∪Y ∪Z)) ≥ 1
we can deduce that R(X ∪ Y ∪ Z) ≥ 2. However, since X, Y and Z pairwise satisfy
(−) with equality, there must not be an edge of G[V ] leaving X ∪ Y ∪ Z. But this
would imply that p(X ∪ Y ∪ Z) ≥ 2, contradicting Lemma 4.1. �
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