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Matching with partially ordered contracts

Rashid Farooq?, Tamás Fleiner??, and Akihisa Tamura? ? ?

Abstract

In this paper, we study a many-to-many matching model with contracts.
We extend the economic model of Hatfield and Milgrom by allowing a partial
order on the possible bilateral contracts of the agents in a two-sided market
economy. To prove that a generalized stable allocation exists, we use generalized
form of properties like path independence and substitutability. The key to our
results is the well-known lattice theoretical fixed point theorem of Tarski. The
constructive proof of this fixed point theorem for finite sets turns out to be the
appropriate generalization of the Gale-Shapley algorithm also in our general
setting.

Keywords: stable marriages; Gale-Shapley algorithm; partial orders; lattices

1 Introduction

In a two-sided matching market, the set of players are partitioned into two sets. A
matching is a set of pairs of players belonging to opposite sides such that each player
appears at most once. Players of a pair in a matching are called partners. A player
who has a partner is matched, otherwise she is unmatched, or self-matched, in a
different terminology. Stability is a central solution concept for two-sided matching
problems. A matching is stable if there exists no pair of players that prefer each other
to their match. Examples of real-world applications are radio spectrum auctioning,
package auctioning and the National Resident Matching Program (NRMP) of the
United States, etc.

The pioneering work in two-sided matching markets is of Gale and Shapley [13],
where they proposed a one-to-one (marriage) model in which players of the opposite
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sides (i.e, men and women) seek to form disjoint pairs. In general, a stable matching
always exists in the Gale-Shapley model. Further, Gale and Shapley described the
college admissions problem and proved that a stable solution always exists if players
on one side are allowed to match to multiple partners.

The theory of two-sided matching markets has stimulated extensive research due to
its applications to real-world problems. Several variations and extensions of the Gale-
Shapley model have been studied in the literature. Job matching markets and auction
markets are well studied classical examples of two-sided matching markets. In such
markets, the substitutable property of preferences is essential. Without substitutabil-
ity, the core of the underlying game may be empty, that is, no stable solution exists.
The notion of substitutable preferences generalizing the Gale-Shapley model was first
introduced by Kelso and Crawford [21] by generalizing the model of Crawford and
Knoer [6]. The Crawford-Knoer model itself is a generalization of the Gale-Shapley
model. In fact, the firms in this latter model are under two restrictive assumptions
that Kelso and Crawford relaxed in their model. In the job matching model by Kelso
and Crawford, preferences of firms and workers depend upon two factors: with whom
they are matched and what their salaries are. They proposed a variant of the deferred-
acceptance algorithm of Gale and Shapley to show that when preferences of the firms
obey gross substitutes (GS) condition, the core is nonempty.

Kelso and Crawford’s work motivated extensive further research. We find a couple
of adaptations of the GS condition in Gul and Stacchetti [14]. In their article, Gul and
Stacchetti introduce a single improvement (SI) condition and a no complementaries
(NC) condition. They further show that the conditions SI and NC are equivalent to
GS when the preferences are quasilinear (The Kelso-Crawford model is more general
than the Gul-Stacchetti model since quasilinearity is not assumed there). For further
discussion on the GS condition, we refer the reader to Roth and Sotomayor [27],
Bevia et al. [4] and Gul and Stacchetti [15]. Until the appearance of the article
by Fujishige and Yang [12], the GS condition was regarded as a condition on utility
functions. Fujishige and Yang proved that a function defined on a unit hypercube
satisfies the GS condition if and only if it is M\-concave. We refer the reader to Murota
[24] for a detailed discussion on M\-concave functions1. Murota and Tamura [26]
extended the notion of equivalence between GS condition and M\-concavity. Danilov
et al. [7] introduce a class of functions that satisfy GS condition, and discuss different
characteristics of GS-functions. Fujishige and Tamura [10, 11] use GS-functions to
design an economic model. They employ M\-concave functions as utility functions to
express the preferences. A pairwise stable outcome always exists in their models.

A significant step in the research of generalized two-sided matching markets is
the observation that there is a close connection between stability and Tarski’s well-
known fixed point theorem [29]. The first such step was probably done by Adachi
who described stable marriages as fixed points of a monotone function in [1]. Fleiner
proved that a fairly general class of stability problems defined with the help of choice
functions (including many-to-many versions and matroid-generalizations and much
more) fits into the Tarski-based framework [8, 9]. Choice functions in this framework

1A function f is M\-concave if −f is M\-convex.

EGRES Technical Report No. 2011-09



Section 1. Introduction 3

must have the so called comonotone property that is closely related to the well-known
substitutability condition. Fleiner pointed out that the well-known theorem by Blair
on the lattice structure of generalized stable matchings [5] follows more or less directly
from Tarski’s fixed point theorem. He also pointed out that the proposal algorithm of
Gale and Shapley can be regarded as an iteration method of a monotone function for
finding a maximal or a minimal fixed point. A key ingredient in Fleiner’s approach is
that he considered the set of edges of the underlying bipartite graph as the domain
of the key monotone mapping. Fleiner defined the so-called increasing property of a
choice function meaning that if we extend the choice set then the number of choices
picked cannot decrease. He proved that if choice functions are increasing (beyond
comonotone and path-independent) then fixed points of the corresponding monotone
function form a sublattice. Hence, the lattice operations on the stable solutions can
be calculated directly by the corresponding choice functions. An easy consequence of
this is that a natural generalization of the rural hospitals theorem holds for increasing,
comonotone and path-independent choice functions. (The “rural hospital theorem”
says that if a certain hospital h cannot fill up its quota in some stable matching
then hospital h gets the same set of residents in any stable matching.) Based on the
Tarski-framework and other well-known results, Fleiner also gave a linear description
of several stable matching related polyhedra.

Independently and after Fleiner’s work, Alkan [2] and Alkan and Gale [3] proved
that if choice functions are cardinal monotone, or more generally size monotone then
stable matchings form a lattice and an extension of the rural hospital theorem also
holds. These works do not lean on Tarski’s theorem and hence the basis of the proofs
is a natural generalization of the proposal algorithm of Gale and Shapley.

A major breakthrough in popularizing the Tarski framework was done by Hatfield
and Milgrom in [18]. They rediscovered several results of Fleiner and formulated them
in a terminology that is much closer to Economists than the former Mathematical ap-
proach. In particular, they called the set of edges of the underlying bipartite graph
“contracts” and defined substitutable mappings on them. They formulated a stability
concept equivalent to Fleiner’s in [8, 9] and proved that if contracts are substitutes
(that is, if the choice functions are comonotone) for the hospitals and doctors have a
linear preference order then in this two-sided one-to-many market stable allocations
are basically the fixed points of a monotone function. They also pointed out that the
Gale-Shapley algorithm is a monotone function iteration. Another important achieve-
ment of [18] is the formulation of the “law of aggregate demand” that corresponds to
Fleiner’s increasing property and Alkan’s cardinal monotonicity. A main result is that
if this condition also holds for the hospitals’ choice functions then the rural hospital
theorem can be generalized and that honest behaviour is a dominant strategy for
the doctors if the doctor optimal stable assignment is realized after some bargaining
process.

Very recently, Hatfield and Kojima [17] studied further the Hatfield-Milgrom frame-
work of matching with contracts and introduced a bilateral substitutes condition - a
less restrictive version of the Hatfield-Milgrom’s substitutes condition. They showed
that the bilateral substitutes condition is a sufficient condition for the existence of a
stable outcome in the Hatfield-Milgrom framework. However, a doctor-optimal stable

EGRES Technical Report No. 2011-09



Section 2. Preliminaries 4

outcome and a lattice of stable outcomes may not exist if the bilateral substitutes
condition is imposed only for hospitals. Hatfield and Kojima [17] further introduced
a so-called unilateral substitutes condition - a stronger version of bilateral substitutes
condition. They showed that the unilateral substitutes condition is a sufficient condi-
tion for the existence of a doctor-optimal stable outcome. The set of stable outcomes,
however, may not form a lattice with respect to the preferences of the doctors, even
under the unilateral substitutes condition. Klaus and Walzl [22] considered a class of
many-to-many matching markets with contracts. They introduced a notion of weak
setwise stability and analyze its relationship with other notions of stability. Klaus and
Walzl concluded that if the preferences of the players satisfy the Hatfield-Milgrom’s
substitutes condition then the notions of weak setwise stability and pairwise stability
coincide.

The paper is organized as follows. In Section 2, we list some well-known facts
about partial orders and lattices and we claim Tarski’s fixed point theorem that is
key to our results. Section 3 is devoted to the description of our model that is a
genuine generalization of the models by Fleiner [8, 9] and Hatfield and Milgrom [18].
The theorems and results included in this section are mostly known or easy to prove.
Our main results are contained in Section 4 where we prove the existence of a stable
solution and we extend Blair’s result on the lattice structure of stable assignments [5]
to our model. We point out that the proposal algorithm of Gale and Shapley can be
regarded as an iteration of a monotone mapping. We show another related result in
this section by demonstrating that a generalization of the proposal algorithm of Gale
and Shapley can be used to calculate the lattice operations on stable solutions. We
conclude in Section 5 and indicate promising directions of further research.

2 Preliminaries

In this section, we recall some concepts related to partially ordered sets (posets) that
are essential in our framework. The reader familiar with posets and lattices might
want to skip this part.

A partially ordered set (or poset) P on ground set X is a pair P = (X,�) where
� is a reflexive, antisymmetric and transitive binary relation on X. (That is, for any
x, y, z ∈ X we have x � x and (x � y � x ⇒ x = y) and (x � y � z ⇒ x � z.)
Elements x and y of poset P = (X,�) are comparable if x � y or y � x, otherwise
x and y are incomparable. If P = (X,�) is a partial order then a lower ideal is
a set X ′ of X such that if y � x ∈ X ′ then y ∈ X ′ holds. Poset P = (X,�) is
called trivial if � = ∅, that is if no two different elements of X are comparable. We
shall often abuse notation by identifying a poset with its ground set, so for example
a mapping f : P → P means simply a mapping f : X → X if we want to emphasize
the underlying partial order. Or a subset P ′ of poset P = (X,�) means a poset
P ′ = (X ′,� |X′) for some subset X ′ of X where � |X′ means the restriction of binary
relation � on X ′.

A subset A of X is an antichain of P if no two elements of A are comparable in P ,
that is, if a 6� a′ for different elements a, a′ of A. Let L(P ) and A(P ) denote the set
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of lower ideals and antichains of P , respectively. Note that if P is trivial then L(P ) =
A(P ) = 2X . For finite posets P , there is a natural bijection between L(P ) and A(P ).
If L ∈ L(P ) is lower ideal then clearly Max(L) = {x ∈ L : x � x′ ∈ L ⇒ x = x′} is
an antichain, so Max : L(P )→ A(P ). Moreover, if A ∈ A(P ) is an antichain then

Li(A) := {x ∈ X : ∃a ∈ A such that x � a}

is a lower ideal, hence Li : A(P )→ L(P ). It is easy to check that for any finite poset
Li(Max(L)) = L and Max(Li(A)) = A hold for any lower ideal L of L(P ) and any
antichain A of A(P ), that is, Max and Li are inverses of one another and both of
them define a bijection between L(P ) and A(P ).

Recall that partial order (L,≤) is a lattice if any two elements x and y of L has a
least upper bound (denoted by x∨ y) and a greatest lower bound (denoted by x∧ y),
that is, if (y ≤ z ≥ x ⇒ z ≥ x ∨ y) and (y ≥ t ≤ x ⇒ t ≤ x ∧ y) holds. A lattice
is called complete if any (possibly infinite) subset Y of L has a least upper bound∨

Y and a greatest lower bound
∧

Y . An example of a complete lattice is (2X ,⊆)
(denoted by 2X as a shorthand) consists of all subsets of a ground set X and partial
order is given by set inclusion. Clearly, the lattice operations in 2X are ∪ and ∩. If L
is a lattice then subset L′ of L is a sublattice if L′ is closed on lattice operations ∨ and
∧. If L′ is closed even in the infinite lattice operations

∨
and

∧
then L′ is a complete

sublattice of L. We shall also need a less restrictive definition of a substructure. A
subset L′ of L is a (complete) lattice subset of L if L′ is a (complete) lattice for the
restriction of ≤. It is clear from the definition that any (complete) sublattice is a
(complete) lattice subset but the converse is not true. It can be easily seen from the
example where X = {1, 2, 3} and L = {∅, {1}, {2}, {3}, {1, 2, 3}}, as L is a lattice
subset of 2X but it is not a sublattice of it.

Assume that P = (X,≤) is a partial order on X. Clearly, L(P ) ⊆ 2X , and we have
equality if and only if P is trivial. For nontrivial posets P the following is true.

Observation 2.1. L(P ) is a complete sublattice of 2X , but not all complete sublat-
tices of 2X are of this form.

Proof. It follows from the definition that both the union and the intersection of any
set of lower ideals of P is a lower ideal of P hence L(P ) is a complete sublattice of
2X . However, if X = {1, 2, . . . , n} and L := {L ⊆ X : 1 ∈ L ⇐⇒ 2 ∈ L} then L is a
complete sublattice of 2X but L cannot be represented as L(P ) for a partial order P
on X. This is because 1 ∈ Li(2) and 2 ∈ Li(1), hence both 1 ≤ 2 and 2 ≤ 1 must hold
if L = L(P ) for some partial order P = (X,≤). This contradicts antisymmetry.

We shall lean on Tarski’s fixed point theorem, an important result on complete
lattices. A mapping f : X → X on poset P = (X,≤) is monotone if x ≤ y implies
f(x) ≤ f(y).

Theorem 2.2 (Tarski [29]). If L is a complete lattice and f : L → L is monotone
then the set of fixed points F := {x ∈ L : f(x) = x} forms a nonempty complete
lattice subset of L.
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For a finite lattice L, there is a straightforward proof of the existence of a fixed point
in Theorem 2.2. Namely, if 0 denotes the smallest element of L then by monotonicity
we have that 0 ≤ f(0) ≤ f(f(0)) ≤ f(f(f(0))) ≤ . . . and by finiteness, there has to
be an iterated image of 0 that is mapped to itself. It is easy to see that the fixed
point of f constructed this way is the a lower bound in L to any other fixed point of
f . Similarly, if we start iterating f from 1 (that denotes the maximal element of L)
then we get a decreasing sequence 1 ≥ f(1) ≥ f(f(1)) ≥ . . . that eventually arrives
to the maximal fixed point of f .

3 The economic model

In this section, we give a mathematical description of our model that is a genuine
extension of that of Hatfield and Milgrom described in [18].

Let D and H be two disjoint sets of agents. We regard D as the set of doctors and
H as the set of hospitals. By a contract x, we always mean an agreement between
doctor D(x) ∈ D and hospital H(x) ∈ H. Let X denote the set of all possible
contracts in the model. For any subset X ′ of X, doctor d of D and hospital h of H,
X ′(d) = {x ∈ X ′ : D(x) = d} and X ′(h) = {x ∈ X ′ : H(x) = h} denotes all the
contracts that involve doctor d and hospital h, respectively.

The main difference between our model and that of Hatfield and Milgrom in [18]
is that in our model we allow certain implications between contracts. An example
is that if x is a contract that assigns doctor D(x) to hospital H(x) for some i days
a week then it is always possible to choose contract x′ between D(x) and H(x) that
describes the same job as x does except for the total weakly workload is j days for
j < i. Or, instead of contract x doctor D(x) and hospital H(x) may agree on signing a
contract x′ for a job that needs a lower qualification than x needs. In these examples,
the possibility contract x implies the possibility of contract x′ and we denote this
fact by x′ � x. We assume that P = (X,�) is a partially ordered set on the set
X of possible contracts2. It is easy to check that if there is no implication between
contracts whatsoever (that is, if any two contracts are incomparable in poset P , i.e.
if P is trivial) then our model reduces to that of Hatfield and Milgrom.

Just like in the Hatfield-Milgrom model, hospitals and doctors have certain prefer-
ences on the contracts they participate in. This is described by choice functions as
follows. Assume that X ′ ⊆ X is an lower ideal of P . Then Cd(X

′) denotes those
contracts of X ′(d) that doctor d would pick from X ′(d) if she is allowed to choose
freely. Note that though in the Hatfield-Milgrom model, choice function Cd always
selects at most one contract (hence it is a so-called one-to-many matching market),
we do not assume this property. For any hospital h, we have a similar choice function
Ch that selects the favourite contracts of hospital h from X ′(h). We assume that Cd

and Ch always select an antichain of P . (That is, if d can work t or t′ hours for h

2Later we shall see that all our results are true in the more general setting where we do not
assume any acyclicity about implications between contracts. One can define “lower ideals” on the
transitive closure of the implication digraph and these “lower ideals” form a complete sublattice of
2X .
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according to contracts x and x′ then d never wants to sign both contracts x and x′ and
the same is true for h.) As each agent in our two-sided market has a choice function,
we can define two joint choice functions: one for the doctors and one for the hospitals.
Formally,

CD(X ′) =
⋃
{Cd(X

′) : d ∈ D} and CH(X ′) =
⋃
{Ch(X ′) : h ∈ H}

denote the doctors’ and hospitals’ choice function, respectively. Clearly, each choice
function C we defined so far is mapping lower ideals of P into antichains of P such that
C(L) ⊆ L holds for any lower ideal L of P . For such a choice function C : L(P ) →
A(P ), we define another choice function C∗ : L(P ) → L(P ) by C∗(L) := Li(C(L)).
As there is a bijection between antichains and lower ideals of P , not only C determines
C∗, but we can calculate C from C∗ by C(L) = Max(C∗(L)). Obviously, if P is trivial
then C = C∗. We can also talk about choice functions in a more general sense. If
L is a subset of 2X then a choice function on L is a mapping C : L → L such that
C(L) ⊆ L holds for any element L of L. Note that choice functions C∗D and C∗H are
choice functions in this latter sense, as well.

There are two important properties of choice functions that we shall assume in our
model. Choice function C : L → L on subset L of 2X is path independent if

C(L) ⊆ L′ ⊆ L⇒ C(L) = C(L′) (1)

holds for any two members L and L′ of L. Note that in the Hatfield-Milgrom model,
choice functions are defined by a strict linear order on the subsets X such that C(Y )
is that subset of Y that comes first in this linear order. (We shall see an example of
such a choice function in Example 3.7.) Clearly, such choice functions are path inde-
pendent by definition. Note that in the “traditional” definition of path independence
is different from ours. Actually, (1) is weaker than that as shown below.

Observation 3.1. If for choice function C : L → L identity C(A ∪ B) = C(C(A) ∪
C(B)) holds for any members A,B of L then (1) is also true for C.

Proof. For any member A of L we have C(A) = C(A ∪ A) = C(C(A) ∪ C(A)) =
C(C(A)). So if C(L) ⊆ L′ ⊆ L then C(L) = C(L ∪ L′) = C(C(L) ∪ C(L′)) =
C(C(C(L)) ∪ C(L′)) = C(C(L) ∪ L′) = C(L′).

In Lemma 3.5 we shall see that assuming substitutability (that we define a bit
later) of C then ”traditional” path independence is equivalent to (1). The following
statement is easy to check.

Observation 3.2. If P is a partial order on X then choice function C : L(P ) →
A(P ) is path independent if and only if choice function C∗ : L(P ) → L(P ) is path
independent.

From now on, L denotes a complete sublattice of 2X . To get some intuition, the
reader might simply think that L = L(P ), but our results that we claim for general
complete sublattices are more general than the ones with this restriction. We do think
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that general complete sublattices still capture some interesting Economics models that
do not fit in the poset-framework.

If C : L → L is a choice function then we can compare certain members of L with
the help of C the following way. We say that member L is C-better than member L′

(denoted by L′ �C L) if C(L ∪ L′) = L. We can extend this notion for antichains if
choice function C : L(P )→ A(P ) maps lower ideals to antichains. This way, antichain
A of P is C-better than A′ ∈ A(P ) (denoted by A′ �C A) if C(Li(A∪A′)) = A. Note
that the same notation for lower ideals and antichains does not cause ambiguity as
the range of C determines which one we talk about. Note further that �C is not
necessarily a partial order.

The second important property of a choice function is substitutability (or comono-
tonicity, as called by Fleiner in [9]) that we define here in a somewhat unusual way. A
mapping U : L → L is called antitone if U(L′) ⊆ U(L) holds whenever L ⊆ L′ holds
for elements L and L′ of L. Choice function C∗ : L → L is substitutable if there exists
an antitone mapping U : L → L such that C∗(L) = L ∩ U(L) holds for each mem-
ber L of L. A choice function C : L(P ) → A(P ) that selects an antichain is called
substitutable if C∗ is substitutable. A choice function C in a traditional two-sided
market model selects C(Y ) from a set Y of alternatives such that C(Y ) is the set of
all those choices that are undominated by set Y of alternatives. The substitutability
property captures the fact that a broader set of alternatives leaves less undominated
choices. Or, equivalently, if the choice set is growing then the set of dominated (hence
unselected) alternatives is also growing. This phenomenon is used in the definition
of substitutability by Hatfield and Milgrom: elements of X are substitutes for choice
function C : 2X → 2X if the set of rejected elements is a monotone mapping, that is
R(Y ) := Y \ C(Y ) ⊆ Y ′ \ C(Y ′) = R(Y ′) whenever Y ⊆ Y ′ ⊆ X.

Observation 3.3. If elements of X are substitutes for choice function C : 2X → 2X

then C is substitutable.

Proof. As rejection function defined by R(Y ) := Y \C(Y ) is monotone, its complement
U(Y ) defined by U(Y ) := X \R(Y ) is antitone. As partial order of poset P is trivial,
U(Y ) is a lower ideal. Observe that Y ∩ U(Y ) = Y ∩ (X \ R(Y )) = Y \ R(Y ) =
Y \ (Y \ C(Y )) = C(Y ), hence C is indeed substitutable.

Example 3.4. Assume that hospital h has a linear preference order on X(h) and
Ch(X ′) is the qh best elements of X ′(h). (Here, there is no partial order on X, or
if we insist on having one then it is trivial.) It is easy to check that Ch is path
independent and contracts in X(h) are substitutes. To see that Ch is substitutable,
we define U : 2X → 2X by U(X ′) denoting the set of those contracts x of X(h) such
that X ′(h) contains at most qh − 1 contracts that are better than x according to the
preference order of h. Clearly, if X ′ ⊆ X ′′ then U(X ′) ⊇ U(X ′′), so U is antitone. It
is also clear by the definition of U that Ch(X ′) = X ′ ∩ U(X ′), that is, Ch is indeed
substitutable.

It is well-known that our definition of path-independence is equivalent to the “tra-
ditional” one for substitutable choice functions.
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Lemma 3.5. If choice function C : L → L is substitutable and path-independent then
identity C(A ∪B) = C(C(A) ∪ C(B)) holds for any members A,B of L.

Proof. By the antitone property of U , we get

C(A ∪B) = (A ∪B) ∩ U(A ∪B) = (A ∩ U(A ∪B)) ∪ (B ∩ U(A ∪B)) ⊆
(A ∩ U(A)) ∪ (B ∩ U(B)) = C(A) ∪ C(B) ⊆ A ∪B

and path-independence property (1) of C directly gives that C(A ∪ B) = C(C(A) ∪
C(B)).

The following theorem points out an interesting property of substitutable choice
functions.

Theorem 3.6. If choice function C : L(P ) → A(P ) is path-independent and substi-
tutable for some partial order P on a finite ground set X then ≺C is a partial order
on {C(L) : L ∈ L}, that is, on those antichains of P that are in the range of C.

Proof. Assume that A = C(L) for some L ∈ L. This means that A ⊆ Li(A) ⊆ L hence
C(Li(A)) = A by path independence of C. Obviously, C(Li(A∪A)) = C(Li(A)) = A,
hence A �C A, that is, �C is reflexive. Now assume that C(Li(A′)) = A′ also holds.
Clearly, if A′ �C A and A �C A′ then A = C(Li(A ∪A′)) = A′, hence A = A′, so �C

is antisymmetric. Note that we did not use the substitutable property of C so far.
To prove transitivity, assume that C(Li(A′′)) = A′′ and A �C A′ �C A′′ holds.

Define L := Li(A), L′ := Li(A′) and L′′ := Li(A′′). From the assumption we have that
C(L ∪ L′) = A′ and C(L′ ∪ L′′) = A′′, or, as P is finite this is equivalent to saying
that C∗(L ∪ L′) = L′ and C∗(L′ ∪ L′′) = L′′. From the definition and the antitone
property of U∗ we get that

C∗(L ∪ L′ ∪ L′′) = (L ∪ L′ ∪ L′′) ∩ U∗(L ∪ L′ ∪ L′′) =

= (L ∪ L′ ∪ L′′) ∩ U∗(L ∪ L′ ∪ L′′) ∩ U∗(L ∪ L′ ∪ L′′) =

= [((L ∪ L′) ∩ U∗(L ∪ L′ ∪ L′′)) ∪ ((L′ ∪ L′′) ∩ U∗(L ∪ L′ ∪ L′′))] ∩ U∗(L ∪ L′ ∪ L′′) ⊆
⊆ [((L ∪ L′) ∩ U∗(L ∪ L′)) ∪ ((L′ ∪ L′′) ∩ U∗(L′ ∪ L′′))] ∩ U∗(L ∪ L′ ∪ L′′) =

= [C∗(L ∪ L′) ∪ C∗(L′ ∪ L′′)] ∩ U∗(L ∪ L′ ∪ L′′) =

= (L′ ∪ L′′) ∩ U∗(L ∪ L′ ∪ L′′) ⊆ (L′ ∪ L′′) ∩ U∗(L′ ∪ L′′) = C∗(L′ ∪ L′′) = L′′ .

This means that C∗(L ∪ L′ ∪ L′′) ⊆ L′′ ⊆ L ∪ L′ ∪ L′′, hence by path independence
of C∗, we have C∗(L∪L′ ∪L′′) = C∗(L′′) = L′′. So C∗(L∪L′ ∪L′′) = L′′ ⊆ L∪L′′ ⊆
L∪L′∪L′′ and again, path independence implies C∗(L∪L′′) = C∗(L∪L′∪L′′) = L′′.
This follows that C(L∪L′′) = A′′, or, in other words A �C A′′. We conclude that �C

is transitive, so it is indeed a partial order.

The following example shows that our poset-based model is more general than that
of Hatfield and Milgrom in [18].
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Example 3.7. Assume that we have one hospital h and two doctors d and d′. Con-
tracts x3, x4, x5 and x′3, x

′
4 and x′5 represent a 3, 4 and 5 days job for d and d′ re-

spectively. Assume that h has the following preference order on feasible contract sets
(starting from the best):

{x4, x
′
4}, {x5, x

′
3}, {x3, x

′
5}, {x4, x

′
3}, {x3, x

′
4}, {x3, x

′
3}, {x5}, {x′5}, {x4}, {x′4}, {x3}, {x′3} .

So Ch(Y ) is that subset of Y which is the first in the above order. In particular, we have
that Ch(x5, x4, x3, x

′
5, x
′
3) = {x5, x

′
3}, so x4 ∈ R(x5, x4, x3, x

′
5, x
′
3). Hence, if contracts

were substitutes for Ch then R is monotone thus x4 ∈ R(x5, x4, x3, x
′
5, x
′
4, x
′
3) = R(X).

This means that x4 6∈ Ch(X) contradicting Ch(X) = {x4, x
′
4}.

However, the above Ch easily fits in our framework if we define poset P by x3 � x4 �
x5 and x′3 � x′4 � x′5. For any lower ideal L, let U(L) := {x3, x4, x

′
3, x
′
4}∪u(L)∪u′(L)

where u(L) = ∅ if x4 ∈ L and u(L) = {x′3, x′4, x′5} if x4 6∈ L, and similarly u′(L) = ∅
if x′4 ∈ L and u′(L) = {x3, x4, x5} if x′4 6∈ L. As both u and u′ are antitone, U is also
such. Hence choice function C∗ defined by C∗(L) = L ∩ U(L) is substitutable and
one can easily check that C∗ = Ch on lower ideals of P . As Ch is path independent
by definition, our model is indeed a genuine generalization of Hatfield and Milgrom’s.

Note that for a substitutable choice function C∗ : L → L there might be several
antitone functions U : L → L such that C∗(L) = L ∩ U(L) holds for any member L
of L. The next statement shows that there is a canonical one among these antitone
functions and this is in fact the minimal of those. (Actually, there is a maximal such
U as well, but we do not need this fact.) For a choice function C∗ : L → L define
U∗ : L → L by

U∗(L) :=
⋃
{Y ∈ L : Y ⊆ C∗(L ∪ Y )} =

⋃
{Y ∈ L : Y ⊆ U(L ∪ Y )} . (2)

Note that the second equality in (2) holds by the definition of C∗, and this means
that the right hand side defines the same U∗ no matter which U (that defines C∗) we
use.

Observation 3.8. If choice function C∗ : L → L is substitutable then U∗ in (2) is
antitone and for any member L of L we have C∗(L) = L ∩ U∗(L).

Proof. Assume that C∗ is substitutable, and U : L → L is an antitone function such
that C∗(L) = L ∩ U(L) holds for any member L of L. Define

U ′(L) := {Y ∈ L : Y ⊆ C∗(L ∪ Y )} = {Y ∈ L : Y ⊆ U(L ∪ Y )},

that is U∗(L) =
⋃

U ′(L). Observe that if L and L′ are members of L with L ⊆ L′

and Y ∈ U ′(L′) then Y ⊆ U(L′ ∪ Y ) ⊆ U(L∪ Y ) by the antitone property of U . This
means that U ′(L′) ⊆ U ′(L), hence U∗(L′) =

⋃
U ′(L′) ⊆

⋃
U ′(L) = U∗(L), so U∗ is

indeed antitone.
For the second part, observe that C∗(L) ∈ U ′(L) by definition, hence C∗(L) ⊆

U∗(L) and C∗(L) ⊆ L∩U∗(L). Moreover, if Y ∈ U ′(L) then Y ∩L ⊆ Y ⊆ U(L∪Y ) ⊆
U(L), hence Y ∩ L ⊆ L ∩ U(L) = C∗(L) holds for any Y ∈ U ′(L). This follows that

L ∩ U∗(L) = L ∩ (
⋃

U ′(L)) =
⋃
{L ∩ Y : Y ∈ U ′(L)} ⊆ C∗(L),

so L ∩ U∗(L) = C∗(L) as we claimed.

EGRES Technical Report No. 2011-09



Section 3. The economic model 11

There is another useful fact about the antitone function U∗ that defines a path-
independent substitutable choice function.

Observation 3.9. If choice function C∗ : L → L is path-independent and substi-
tutable then U∗(L) = U∗(C∗(L)) holds for any member L of L.

Proof. It follows from the antitone property of U∗ and C∗(L) ⊆ L that U∗(L) ⊆
U∗(C∗(L)). To show the opposite inclusion, assume that Y ∈ U ′(C∗(L)), that is,
Y ⊆ C∗(C∗(L) ∪ Y ) holds. We show that

Y ⊆ C∗(L ∪ Y ) , (3)

that is Y ∈ U ′(L), hence U ′(C∗(L)) ⊆ U ′(L) and U∗(C∗(L)) =
⋃
U ′(C∗(L)) ⊆⋃

U ′(L) = U∗(L).
To prove (3), observe that

C∗(L∪Y ) = (L∪Y )∩U∗(L∪Y ) ⊆ (L∪Y )∩U∗(L) ⊆ (L∩U∗(L))∪Y = C∗(L)∪Y ,

hence C∗(L∪ Y ) ⊆ C∗(L)∪ Y ⊆ L∪ Y . Path-independence of C∗ gives C∗(L∪ Y ) =
C∗(C∗(L)∪Y ) and our assumption Y ⊆ C∗(C∗(L)∪Y ) proves (3) that concludes the
proof.

At this point, we can generalize the notion of stability to our framework. Let D
and H be the sets of doctors and hospitals, respectively and let X denote the set
of possible contracts between doctors and hospitals. Assume that we have given a
(complete) sublattice L of 2X (for example as the set of lower ideals of a partial order
P on X), and let C∗D = (CD)∗ and C∗H = (CH)∗ denote the joint choice functions
of the doctors and of the hospitals, respectively. For members L1 and L2 of L pair
(L1, L2) is called a stable pair if

U∗D(L1) = L2 and U∗H(L2) = L1 (4)

holds. If L = L(P ) for some poset P on X then antichain A of P is called stable if

U∗D(Li(A)) ∩ U∗H(Li(A)) = Li(A) (5)

Later we shall see that stable pairs are closely related to stable antichains. These
latter represent the solution concept of two-sided market situations in our model.
What does it mean that an antichain is stable? The first requirement is that if both
doctors and hospitals select freely from those contracts that antichain A represents
or implies then doctors select CD(A) = Max(Li(A) ∩ U∗D(Li(A)) = Max(Li(A)) = A,
as Li(A) ⊆ U∗D(Li(A)). Similarly follows that CH(A) = A, so hospitals also pick the
same antichain A of contracts. Moreover, if there are some further choices available
that are represented by antichain Y and both the doctors and the hospitals are happy
to pick those (formally, if Y ⊆ CD(Li(A) ∪ Li(Y )) and Y ⊆ CH(Li(A) ∪ Li(Y ))) then

Li(Y ) ⊆ C∗D(Li(A) ∪ Li(Y )) ∩ C∗H(Li(A) ∪ Li(Y )) ⊆
⊆ U∗D(Li(A) ∪ Li(Y )) ∩ U∗D(Li(A) ∪ Li(Y )) ⊆ U∗D(Li(A)) ∩ U∗D(Li(A)) = Li(A) .
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So Y ⊆ CD(Li(A)∪Li(Y )) = CD(Li(A)) = A. This means that we cannot add further
choices to A such that both the doctors and the hospitals will select them.

In the Hatfield-Milgrom model, A ⊆ X is a stable allocation if CD(A) = CH(A) =
A and there exists no hospital h and set of contracts X ′′ 6= Ch(X ′) with X ′′ =
Ch(A∪X ′′) ⊆ CD(A∪X ′′). Assume that A is a feasible allocation, that is, CD(A) =
CH(A) = A and A′ is a blocking set: A′ ⊆ CD(A ∪ A′) and A′ ⊆ CH(A ∪ A′).
This means that there is a hospital h that picks a different assignment from A and
from A ∪ A′. Let X ′′ = Ch(A ∪ A′) denote the choice of this hospital h. Since
X ′′ = Ch(A ∪ A′) ⊆ A ∪ X ′′ ⊆ A ∪ A′, we have X ′′ = Ch(A ∪ X ′′). Because of
X ′′ ⊆ CD(A∪A′) and A = CD(A), each doctor in ∪x∈X′′D(x) has the same choice as
in A∪X ′′, that is, X ′′ ⊆ CD(A∪X ′′). So X ′′ blocks A in the Hatfield-Milgrom sense.
This proves that a stable allocation of contracts in the Hatfield-Milgrom framework
is a stable antichain. It is not difficult to see that the other direction is also true: any
stable antichain is a stable allocation of contracts for the same model with a trivial
underlying partial order.

Example 3.10. Assume we have two hospitals h and h̄ and two doctors d and d′.
Contract x′i represents an i-days job of d′ at h, and x̄j stands for a j-days occupation
for d at h̄, etc. Poset P is defined by relations of type zi � zj for i ≤ j and z ∈
{x, x′, x̄, x̄′}. Let

X := {zi : 1 ≤ i ≤ 5, z ∈ {x, x′, x̄, x̄′}} .

Assume that d is a famous doctor with a high salary expectation, so each hospital
wants to employ her but for a minimum amount of time. Doctor d′ can do the same
job equally well but she is young and hence costs less to the employer. Assume that
each hospital needs 5 days of work and from a given set of options it selects 1 day of
work of doctor d, the maximum amount of work for doctor d′ up to 5 days altogether
and for the missing days it selects d if she is still available. In particular Ch = Ch̄

and for example, Ch(x1, x2, x3, x
′
1, x
′
2, x
′
3) = {x2, x

′
3}, Ch(x1, x2, x3, x

′
1, x
′
2, x
′
3, x
′
4) =

{x1, x
′
4} and Ch̄(x̄1, x̄2, x̄

′
1, x̄
′
2) = {x̄2, x̄

′
2}. Assume moreover that Cd = Cd′ and both

doctors d and d′ look for 5 days of work, and both of them prefer hospital h to h′:
Cd(x1, x2, x3, x̄1, x̄2, x̄3) = {x3, x̄2}.

It is easy to check that all four choice functions are substitutable and path-independent
on L(P ) and moreover U∗H(Li(A)) = U∗H(L) = L1 and U∗D(Li(A)) = U∗D(L) = L2 holds
for

A = {x1, x̄4, x
′
4, x̄
′
1} , L = Li(A) = {x1, x̄1, x̄2, x̄3, x̄4, x

′
1, x
′
2, x
′
3, x
′
4, x̄
′
1},

L1 = {x1, x̄1, x̄2, x̄3, x̄4, x
′
1, x
′
2, x
′
3, x
′
4, x̄
′
1, x̄
′
2, x̄
′
3, x̄
′
4}, and

L2 = {x1, x2, x3, x4, x5, x̄1, x̄2, x̄3, x̄4, x
′
1, x
′
2, x
′
3, x
′
4, x
′
5, x̄
′
1} .

As L1 ∩ L2 = L, it follows that (L1, L2) is a stable pair and A is a stable antichain.

4 Main result

In this section, we prove our main results. Let X be a ground set and define partial
order v on pairs of subsets of X by (A,B) v (A′, B′) if A ⊆ A′ and B ⊇ B′ holds.
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It is clear that for any sublattice L of 2X , v defines a lattice on L × L with lattice
operations (A,B)u(A′, B′) = (A∩A′, B∪B′) and (A,B)t(A′, B′) = (A∪A′, B∩B′).
The following theorem generalizes some results by Hatfield and Milgrom in [18].

Theorem 4.1. Let X be a set of possible contracts between set D of doctors and
H of hospitals and let L be a complete sublattice of 2X . Assume that joint choice
functions C∗D of doctors and C∗H of hospitals are substitutable. Then stable pairs form
a nonempty complete lattice subset of (L × L,v). In particular, there does exist a
stable pair and there is a greatest and a lowest such pair.

Moreover, if L = L(P ) is the lattice of lower ideals of some partial order P = (X,�)
and both joint choice functions CD and CH are substitutatble and path independent
then �CD

and �CH
are opposite partial orders on stable antichains and both of them

define a lattice.

Note that the 2nd part of Theorem 4.1 generalizes the following well-known result
of Blair on the lattice structure of many-to-many stable matchings [5].

Corollary 4.2 (Blair 1988, [5]). If both doctors’ and hospitals’ choice functions are
substitutable and path independent and moreover no two different contract is possible
between the same doctor and hospital then �CD

and �CH
are opposite partial orders

on stable assignments and both of them define a lattice.

There are known proofs for Corollary 4.2 that are based solely on lattices and the
Tarski framework. The first one was probably by Fleiner [9] but there also exist
simplified versions by Jankó [19, 20]. The proof below uses ideas of the latter works.

Our proof of Theorem 4.1 contains a direct proof of Corollary 4.2.

Proof of Theorem 4.1. Define mapping f : L × L → L× L by

f(L1, L2) := (U∗H(L2), U∗D(L1))

where U∗D and U∗H are the functions defined according to (2) from C∗D and C∗H . By
definition, a pair (L1, L2) is stable if and only if f(L1, L2) = (L1, L2). Assume that
(L1, L2) v (L′1, L

′
2), i.e. L1 ⊆ L′1 and L2 ⊇ L′2. Functions U∗D and U∗H are antitone by

Observation 3.8, hence U∗D(L2) ⊆ U∗D(L′2) and U∗H(L1) ⊇ U∗H(L′1), that is, f(L1, L2) v
f(L′1, L

′
2) holds. This means that f is monotone on complete lattice (L×L,v), hence

its fixed points form a nonempty complete lattice subset of (L × L,v) by Theorem
2.2 of Tarski. This proves the first part of Theorem 4.1.

To show the second part of the Theorem in the special case where L = L(P )
and choice functions are path independent, we prove that there is a natural bijection
between stable pairs and stable antichains in such a way that the partial order on
stable antichains induced by the natural bijection and partial order v coincides with
both �CD

and �CH
(the opposite of �CH

). As soon as we do so, the second part of
Theorem 4.1 immediately follows from the first one.

So assume that L = L(P ) and choice functions of doctors’ and hospitals’ are sub-
stitutable and path independent. Let (L1, L2) be a stable pair of lower ideals of P .
Observe that

C∗D(L1) = L1 ∩ U∗D(L1) = L1 ∩ L2 = U∗H(L2) ∩ L2 = C∗H(L2)
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so
A(L1, L2) := CD(L1) = CH(L2) = Max(L) (6)

is an antichain, where L := L1 ∩ L2. From (6) and Observation 3.9 it follows that
U∗D(Li(A(L1, L2))) = U∗D(C∗D(L1)) = U∗D(L1) = L2 and similarly, U∗H(Li(A(L1, L2))) =
U∗H(C∗H(L2)) = U∗H(L2) = L1, hence U∗D(Li(A(L1, L2))) ∩ U∗H(Li(A(L1, L2))) = L1 ∩
L2 = Li(A(L1, L2)), so A(L1, L2) is in indeed stable.

Now assume that A is a stable antichain and define L := Li(A), L1 := U∗H(L)
and L2 := U∗D(L). We show that (L1, L2) is a stable pair such that A = A(L1, L2).
By stability of antichain A, we have that L = U∗D(L) ∩ U∗H(L). This means that
L ⊆ U∗D(L), hence L = L∩U∗D(L) = C∗D(L) and C∗D(L1) = L1∩U∗D(L1) ⊆ L1∩U∗D(L) =
L1∩L2 = L. This means that C∗D(L1) ⊆ L ⊆ L1, and path-independence of C∗D implies
that C∗D(L1) = C∗D(L) = L. Observation 3.9 yields that U∗D(L1) = U∗D(L) = L2. A
similar argument shows that U∗H(L2) = L1. We got that (L1, L2) is indeed a stable
pair, and moreover A(L1, L2) = Max(L1∩L2) = Max(U∗H(L)∩U∗D(L)) = Max(L) = A.

To prove the existence of a natural bijection between stable pairs and antichains,
we only have to show that the stable pair we construct from A(L1, L2) according
to the above paragraph is (L1, L2) for any stable pair (L1, L2). Actually, this sta-
ble pair is (L′1, L

′
2) for L′1 = U∗H(Li(A(L1, L2))) and L′2 = U∗D(Li(A(L1, L2))). We

have seen that C∗D(L1) = Li(A(L1, L2)) = C∗H(L2), so Observation 3.9 implies that
L1 = U∗H(L2) = U∗H(C∗H(L2)) = U∗H(Li(A(L1, L2))) = L′1 and L2 = U∗D(L1) =
U∗D(C∗D(L1)) = U∗D(Li(A(L1, L2))) = L′2. This shows that there is indeed a natu-
ral bijection between stable antichains and stable sets.

To finish the proof by justifying the generalization of Theorem 4.2 by Blair, we
show that v and the natural bijection induces a partial order that coincides with
�CD

and �CH
on stable antichains. So assume now that (L1, L2) and (L′1, L

′
2) are

stable pairs that correspond to stable antichains A and A′. This means that L1 =
U∗H(Li(A)), L2 = U∗D(Li(A)) and L′1 = U∗H(Li(A′)), L′2 = U∗D(Li(A′)) on one hand and
Li(A) = L1 ∩ L2 = C∗D(L1) = C∗H(L2),Li(A′) = L′1 ∩ L′2 = C∗D(L′1) = C∗H(L′2) on the
other hand.

Assume first that (L1, L2) v (L′1, L
′
2), i.e. L1 ⊆ L′1 and L2 ⊇ L′2. Consequently,

(using Lemma 3.5)

C∗D(Li(A) ∪ Li(A′)) = C∗D(C∗D(L1) ∪ C∗D(L′1)) = C∗D(L1 ∪ L′1) = C∗D(L′1) = Li(A′)

and similarly

C∗H(Li(A) ∪ Li(A′)) = C∗H(C∗H(L2) ∪ C∗H(L′2)) = C∗H(L2 ∪ L′2) = C∗H(L2) = Li(A) .

In other words, CD(A∪A′) = A′ and CH(A∪A′) = A, hence A �CD
A′ and A �CH

A′.
Now suppose that A �CD

A′, that is, A′ = CD(A ∪ A′). This follows that Li(A′) =
C∗D(Li(A) ∪ Li(A′)). Observation 3.9 and the antitone property of U∗ yields that

L′2 = U∗D(Li(A′)) = U∗D(Li(A) ∪ Li(A′)) ⊆ U∗D(Li(A)) = L2 . (7)

As (L1, L2) and (L′1, L
′
2) are stable pairs, the antitone property of U∗H implies that

L1 = U∗H(L2) ⊆ U∗H(L′2) = L′1 . (8)
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From (7) and (8), (L1, L2) v (L′1, L
′
2) follows. A similar argument justifies that

(L′1, L
′
2) v (L1, L2) holds whenever A �CH

A′ and this concludes our proof.

Theorem 4.1 points out a close connection between the notion of stability and fixed
points of a monotone function that always exist by Theorem 2.2 of Tarski. We have
already indicated that one can construct the maximal and minimal fixed points by
iterating the monotone function starting from the maximum or from the minimum
element of the underlying lattice, respectively. Probably, it was Fleiner in [8] who first
pointed out that the well-known proposal algorithm of Gale and Shapley that finds
a man-optimal stable marriage scheme can be regarded as an iteration of a certain
monotone mapping. Later, the same observation was made by Hatfield and Milgrom
for a special case of Fleiner’s model. Actually, the same connection also holds in our
present settings that generalize both Fleiner’s and the Hatfield-Milgrom framework.
The generalized Gale-Shapley algorithm for finding a stable antichain works as follows.

Let us denote by 0 and 1 the minimal and maximal elements of L, respectively. It
is straightforward to check that mapping f : L × L → L × L on lattice (L × L,v)
defined by f(L1, L2) := (U∗H(L2), U∗D(L1)) is monotone by the antitone property of U∗D
and U∗H . Clearly, (L1, L2) = (U∗H(L2), U∗D(L1)) is a fixed point if and only if (L1, L2)
is a stable pair, and in case of L = L(P ), it is equivalent to Max(L1 ∩ L2) is a stable
antichain. So to find the maximal (doctor-optimal) stable antichain, we only have to
start to iterate f from the maximal element of L×L to get a v-decreasing sequence
(1, 0) w f(1, 0) w f(f(1, 0)) w . . . . Hence after at most 2h iterations (where h
denotes the hight (the length of the longest chain) of poset L) we arrive to a fixed
point and find the doctor-optimal stable antichain AD. If we start the iteration from
the bottom of the lattice L × L then the v-minimal fixed point at the “end” of
increasing sequence (0, 1) v f(0, 1) v f(f(0, 1)) v . . . represents the hospital-optimal
stable antichain AH . According to Theorem 4.1 for any stable antichain A we have
AH �CD

A �CD
AD and AD �CH

A �CH
AH , so for example CD(Li(A ∪ AD)) = AD

and CH(Li(A ∪ AH)) = AH . This means that if doctors are offered all the choices
that the contracts in some stable antichain represent or imply then from this choice
set doctors pick contracts of AD, and a similar property is true for the hospitals with
respect to AH .

It seems that no one observed so far that the monotone function iteration is more
powerful than the Gale-Shapley algorithm itself that (in its original form) finds the
man-optimal and (with an exchanges of roles) the woman-optimal stable matchings.
The iteration method can be used to calculate the lattice operations on the fixed
points of the monotone function. Consequently, we can construct the �CD

-least and
�CD

-greatest stable antichains that are the least upper and greatest lower bounds of
any given nonempty set of stable antichains. This works as follows: take stable an-
tichains A1, A2, . . . , Ak that correspond to stable pairs (L1, K1), (L2, K2), . . . , (Lk, Kk)
and define L :=

⋃k
i=1 Li and K :=

⋂k
i=1 Ki. By the antitone property of U∗H and U∗D
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we get

U∗H(K) = U∗H(
k⋂

i=1

Ki) ⊃
k⋃

i=1

U∗H(Ki) =
k⋃

i=1

Li = L and

U∗D(L) = U∗D(
k⋃

i=1

Li) ⊂
k⋂

i=1

U∗D(Li) =
k⋂

i=1

Ki = K ,

so (K,L) v (U∗H(K), U∗D(L)) = f(K,L). Now monotonicity of f gives that (K,L) v
f(K,L) v f(f(K,L)) v f(f(f(K,L))) . . . and at most 2h iterations of f this v-
increasing sequence arrives to the v-least stable pair that is v-greater than (K,L).
This fixed point clearly corresponds to the stable antichain that is the least up-
per bound of stable antichains A1, A2, . . . , Ak. A similar argument shows that for
L′ :=

⋂k
i=1 Li and K ′ :=

⋃k
i=1 Ki we have (L′, K ′) w f(L′, K ′) w f(f(L′, K ′)) w

f(f(f(L′, K ′))) w . . . and the “end” of this decreasing sequence corresponds to the
meet of stable antichains A1, A2, . . . , Ak.

5 Conclusion, open problems

In this work, we described an economic model and proved certain results on stable
solutions of the model. We pointed out that our model is a genuine generalization
of previous models described by Fleiner [8, 9] and by Hatfield and Milgrom [18].
We tried to illustrate by examples that our framework is not “just” a mathematical
generalization but also a practically interesting one. Moreover, we think that the
our proofs are more “neat” than the previous ones and they justify that the “right”
approach to the stability concept of Gale and Shapley in case of two-sided economies
is based on Tarski’s fixed point theorem [29]. Previous results along these lines used
the Knaster-Tarski fixed point theorem in [23] where the underlying complete lattice
is 2X , the lattice of all subsets of ground set X. In this work, we need the more general
version as we talk about sublattices of 2X . Note that most of our results remain valid
if we work on a lattice subset of 2X , but this kind of generalization does not seem to
capture any situation with an interesting practical application.

Our motivation for the above work was to find a practically interesting general-
ization of the Hatfield-Milgrom results. We think that at least part of this task is
completed. However, there are at least two important topics of the Hatfield and Mil-
grom paper missing from our work. One is a strategy-proofness result saying that
reporting true preferences is a dominant strategy for doctors if the doctor-optimal
outcome determines the realized contracts. Probably, this result can be generalized
to our model. The second such topic has to do with the law of aggregate demand.
It follows from Fleiner [9], Alkan and Gale [3] and Hatfield and Milgrom [18] that
if choice functions have the property that the number of selected contracts from a
greater choice set cannot decrease then a natural generalization of the rural hospital
theorem holds. (Recall that such choice function is called “increasing” by Fleiner,
“size monotone” by Alkan and Gale and in the Hatfield-Milgrom terminology, it is
said to satisfy the “law of aggregate demand”.) Actually, from Fleiner’s work in [9]
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it follows that a weaker property, namely w-increasingness is enough for the rural
hospital theorem, and there is hope that in our model it is also enough. Answering
these questions is subject of ongoing research.
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