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A Matroid Approach to Stable Matchings with
Lower Quotas

Tamás Fleiner? and Naoyuki Kamiyama??

Abstract

In SODA’10, Huang introduced the laminar classified stable matching prob-
lem (LCSM for short) that is motivated by academic hiring. This problem
is an extension of the well-known hospitals/residents problem in which a hos-
pital has laminar classes of residents and it sets lower and upper bounds on
the number of residents that it would hire in that class. Against the intuition
that stable matching problems with lower quotas are difficult in general, Huang
proved that this problem can be solved in polynomial time. In this paper, we
propose a matroid-based approach to this problem and we obtain the following
results. (i) We solve a generalization of the LCSM problem. (ii) We exhibit
a polyhedral description for stable assignments of the LCSM problem, which
gives a positive answer to Huang’s question. (iii) We prove that the set of sta-
ble assignments of the LCSM problem has a lattice structure similarly to the
ordinary stable matching model.

Keywords: stable marriages; college admission problem, matroids

1 Introduction

The hospitals/residents problem (HR for short) introduced by Gale and Shapley [6]
is a many-to-one extension of the stable matching problem [6, 7, 11]. In this problem,
the two sets that in the stable marriage problem correspond to men and women,
here are the residents and hospitals, respectively. Each hospital has an upper quota
on the number of residents that this hospital can accept. Many properties of stable
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Section 1. Introduction 2

matchings hold for the solutions of the HR problem. For example, any instance of
this problem admits at least one stable matching, and we can efficiently find it.

Recently, several extensions of HR-type problems were studied with lower quotas
for the hospitals. These problems can be motivated by e.g., academic hiring or project-
type classes in universities [1]. In some cases, if the number of students allocated to
some project p is less than the lower quota of p, then project p must to be cancelled [1].
Hamada, Iwama and Miyazaki [8] considered the following variant of the HR problem
with lower quotas. We are given an instance of the HR problem in which preference
lists are complete and each hospital has a lower quota. An assignment must satisfy all
the lower and upper quotas and a solution is a matching with the minimum number of
blocking pairs. The authors gave an inapproximability result and a polynomial-time
solvable case. Biró, Fleiner, Irving and Manlove [1] considered a variant of the HR
problem with lower quotas in which it is possible to close a hospital. More precisely,
their stability definition allows a hospital not to satisfy its lower quota if no resident
is assigned to it. The authors proved the NP-completeness of deciding whether there
exists a stable assignment. Huang introduced the classified stable matching problem in
[9] that is an extension of the HR problem in which each hospital has lower and upper
quotas for subsets of acceptable residents. The author proved the NP-completeness
of the problem of deciding whether there is a stable assignment. Furthermore, the
author proved that if the quota sets form a laminar family for each hospital, then we
can check the existence of a stable assignment in polynomial time. We shall call this
latter problem the laminar classified stable matching problem (LCSM for short).

Huang’s positive result is somewhat surprising since his model is quite natural
and from other results it seems that stable matching problems with lower quotas are
difficult in general. In this paper, we propose a matroid-based approach [3, 4, 5] to
the LCSM problem and we obtain the following results.

• We solve a generalization of the LCSM problem.

• By exhibiting a polyhedral description for stable assignments of the LCSM
problem, we give a positive answer to Huang’s question in [9].

• We prove that similarly to the ordinary stable matchings, the set of stable
assignments of the LCSM problem has a natural lattice structure.

The rest of this paper is organized as follows. In Section 2, we describe our model.
We introduce known results about matroids in Section 3. In Section 4, we describe
our matroid-based algorithm. In Section 5, we point out some interesting properties
of stable assignments of our model. Section 6 concludes this paper.

Before describing our model, we introduce some definitions and notations. Let R+

and Z+ denote the set of non-negative reals and non-negative integers, respectively.
Given a set U and f ∈ RU

+, we write f(X) instead of
∑

x∈X f(x) for a subset X of U
and χX denotes the characteristic function of a subset X of U :

χX(x) :=

{
0 if x 6∈ X
1 if x ∈ X .
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Section 2. Problem Formulation 3

For k ∈ Z+, let [k] = {1, . . . , k}. If X is a subset and x is an element of some ground
set then we denote X ∪ {x} by X + x and X \ {x} by X − x. A family F of subsets
of some ground set is called laminar if X ∩ Y = ∅, or X ⊆ Y , or Y ⊆ X for any
X, Y ∈ F . For graph G = (V,E), vertex v of V and subset F of edge set E, notation
F (v) stands for the set of edges of F incident to v.

2 Problem Formulation

In this section, we introduce the two-sided laminar classified stable matching problem
(2LCSM for short) that is a generalization of the LCSM problem. Roughly speaking,
this is the same problem except that both sides can have quota sets (for the definition
of the LCSM problem, see Section 5).

In the 2LCSM problem, we are given a finite bipartite graph G = (V,E) with
colour classes P and Q. For each vertex v of V , there is a laminar family Cv of subsets
of E(v). Define

CP :=
⋃
v∈P

Cv, CQ :=
⋃
v∈Q

Cv and C := CP ∪ CQ.

We are given lower and upper quota functions l : C → Z+ and u : C → Z+. In the
sequel, we call a member C of C a class.

Let M be a subset of E. We say that M obeys l (resp., u) for a class C of C if

l(C) ≤ |M ∩ C| (resp., |M ∩ C| ≤ u(C)).

We call M feasible for a vertex v of V if M obeys l and u for any class of Cv, i.e.,

l(C) ≤ |M ∩ C| ≤ u(C)

for any class C of Cv. If M is feasible for any vertex of V , then M is an assignment.
Let M be an assignment. In our model, each vertex v has a strict linear order <v

on E(v). We think on this linear order as the preference order of v on its edges, the
most preferred one is the <v-smallest edge. An edge e of E \M is called free for an
endpoint v of e if

M + e is feasible for v, or

there is an edge f of M(v) such that e <v f and M + e− f is feasible for v.

An edge e of E \M blocks M if e is free for both endpoints of e. An assignment M
of E is stable if no edge of E \M blocks M . Then, the 2LCSM problem is to find a
stable assignment if exists.

Remark. In the LCSM problem originally introduced in [9], the notion of blocking
is defined for a group that consists of several vertices of P and one vertex of Q. Thus,
it seems that the definitions of stability in the 2LCSM problem and the LCSM
problem are different. However, in Section 5 we prove that there is a blocking edge if
and only if there is a blocking group, i.e., both definitions of stability are equivalent
in the LCSM problem.
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Section 3. Matroid-Kernels 4

3 Matroid-Kernels

First we recall some basics on matroids. The expert readers may want to skip this
part.

A pair (U, I) is called a matroid if U is a finite set and I is a nonempty family of
subsets of U satisfying the following conditions.

If I ∈ I and J ⊆ I, then J ∈ I. (1)

If I, J ∈ I and |I| < |J |, then I + e ∈ I for some element e of J \ I. (2)

Let M = (U, I) be a matroid. A subset I of U is called independent if I ∈ I. A
subset D of U is a circuit if D /∈ I, but any proper subset D′ of D is independent.
It is known [10] that if I ∈ I and e is an element of U \ I such that I + e /∈ I, then
I+ e contains a unique circuit D such that e ∈ D. Such a circuit D is called the basic
circuit of e (with respect to I inM). Obviously, the basic circuit D of e is the set of
elements f of I + e such that I + e− f ∈ I. For a subset F of U , a subset B of F is
called a base of F if B is an inclusionwise maximal independent subset of F . By (2),
any two bases of a subset F of U have the same size, which is called the rank of F
and denoted by rM(F ). We define the span function spanM : 2U → 2U by

spanM(F ) := {e ∈ U | rM(F + e) = rM(F )}

for a subset F of U . Obviously, F ⊆ spanM(F ).

Lemma 3.1. IfM = (U, I) is a matroid, I, J ∈ I and I ⊆ spanM(J), then |I| ≤ |J |.

Proof. Suppose |I| > |J |. By (2), J + e ∈ I for some element e of I \ J . This
contradicts the fact that e ∈ I ⊆ spanM(J).

LetM1 = (U1, I1), . . . ,Mk = (Uk, Ik) be matroids such that U1, . . . , Uk are pairwise
disjoint. Let U = U1 ∪ · · · ∪ Uk, and define

I := {I ⊆ U | I ∩ Ui ∈ Ii for any i ∈ [k]}.

We call M = (U, I) the direct sum of matroids M1, . . . ,Mk, and it can be easily
checked that M is indeed a matroid.

3.1 Matroid-kernels

A triple M = (U, I, <) is an ordered matroid if (U, I) is a matroid and < is a strict
linear order on U . LetM = (U, I, <) be an ordered matroid. We may not distinguish
between M and a matroid (U, I). An independent set I of I dominates an element
e of U \ I if I + e /∈ I and f < e for any element f of D − e, where D is the basic
circuit of e with respect to I. The set of elements of U dominated by an independent
set I of I is denoted by DM(I).
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3.1 Matroid-kernels 5

Let U = {e1, . . . , en} such that e1 < · · · < en. For a subset F of U , let FM(F ) be
a subset of F obtained by the following greedy algorithm. Define F0

M(F ) = ∅, and
define

F i
M(F ) :=


F i−1
M (F ) if ei /∈ F or

if F i−1
M (F ) + ei /∈ I

F i−1
M (F ) + ei otherwise

for i ∈ [n]. Define FM(F ) := Fn
M(F ).

Let M1 = (U, I1, <1) and M2 = (U, I2, <2) be ordered matroids. A common
independent set K of I1 ∩ I2 is an M1M2-kernel if

DM1(K) ∪ DM2(K) = U \K.

We denote by KM1M2 the set of M1M2-kernels. Let EOM1M2 be the time required
to compute FM1(F ),FM2(F ) for any subset F of U .

Theorem 3.2 (Fleiner [3, 4, 5]). IfM1,M2 are ordered matroids on the same ground
set U , then KM1M2 6= ∅ and we can find an M1M2-kernel in O(|U |EOM1M2) time.

Theorem 3.3 (Fleiner [3, 4, 5]). IfM1,M2 are ordered matroids on the same ground
set and K,L ∈ KM1M2, then spanMi

(K) = spanMi
(L) for any i ∈ {1, 2}.

Define

BM1M2 := {B ⊆ U | B ∩K 6= ∅ for any K ∈ KM1M2},
AM1M2 := {A ⊆ U | |A ∩K| ≤ 1 for any K ∈ KM1M2}

the blocker and anti-blocker of matroid-kernels, respectively. Let

PM1M2 := conv{χK | K ∈ KM1M2}

be the convex hull of characteristic vectors of all K ∈ KM1M2 .

Theorem 3.4 (Fleiner [3, 4, 5]). IfM1,M2 are ordered matroids on the same ground
set U , then

PM1M2 = {x ∈ RU
+ | x(B) ≥ 1 for any B ∈ BM1M2 ,

x(A) ≤ 1 for any A ∈ AM1M2}.

Furthermore, we can solve the separation problem over PM1M2 in time bounded by a
polynomial in the input size and EOM1M2.

For subsets F1, F2 of U , define

F1 ∨ F2 := FM1(F1 ∪ F2) and F1 ∧ F2 := FM2(F1 ∪ F2). (3)

An M1M2-kernel K∗ is M1-optimal if K ∨K∗ = K∗ for any K ∈ KM1M2 .

Theorem 3.5 (Fleiner [3, 4, 5]). IfM1,M2 are ordered matroids on the same ground
set U and ∨,∧ are defined by (3), then a triple (KM1M2 ,∨,∧) is a lattice and we can
find the M1-optimal M1M2-kernel in O(|U |EOM1M2) time.
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4 Algorithm

In this section, we propose a matroid-based algorithm for the 2LCSM problem. In
our algorithm, we first construct ordered matroids MP ,MQ on E so that a subset
M of E is a stable assignment if and only if M is an MPMQ-kernel and M obeys l
for any class of C. After that, we find anMPMQ-kernel K by using a generalization
of the Gale-Shapley algorithm. If K obeys l for any class of C, then the algorithm
concludes that K is a stable assignment. Otherwise, i.e., if K does not obey l for
some class C of C, then the algorithm concludes that there is no stable assignment
whatsoever. More precisely, we prove that in this case no MPMQ-kernel obeys l for
C.

4.1 Definitions

Recall that Cv is laminar for any vertex v of V . A class C of C is a child of a class C ′

of C if C is a proper subset of C ′ and there is no class C◦ of C such that C ( C◦ ( C ′.
Without loss of generality, we can make the following assumptions.

Assumption 1. For any vertex v of V and any edge e of E(v), {e} ∈ Cv.

(We can define l({e}) = 0 and u({e}) = 1.) By Assumption 1, for any class C
of C, either C has no child or children C1, . . . , Ck of C form a partition of C, i.e.
C1 ∪ · · · ∪ Ck = C.

Assumption 2. For any vertex v of V , E(v) ∈ Cv.

(If E(v) 6∈ Cv then we can add E(v) to C with l(E(v)) = l(C1) + l(C2) + . . .+ l(Ck)
and u(E(v)) = |E(v)|, where C1, . . . , Ck are the inclusionwise maximal members of
Cv.)

Assumption 3. If a class C of C has children C1, . . . , Ck then

l(C1) + · · ·+ l(Ck) ≤ l(C) ≤ u(C). (4)

(We can do so because if the second relation does not hold then clearly there exists
no assignment. If the first relations fails then we do not change the problem if we
change l(C) to l(C1) + · · ·+ l(Ck).)

For a class C of C, we denote by CC the set of classes C ′ of C such that C ′ ⊆ C. The
level of a class C of C is the maximum integer k for which there are classes C1, . . . , Ck

of C such that C1 = C, Ci+1 is a child of Ci for any i ∈ [k − 1], and Ck has no child.
For a class C of C, we define a function dC : 2C → Z+ as follows. If C has no child,
then

dC(F ) := max(|F |, l(C))

for a subset F of C. If C has children C1, . . . , Ck, then

dC(F ) := max(dC1(F ∩ C1) + · · ·+ dCk
(F ∩ Ck), l(C))
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4.2 Matroids on edges 7

for a subset F of C. A subset F of a class C of C is deficient on C if the following
conditions hold. If C has no child, then F does not obey l for C. If C has children
C1, . . . , Ck, then

dC1(F ∩ C1) + · · ·+ dCk
(F ∩ Ck) < l(C).

Lemma 4.1. Let C be a class of C.

(a) dC(F + e) ≤ dC(F ) + 1 for any subset F of C and any edge e of C.

(b) dC(F1) ≤ dC(F2) for any subsets F1, F2 of C such that F1 ⊆ F2.

(c) If a subset F of C obeys l for any class of CC, then dC(F ) = |F |.
(d) If a subset F of C is deficient on C, then dC(F + e) = dC(F ) for any edge e of

C.

Proof. Statements (a) to (c) can be easily proved by induction on the level of C.
Statement (d) follows from Statement (a).

4.2 Matroids on edges

For a class C of C, we define a family IC of subsets I of C by

IC := {I ⊆ C | dC′(I ∩ C ′) ≤ u(C ′) for any C ′ ∈ CC}.

The goal of this subsection is to prove that MC = (C, IC) is a matroid for any class
C of C.

Lemma 4.2. If C is a class of C, I, J ∈ IC and |I ∩ C ′| ≥ |J ∩ C ′| for any class C ′

of CC on which I ∩ C ′ is deficient, then dC(J)− dC(I) ≥ |J | − |I|.

Proof. We prove the lemma by induction on the level of C. If the level of C is one,
that is, if C is a singleton then the lemma is straightforward. Assume that the lemma
holds for any class with level at most r for some r ≥ 1 and take a class C of level
r + 1. If I is deficient on C, then |I| ≥ |J | by the condition in the lemma. So,

dC(J)− dC(I) = dC(J)− l(C) ≥ l(C)− l(C) = 0 ≥ |J | − |I|,

where the first equality is due to that I is deficient on C.
Suppose that I is not deficient on C. Let C1, . . . , Ck be the children of C, Ii = I∩Ci

and Ji = J ∩ Ci. For any class C ′ of CCi
, I ∩ C ′ = Ii ∩ C ′ and J ∩ C ′ = Ji ∩ C ′. So,

Ii, Ji ∈ ICi
by I, J ∈ IC . Moreover, by the lemma assumption, |Ii ∩ C ′| ≥ |Ji ∩ C ′|

for any class C ′ of CCi
on which Ii ∩ C ′ is deficient. So, by the induction hypothesis,

dCi
(Ji)− dCi

(Ii) ≥ |Ji| − |Ii|. Thus,

dC(J)− dC(I) = dC(J)−
∑
i∈[k]

dCi
(Ii) ≥

∑
i∈[k]

dCi
(Ji)−

∑
i∈[k]

dCi
(Ii)

≥
∑
i∈[k]

|Ji| −
∑
i∈[k]

|Ii| = |J | − |I|,

where the first equality follows from the fact that I is not deficient on C.
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Lemma 4.3. If C is a class of C, I, J ∈ IC and |I| < |J |, then I + e ∈ IC for some
edge e of J \ I.

Proof. We prove the lemma by induction on the level of C. If the level of C is one,
then the lemma is straightforward as C is a singleton. Assume that the lemma holds
if the level of C is at most r for some r ≥ 1, and take a class C of level r + 1.

Case 1. |I ∩ C∗| < |J ∩ C∗| for some class C∗ of CC on which I ∩ C∗ is deficient.
Let I∗ = I ∩ C∗ and J∗ = J ∩ C∗. By I, J ∈ IC , we have I∗, J∗ ∈ IC∗ . So, by the
induction hypothesis, I∗ + e∗ ∈ IC∗ for some edge e∗ of J∗ \ I∗. Since I∗ is deficient
on C∗, dC∗(I

∗ + e∗) = dC∗(I
∗) by Lemma 4.1(d). ¿From this, we shall prove that

I + e∗ ∈ IC .
Let L = I + e∗ and L′ = L ∩ C ′ for a class C ′ of CC . It suffices to prove that

dC′(L
′) ≤ u(C ′) for any class C ′ of CC . If C ′ ∩C∗ = ∅, then this holds by e∗ /∈ C ′ and

I ∈ IC . If C ′ ∈ CC∗ , then this holds by I∗ + e∗ ∈ IC∗ . If C∗ ⊆ C ′, then this follows
from dC∗(I

∗+ e∗) = dC∗(I
∗) and the fact that dC′(L

′) does not change if dC◦(L
′ ∩C◦)

does not change for any child C◦ of C ′.
Case 2. Assume that |I ∩ C ′| ≥ |J ∩ C ′| for any class C ′ of CC on which I ∩ C ′ is

deficient. By Lemma 4.2, dC(J)− dC(I) ≥ |J | − |I| > 0. This implies that

dC(I + e) ≤ dC(I) + 1 ≤ dC(J) ≤ u(C) (5)

for any edge e of J \ I, where the first inequality follows from Lemma 4.1(a) and the
third from J ∈ IC . Let C1, . . . , Ck be the children of C, Ii = I ∩ Ci and Ji = J ∩ Ci.
By I, J ∈ IC , we have Ii, Ji ∈ ICi

. Let N be the set of i ∈ [k] such that |Ii| < |Ji|.
Notice that N 6= ∅ by |I| < |J |. By the induction hypothesis, for any i ∈ N there is
an edge ei of Ji \ Ii such that Ii + ei ∈ ICi

. So, by (5), I + ei ∈ IC for any i ∈ N .
This completes the proof.

We are now ready to prove the main result of this subsection.

Lemma 4.4. For any class C of C, MC = (C, IC) is a matroid.

Proof. By the first inequality of (4), dC′(∅) = l(C ′) for any class C ′ of CC . So, by the
second inequality of (4), ∅ ∈ IC , i.e., IC 6= ∅. Furthermore, (1) and (2) follows from
Lemmas 4.1(b) and 4.3, respectively.

4.3 Algorithm

In this subsection, we describe our algorithm for the 2LCSM problem. By Lemma 4.4,
ME(v) is a matroid for any vertex v of V . Let MP = (E, IP , <P ) be an ordered
matroid such that (E, IP ) is the direct sum of matroids ME(v) for all vertices v of P
and <P is a strict linear order defined in such a way that e <P f whenever e <v f for
some vertex v of P . For the vertex class Q, we similarly define an ordered matroid
MQ = (E, IQ, <Q). Then, our algorithm, called Algorithm 2LCSM, can be described
as follows. Note that Step 1 of the algorithm is a natural generalization of the proposal
algorithm of Gale and Shapley (with the choice function represented by the greedy
algorithm), described in [5].
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4.3 Algorithm 9

Algorithm 2LCSM

Step 1: Find an MPMQ-kernel K.

Step 2: If K obeys l for any class of C, then we output K, i.e., K is a stable assign-
ment. Otherwise, there is no stable assignment.

Our next goal is to prove the correctness of Algorithm 2LCSM. By Lemma 4.1(c),

a subset M of E is feasible for a vertex v of V if and only if

M(v) ∈ IE(v) and M obeys l for any class of Cv. (6)

Lemma 4.5. A subset M of E is a stable assignment if and only if M is anMPMQ-
kernel and M obeys l for any class of C.

Proof. We first prove sufficiency. Let M be anMPMQ-kernel obeying l for any class
of C. By (6), M is an assignment. Let e be an edge of E \M . Since M is anMPMQ-
kernel, without loss of generality, we can assume that e ∈ DMP

(M). Let v be the
endpoint of e in P . By the definition of MP , M(v) + e /∈ IE(v). So, by (6), M + e is
not feasible for v. Let F be the set of arcs f of M(v) such that M + e− f is feasible
for v. Now we prove that f <v e for any edge f of F . By (6), M(v) + e− f ∈ IE(v),
i.e., f is an edge of the basic circuit of e with respect to M(v) in ME(v) (also, M in
MP ). Since M is an MPMQ-kernel, we have f <P e. So, by the definition of <P ,
we have f <v e.

For the necessity, let M be a stable assignment. By (6), M ∈ IP ∩IQ and M obeys
l for any class of C. Let e be an edge of E \M . Since M is a stable assignment, e is
not free for at least one endpoint v of e. Without loss of generality, we can assume
that v ∈ P . Now we prove that e ∈ DMP

(M). Since M + e is not feasible for v,
M(v)+e /∈ IE(v). Let D be the basic circuit of e with respect to M(v) inME(v) (also,
M in MP ). Now we prove that f <P e for any edge f of D − e. For this, we need
the following claim.

Claim 4.6. M + e− f obeys l for any class of Cv.

Proof. Let M1 = M + e and M2 = M + e− f . Since M(v) ∈ IE(v) and M1(v) /∈ IE(v),
there is a class C of Cv such that e ∈ C and dC(M1 ∩ C) > u(C). By M2 ∈ IE(v),
we have f ∈ C. So, |M2 ∩ C ′| = |M ∩ C ′| ≥ l(C ′) for any class C ′ of Cv such that
C ⊆ C ′. Thus, it suffices to prove that M2 obeys l for any class of CC − C. Assume
that M2 does not obey l for some class C∗ of CC − C. Let M∗

1 = M1 ∩ C∗ and
M∗

2 = M2 ∩ C∗. Since M1 obeys l for C∗, we have f ∈ C∗. So, if we can prove that
dC∗(M

∗
2 ) = dC∗(M

∗
1 ), then dC(M2 ∩ C) = dC(M1 ∩ C) > u(C), which contradicts

the fact that M2(v) ∈ IE(v). Since M2 does not obey l for C∗ but M obeys l for
C∗, we have |M∗

1 | = l(C∗). Moreover, since M1 obeys l for any class of CC∗ , we have
dC∗(M

∗
1 ) = |M∗

1 | by Lemma 4.1(c). So,

l(C∗) ≤ dC∗(M
∗
2 ) ≤ dC∗(M

∗
1 ) = |M∗

1 | = l(C∗),

where the second inequality follows from Lemma 4.1(b) and the fact that M2 ⊆ M1.
This implies that dC∗(M

∗
2 ) = dC∗(M

∗
1 ), which completes the proof.
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Section 5. Properties of Stable Assignments 10

By Claim 4.6 and (6), M + e− f is feasible for v. Since M is a stable assignment,
we have f <v e. So, by the definition of <P , we have f <P e.

Lemma 4.7. If anMPMQ-kernel K does not obey l for a class C of CP but K obeys
l for any class of CC − C, then

spanMP
(K) ∩ C = spanM(C)(K ∩ C).

Proof. Obviously,
spanM(C)(K ∩ C) ⊆ spanMP

(K) ∩ C.

To prove the opposite direction, let e be an edge of (spanMP
(K)∩C)\K and L = K+e.

By the definition of e, dC∗(L ∩ C∗) > u(C∗) for some class C∗ of CP . Recall that K
obeys l for any class of CC − C. So, if C has children C1, . . . , Ck, then

dC1(K ∩ C1) + · · ·+ dCk
(K ∩ Ck) = |K ∩ C|

by Lemma 4.1(c). Thus, since K does not obey l for C, K ∩ C is deficient on C. So,
dC(L∩C) = dC(K∩C) by Lemma 4.1(d). This implies that dC′(L∩C ′) = dC′(K∩C ′)
for any class of C ′ of CP such that C ⊆ C ′. So, by K ∈ IP , we have C∗ ∈ CC , i.e.,
e ∈ spanM(C)(K ∩ C).

Lemma 4.8. If an MPMQ-kernel K does not obey l for some class C of C but K
obeys l for each class of CC − C, then no MPMQ-kernel obeys l for C.

Proof. Without loss of generality, we can assume that C ∈ CP . For any MPMQ-
kernel L,

L ∩ C ⊆ spanMP
(L) ∩ C = spanMP

(K) ∩ C = spanM(C)(K ∩ C),

where the first equality follows from Theorem 3.3 and the second from Lemma 4.7.
Since K ∩ C and L ∩ C are independent sets of IC , |L ∩ C| ≤ |K ∩ C| < l(C) by
Lemma 3.1.

Theorem 4.9. Algorithm 2LCSM can solve the 2LCSM problem in O(|E|3) time.

Proof. Since EOMPMQ
is clearly O(|E|2), Algorithm 2LCSM halts in O(|E|3) time by

Theorem 3.2. If Algorithm 2LCSM outputs a subset M of E, then M is a stable assign-
ment by Lemma 4.5. On the other hand, if Algorithm 2LCSM outputs no assignment,
then there can not be a stable assignment by Lemmas 4.5 and 4.8.

5 Properties of Stable Assignments

In this section, we point out some interesting properties of stable assignments of our
model.

First we exhibit a polyhedral description for stable assignments of the 2LCSM
problem. We use implicit constraints differently to the stable matching polytope
described by Vande Vate [13] and Rothblum [12]. In [9], Huang raised an open problem
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about a polyhedral description for stable assignments of the LCSM problem. Thus,
our result gives a positive answer for this open problem. Let S be the set of stable
assignments of the 2LCSM problem. Let PS be the convex hull of the characteristic
vectors for all stable assignments of S.

Theorem 5.1.

PS = PMPMQ
∩ {x ∈ RE

+ | x(C) ≥ l(C) for any C ∈ C} (7)

= {x ∈ RE
+ | x(B) ≥ 1 for any B ∈ BMPMQ

, (8)

x(A) ≤ 1 for any A ∈ AMPMQ
,

x(C) ≥ l(C) for any C ∈ C}.

Furthermore, we can solve an optimization problem over PS with a linear cost function
in polynomial time.

Proof. Recall that an extreme point of PMPMQ
corresponds to anMPMQ-kernel by

Theorem 3.4. We first consider the case of S = ∅. In this case, it suffices to prove
that PS = ∅. By Lemma 4.8, there is some class of C for which no MPMQ-kernel
obeys. This implies that PS = ∅.

Assume now that S 6= ∅. By Lemmas 4.5 and 4.8, S = KMPMQ
, so it suffices to

prove that PS = PMPMQ
. Lemmas 4.5 and 4.8 imply that any MPMQ-kernel obeys

l for any class of C. This follows that PS = PMPMQ
, proving (7).

Validity of description (8) follows from (7) and Theorem 3.4.

Next we prove that the set S of stable assignments of the 2LCSM problem has a
lattice structure similarly to the ordinary stable matching problem [2]. For subsets
F1, F2 of E, we define

F1 ∨ F2 := FMP
(F1 ∪ F2) and F1 ∧ F2 := FMQ

(F1 ∪ F2). (9)

Recall that if S 6= ∅, then S = KMPMQ
. We call the stable assignment corresponding

to the MP -optimal MPMQ-kernel the P -optimal stable assignment. The P -optimal
stable assignment is a generalization of the “man-optimal” stable matching in the
ordinary stable matching problem. Theorem 3.5 in our settings gives the following
result.

Theorem 5.2. If ∨,∧ are defined by (9), then a triple (S,∨,∧) is a lattice. Moreover,
if S 6= ∅, then we can find the P -optimal stable assignment in O(|E|3) time.

Finally, we prove that the definition of stability in the LCSM problem originally
introduced by Huang [9] and our definition of stability are equivalent. The LCSM
problem is a special case of the 2LCSM problem with Cp = {E(p)}, l(E(p)) = 0 and
u(E(p)) = 1 for any vertex p of P . Namely, a vertex of P is assigned to at most one
vertex of Q. Let M be an assignment and q ∈ Q. A subset B of E(q) is a blocking
group for q with respect to M if it satisfies the following conditions. Let |M(q)| = m,
|B| = n, M(q) = {e1, . . . , em} such that e1 <q · · · <q em and B = {b1, . . . , bn} such
that b1 <q · · · <q bn. Let pi be the endpoint of bi in P . If M(pi) is not empty, then
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we do not distinguish between M(pi) and its element. For a vertex v of V , e ≤v f
means that e <v f or e = f . For convenience, we define e <v ∅ for a vertex v of V
and an edge e of E(v). Then, B is a blocking group for q if it satisfies the following
four conditions.

n ≥ m and B is feasible for q, (10)

bi ≤pi M(pi) for all i ∈ [n], (11)

bi ≤q ei for all i ∈ [m], and (12)

n > m, or there is i ∈ [m] such that bi <pi M(pi) and bi <q ei. (13)

In the LCSM problem, M is stable if there is no blocking group for any vertex of Q.

Theorem 5.3. In the LCSM problem, there is an edge blocking an assignment M of
E if and only if there is a blocking group for a vertex of Q with respect to M .

Proof. Obviously, if there is an edge blocking M , then there is a blocking group for
some vertex of Q. So, we prove the other direction. Assume that there is a blocking
group B for a vertex q of Q. Since B is feasible for q, we have B ∈ IE(q) by (6). If
|B| > |M(q)|, then by (2), M(q) + b ∈ IE(q) for some edge b of B \M(q). So, by (11),
b blocks M .

Assume that the size of any blocking group B for q is equal to |M(q)|. Let |M(q)| =
|B| = m, M(q) = {e1, . . . , em} such that e1 <q · · · <q em and B = {b1, . . . , bm}
such that b1 <q · · · <q bm. By the definition of a blocking group, M(q) \ B is
not empty. Let j be the maximum index i of [m] such that ei ∈ M(q) \ B. Since
ej+1, . . . , em ∈ B and (12), we have bi = ei for any i ∈ {j + 1, . . . ,m}. By (1) and
(2), M(q) + bk − ej ∈ IE(q) for some edge bk of B \M(q). Notice that k ≤ j and
bk ≤q bj <q ej. So, if M(q)+bk ∈ IE(q), then bk blocks M . Suppose M(q)+bk /∈ IE(q).
Since M(q) is feasible for q and M(q)+bk /∈ IE(q), we can prove that M+bk−ej obeys
l for any class of Cq by the same way as Claim 4.6. So, M + bk − ej is an assignment
and bk blocks M by bk <q ej. This completes the proof.

6 Conclusion

In the above work, we generalized previous results of Huang in [9]. We applied known
matroid-generalizations of stable matching related theorems for a particular general-
ization of Huang’s model. We think that an advantage of our approach is that in the
matroid framework, instead of proving each step by a lengthy proof, we only have to
deduce the result from more general ones. This way, our work illustrates two phe-
nomena. On one hand, it shows the applicability of some earlier findings in fairly
general (choice function based) models that may seem far from practical problems at
the first glance. On the other hand, it points out that quite unusual matroids may
bear practical significance: we feel that the “right” approach to Huang’s very natural
model is based on our weird matroids defined in Section 4.2. Though one can prove all
our results without these matroids, it is hard to imagine an appealing argument along
the “traditional” lines. However, there is at least one shortage of our approach of
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reducing the general model to the special case: it does not help so much to find those
practical models where it is applicable, or, in more general, those models, where we
have a chance to prove stability-related theorems. Exploration of such models does
need certain insight that sometimes is ingenious. This insight often represents the
most nontrivial part of the work leading to a positive result. We were lucky that we
could avoid this part of the work. This is the reason that we are indebted to Huang
without whom we probably would never have completed the above work.
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