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Sink-Stable Sets of Digraphs

Dóra Erdős?, András Frank??, and Krisztián Kun? ? ?

Abstract

We introduce the notion of sink-stable sets of a digraph and prove a min-max for-
mula for the maximum cardinality of the union of k sink-stable sets. The results imply
a recent min-max theorem of Abeledo and Atkinson [1] on the Clar number of bipartite
plane graphs and a sharpening of Minty’s coloring theorem [18]. We also exhibit a link
to min-max results of Bessy and Thomassé [3] and of Sebő [19] on cyclic stable sets.

1 Introduction
It is well-known that the problem of finding a stable set of maximum cardinality is NP-
complete in a general undirected graph but nicely tractable, for example, for comparability
graphs. A comparability graph is the underlying undirected graph of a comparability di-
graph, which is, by definition, an acyclic and transitive digraph. Such a digraph can also
be considered as one describing the relations between the pair of elements of a partially
ordered set. A subset S of nodes of a directed graph D = (V,A) is defined to be stable
if S is stable in the underlying undirected graph of D. Dilworth’s theorem [9] states in
these terms that the maximum cardinality of a stable set of a comparability digraph is equal
to the minimum number of cliques covering V . Greene and Kleitman [14] extended this
result to a min-max theorem on the maximum cardinality of the union of k stable sets of a
comparability digraph.

The present investigations have three apparently unrelated sources. In solving a long-
standig conjecture of Gallai [13], Bessy and Thomassé [3] introduced a special type of
stable sets, called cyclic stable sets, and proved a min-max result on the maximum cardi-
nality of a cyclic stable set. They also derived a theorem on the minimum number of cyclic
stable sets required to cover all nodes. These two results were unified and extended by
Sebő [19] who proved a min-max formula for the the largest union of k cyclic stable sets.
His theorem is an extension of the theorem of Greene and Kleitman [14]. Another source
is a recent min-max result of Abeledo and Atkinson on the Clar number of plane bipartite
graphs. The third source is a colouring theorem of Minty [18]. It will be shown that these
remote results have, in fact, a root in common.
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Section 1. Introduction 2

To this end, we introduce and study another special kind of stable sets of an arbitrary
digraph D. A directed cut or dicut of a digraph is a subset of edges entering a subset Z of
nodes provided no edge leaves Z.

A node of D will be called a sink node (or just a sink) if it admits no leaving edges.
A node is a source node if it admits no entering edge. A subset of nodes is a sink set if
each of its elements is a sink. Clearly, a sink set is always stable. We say that a subset S
of nodes of D is sink-stable if there are edge-disjoint directed cuts of D so that reorienting
the edges of these dicuts S becomes a sink set. Obviously, any subset of a sink-stable set is
also sink-stable. A source-stable set is defined analogously. Observe that a subset S ⊆ V
is sink-stable if and only if S is source-stable. Note that a node of a directed circuit never
belongs to a sink-stable set since a dicut and a di-circuit are always disjoint. In the acyclic
digraph with node-set {a, b, c, d} and edge-set {ab, bc, cd, ad} every single node is a one-
element sink-stable set while the stable set {a, c} is not sink-stable. Note that D is not
transitive and hence D is not a comparability digraph.

a d

b c

Figure 1: Every node is a sink-stable set of size 1, while the stable set {a, c} is not sink-
stable.

Proposition 1.1. In a comparability digraph D = (V,A), every stable set is sink-stable.

Proof. Let S be a stable set. We may assume that S is maximal. Let Z denote the set of
nodes of V −S that can be reached along a dipath from S. We claim that no edge can leave
Z. Indeed, if uv does, then v is also reachable form s and hence v must be in S. Since D is
acyclic, v 6= s. Since D is transitiv, there is an edge sv ∈ A, contradicting the stability of
S. It follows that the edges entering Z form a dicut and reorienting this dicut S becomes a
sink set. •

In the sequel, we shall also use a strongly related notion of special stability. For a subset
F of edges of a digraph D, a subset S of nodes is F -stable if S is sink-stable in the digraph
DF arising from D by reversing the elements of F . It can be checked that S is sink-stable
in D if and only of S is F -stable in the digraph arising from D by adding the reverse of
each edge of D where F denotes the set of these reversed edges. It will turn out that in
some cases it is easier to work out a result for sink-stable sets and use then this to derive
the corresponding result for F -stable sets. For example, in characterizing sink-stable and
F -stable sets we shall follow this path. There are other cases when the reverse approach
is more convenient. For example, we shall prove first a min-max formula for F -stable sets
and use then this to derive the corresponding min-max theorem for sink-stable sets.

The property of sink-stability is in NP in the sense that the set of disjoint dicuts whose
reorientation turns a subset S into a sink set is a fast checkable certificate for S to be sink-
stable. Theorem 3.1 will describe a co-NP characterization for sink-stability. We shall also
characterize for any integer k ≥ 2 the union of k sink-stable sets, and as a main result, a
min-max formula will be proved for the largest union of k sink-stable sets.
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Section 1. Introduction 3

The result for k = 1 shall imply a recent min-max theorem of Abeledo and Atkinson
[1] on the Clar number of a 2-connected bipartite plane graph G. Here the Clar number is
defined to be the maximum number of disjoint bounded faces of G whose removal leaves a
perfectly matchable graph. This notion was originally introduced in chemistry for hexago-
nal plane graphs to capture the behaviour of characteristic chemical and physical properties
of aromatic benzenoids.

We will also derive a sharpening of Minty’s colouring theorem [18] by proving a min-
max formula for the minimum number of sink-stable sets to cover V , and show how this
result implies a theorem of Bondy [4] stating that the chromatic number of a strongly con-
nected digraph is at most the length of its largest directed circuit.

Finally, an interesting link will be explored to a recent min-max theorem of Bessy and
Thomassé [3] on so-called cyclic stable sets of strongly connected digraphs, a result that
implied a solution of a conjecture of Gallai. A min-max theorem of Sebő [19] on the largest
union of k cyclic stable sets will also be a consequence.

To conclude this introductory section, we introduce some definitions and notation. For
a function m : V → R (or vector m ∈ RV ), we define a set-function m̃ by m̃(X) =∑

[m(v) : v ∈ X] where X ⊆ V. For a number x, let x+ := max{x, 0}. By a multi-set
Z, we mean a collection of elements of V where an element of V may occur in more than
one copy. The indicator function χ

Z
: V → {0, 1, 2, . . . } of Z tells that χ

Z
(v) copies of an

element v of V occurs in Z. A multiset is sometimes identified with its indicator function
which is a non-negative integer-valued function on V .

Let D = (V,A) be a digraph. For function x : A → R, the in-degree and out-degree
functions %x and δx are defined by %x(Z) =

∑
[x(uv) : uv ∈ A, u ∈ V − Z, v ∈ Z] for

Z ⊆ V and by δx(Z) := %x(V −Z). x is a circulation if %x = δx. A function π : V → R is
often called a potential. For a potential π, the potential difference ∆π : A→ R is defined
by ∆π(uv) := π(v)−π(u) where uv ∈ A. A function arising in this way is called a tension.

By a topological ordering of a digraph, we mean an ordering v1, . . . , vn of the nodes so
that every edge a of D goes forward, that is, a is of type vivj where i < j.

A circuit is a connected undirected graph in which the degree of every node is 2. Typi-
cally, we use the convention for a circuit C that C also denotes the edge-set of the circuit
while V (C) denotes its node-set. A directed graph is also called a circuit if it arises from an
undirected circuit by arbitrarily orienting its edges. Every circuit C of at least three nodes
has two ways to traverse its elements. For a graph or digraph H on node-set V we fix an
ordering of the elements of V . For every circuit C of H with at least three nodes, the three
smallest indexed nodes of C uniquely determine a traversal direction of C called clockwise
direction of C. WhenH is a digraph, the clockwise edges of C will also be called forward
edges while the anti-clockwise edges of C are the backward edges.

In a digraph D = (V,A), by a walk W we mean a sequence (v0, e1, v1, e2, . . . , ek, vk)
consisting of not necessarily distinct nodes and edges where ei is either a vi−1vi-edge (called
forward edge) or a vivi−1-edge (called backward edge). If every edge is forward, we speak
of a one-way walk. If v0 = vk, we speak of a closed walk. If the terms of a closed walk are
distinct apart form v0 and vk, we speak of a simple closed walk. Therefore a simple closed
walk with at least one edge can be identified with a circuit having a specified a traversal
direction. Note that the closed walk consisting of a single node and no edge is not a circuit.
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Section 2. Dicut equivalence and sink-stable sets 4

The number of forward and backward edges of a circuit C of a digraph are denoted
by ϕ(C) and β(C), respectively, while their minimum will be called the η-value of C or
sometimes simply the value of the circuit. The value of C is denoted by η(C). When
η(C) = 0, we speak of a di-circuit. We emphasize the difference between a circuit whose
edges are just directed edges and a di-circuit. An edge of a digraph is cyclic if it belongs
to a di-circuit. For a function x : A → R, ϕx(C) denotes the sum of the x-values over the
forward edges of circuit C while βx(C) is the sum of the x-values over the backward edges.
Clearly, ϕx(C) + βx(C) = x̃(C). For a subset B of edges, ϕB(C) denotes the number of
forward edges of C belonging to B, while βB(C) is the number of backward edges of C
belonging to B.

A function x : A→ R is conservative if c̃(K) ≥ 0 for every di-circuit K. A potential π
is c-feasible or just feasible if ∆π ≤ c.

Acknowledgements Many thanks are due to Zoltán Király for the valuable discussions
in an early phase of this research. The second author received a grant (no. CK 80124)
from the National Development Agency of Hungary, based on a source from the Research
and Technology Innovation Fund. Part of research was done while he visited the Research
Institute for Mathematical Sciences, Kyoto University, 2008, and the Institute of Discrete
Mathematics, University of Bonn, 2011.

2 Dicut equivalence and sink-stable sets
Lemma 2.1 (Gallai, [12]). A cost function c : A → R on the edge-set of a digraph D =
(V,A) is conservative if and only if there is a feasible potential. Moreover, if c is integer-
valued, then π can also be selected to be integer-valued. •

The lemma immediately implies for an integer-valued tension x that there is an integer-
valued potential π for which x = ∆π.

Lemma 2.2. For a subset F ⊆ A of edges of a digraph D = (V,A), the following are
equivalent.

(A) F is the union of disjoint dicuts.

(B) ϕF (C) = βF (C) for every circuit C of D.

(C) There is an integer-valued potential π : V → Z for which χ
F

= ∆π.

Proof. (A)→(B) Let B be a dicut defined by a subset Z of nodes for which δ(Z) = 0 and
C a circuit. If we go around C clockwise, and a node v ∈ V − Z follows a node u ∈ Z,
then vu is an edge of D, while if a node y ∈ Z follows a node x ∈ Z, then xy is an edge
of D. Therefore the edges in C ∩ B are alternately forward and backward edges of C and
hence ϕB(C) = βB(C). Consequently, ϕF (C) = βF (C) holds if F is the union of disjoint
dicuts.

(B)→(C) Let x := χ
F

. Add the opposite edge e′ of each edge e of D and define x(e′) :=
−x(e). Then (B) implies that x is conservative on the enlarged digraph. By Gallai’s lemma,
there is an integer-valued feasible potential π. For every edge e = uv ∈ A and for its
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Section 2. Dicut equivalence and sink-stable sets 5

opposite edge e′ = vu, we have π(v) − π(u) ≤ x(e) and π(u) − π(v) ≤ x(e′) = −x(e)
from which π(v)− π(u) = x(e), and hence χ

F
= ∆π.

(C)→(A) Let π : V → Z be a potential for which χ
F

= ∆π. We may assume that D is
connected and also that the smallest value of π is zero. Let 0 = p0 < p1 < · · · < pq denote
the distinct values of π and let Zi := {v : π(v) ≥ pi} for i = 1, . . . , q. No edge uv can
leave Zi, for otherwise π(v)− π(u) ≤ −1 but ∆π is (0, 1)-valued. Let Bi denote the set of
edges entering Zi. Since ∆π is (0, 1)-valued and D is connected, it follows that pi = i. We
claim that F = ∪Bi. Indeed, if e = uv ∈ F , then π(v)− π(u) = 1 and hence e belongs to
Bi where i = π(v) while if e ∈ A− F , then π(v)− π(u) = 0 and e does not belong to any
Bi. •

Let F ⊆ A be a subset of edges of D = (V,A). We say that a cut B of D is F -clean if
every edge of B in one direction belongs to F and every edge of B in the other direction
belongs to A− F .

Claim 2.3. Let F ′ be the symmetric difference of a subset F ⊆ A and an F -clean cut B.
Then ϕF (C) = ϕF ′(C) for every circuit C of D.

Proof. If we go around C, then the edges of C ∩ B are alternately forward and backward
edges of C. Since B is F -clean, ϕF (C) = ϕF ′(C) follows. •

Two orientations D and D′ of an undirected graph are called dicut equivalent if D′ may
be obtained from D by reorienting a set of disjoint dicuts of D′. Obviously, in this case D
can also be obtained from D′ by reorienting disjoint dicuts of D′. The next lemma shows,
among others, that dicut equivalence is an equivalence relationship.

Lemma 2.4. Let D = (V,A) and D′ = (V,A′) be two orientations of an undirected graph
G. The following are equivalent.

(A1) D and D′ are dicut equivalent.

(A2) D′ can be obtained from D by a sequence of dicut reorientations where each time
a dicut of the current member of the sequence is reoriented. There is a sequence where the
number of dicuts to be reoriented is at most n− 1.

(A3) D′ can be obtained fromD by a sequence of reorienting current source-nodes. (Re-
orienting a source-node v means that we reorient all edges leaving v.) There is a sequence
where the number of reorientations is at most (n− 1)2.

Proof. (A1)→(A2) is immediate form the definition.
(A2)→(A1) Suppose that D′ arises from D as described in (A2) and let D0 =

D, D1, . . . , Dq = D′ be a sequence of digraphs in which each Di arises from Di−1 by
reorienting a dicut Bi−1 of Di−1. Let F ′ denote the subset of those edges of D which are
reversed in D′. We are going to show that F ′ is the union of disjoint dicuts of D. Let F
denote the subset of those edges of D which are reversed in Dq−1. By induction, F is the
union of disjoint dicuts of D. Let B denote the cut of D corresponding to the dicut Bq−1
of Dq−1. Then B is F -clean and F ′ is the symmetric difference of B and F . By Claim 2.3,
ϕF (C) = ϕF ′(C) holds for every circuit of D. This implies that βF (C) = βF ′(C) and, by
Lemma 2.2, F ′ is the union of disjoint dicuts of D.
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Section 2. Dicut equivalence and sink-stable sets 6

(A2)→(A3) It suffices to show that the reorientation of a single dicut can be obtained
by a sequence of reorientations of current source-nodes. To this end, let Z be a subset of
nodes so that no edge enters Z, that is, the set B of edges leaving Z is a dicut. There is
a topological ordering {v1, v2, . . . , vn} so that the nodes of Z precede the nodes outside of
Z, that is, Z = {v1, . . . , vj} where j = |Z|. Reorient first the source-node v1. Then v2
becomes a source-node. Reorient now v2 and continue in this way until the current source-
node vj gets reoriented. Since each edge induced by Z are reoriented exactly twice while
the edges leaving Z are reoriented exactly once, this sequence of reorientations of current
source-nodes results in a digraph that arises from D by reorienting the dicut B.

(A3)→(A2) is obvious. •

Note that an acyiclic tournament D on n nodes shows that the bound (n−1)2 in Property
(C) is sharp when D′ is the reverse of D.

The property of dicut equivalence is in NP in the sense that for two orientations of G it
can be certified by exhibiting the disjoint dicuts. The next result provides a co-NP charac-
terization.

THEOREM 2.5. Two orientations D = (V,A) and D′ = (V,A′) of an undirected graph
G are dicut equivalent if and only if

ϕ(C) = ϕ(C ′) for every circuit C of D (1)

where C ′ denotes the circuit of D′ corresponding to C.

Proof. Since the reorientation of a dicut does not change the number of forward edges of a
circuit, ϕ(C) = ϕ(C ′) holds if D and D′ are dicut equivalent.

Conversely, suppose that ϕ(C) = ϕ(C ′) for every pair of corresponding circuits. Let F
denote the set of edges of D that are oppositely oriented in D′. Then ϕF (C) = βF (C) for
every circuitC ofD and Lemma 2.2 implies that F is the union of disjoint dicuts. Therefore
D′ and D are dicut equivalent. •

A subset L of edges of a digraph D is called circuit-flat or just flat if every cyclic edge
ofD belongs to a di-circuit ofD containing exactly one element of L. We say that L ⊆ A is
a transversal or covering of di-circuits of D if L covers all di-circuits. A subset F ⊆ A of
edges of a digraph D is called a flat covering or flat transversal of di-circuits if F covers
C and every cyclic edge of D belongs to a di-circuit covered exactly once by F .

Lemma 2.6 (Knuth lemma, [16]). Every digraph D = (V,A) admits a flat transversal of
di-circuits. •

Knuth formulated this result only for strongly connected digraphs but applying his ver-
sion to the strong components of D, one obtains immediately the lemma. Knuth’s proof is
not particularly difficult but Iwata and Matsuda [15] found an even simpler proof based on
the ear-decomposition of strong digraphs.
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Section 3. Characterizing the k-union of sink-stable and F -stable sets 7

3 Characterizing the k-union of sink-stable and F -stable
sets

By the k-union of sink-stable sets, we mean a subset U of nodes that can be partitioned
into k sink-stable sets. U is also called k-sink-stable. A k-union of F -stable sets is defined
analogously. In this section, we characterize these types of sets. We start the investigation
with k = 1 since it behaves a bit differently from the case k ≥ 2.

Sink-stability was introduced as an NP-property. The first goal of this section is to show
that sink-stability is also in co-NP. That is, the next result provides an easily checkable tool
to certify that a given stable set is not sink-stable. Recall that η(C) denoted the minimum
of the number of forward edges and the number of backward edges of a circuit C.

THEOREM 3.1. Let D = (V,A) be a digraph. A stable set S ⊆ V is sink-stable if and
only if

|S ∩ V (C)| ≤ η(C) for every circuit C of D. (2)

Proof. If C is a circuit and v ∈ V (C) is a sink node of D, then one of the two edges of
C entering v is a forward edge and the other one is a backward edge of C. Therefore the
value η(C) is as large as the number of sink nodes in V (C). Since reorienting a dicut does
not change η(C), we conclude that every circuit C can contain at most η(C) elements of a
sink-stable set, that is, (2) is necessary.

To see sufficiency, assume the truth of (2). Let s ∈ S be an element of S. We can assume
by induction that the elements of S − s are all sink nodes. If no edge enters s, then the
edges leaving s form a dicut B. By reorienting B, the whole S becomes a sink set and we
are done.

Therefore we can assume that at least one edge enters s. Let T denote the set of nodes u
for which us ∈ A. Let D′ denote an auxiliary digraph arising from D in such a way that we
add to D the opposite of all edges of D entering an element of S − s. Let Z ⊆ V denote
the set of nodes reachable in D′ from s. There are two cases.

Case 1 Z ∩ T 6= ∅, that is, D′ includes a directed path P from s to a node t in T . Now
P + ts is a di-circuit of D′. This di-circuit determines a circuit C of D. If we go around C
in the direction of the edge st, then there are exactly |(S − s) ∩ V (C)| oppositely oriented
edges of C and there are at least |(S − s) ∩ V (C)| edges in the direction of st. Since s
belongs to C, we conclude that |S ∩ V (C)| ≥ η(C) + 1, contradicting (2).

Case 2 Z ∩ T = ∅. Since no edge of D′ leaves Z, no edge of D can leave Z either. In
addition, no edge entering S − s can enter Z, since the opposite of such an edge leaves Z
and belongs to D′. Therefore the set of edges entering Z is a dicut B of D. By reorienting
B, every element of S − s remains a sink node. Furthermore, s becomes a source-node
since the head of each edge leaving s is in Z while the tail of each edge entering s is not in
Z. Finally, by reorienting the edges leaving the source-node s, s also becomes a sink node,
that is, the whole S will be a sink set. •

Note that the proof can easily be turned to a polynomial algorithm that either finds a
circuit C violating (2) or transforms S into a sink set by reorienting a (polynomially long)
sequence of (current) dicuts, showing in this way that S is a sink-stable set.
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Section 3. Characterizing the k-union of sink-stable and F -stable sets 8

How can one characterize k-sink-stable sets when k ≥ 2? Before answering this ques-
tion, we recall a pretty theorem of Minty [18]. By the chromatic number χ(D) of a digraph
D, we simply mean the chromatic number of the underlying undirected graph. Minty pro-
vided an interesting upper bound for χ(D).

THEOREM 3.2 (Minty). Let D = (V,A) be a digraph and k ≥ 2 an integer. If

|C| ≤ kη(C) for every circuit C of D, (3)

then χ(D) ≤ k, that is, the node-set of D can be partitioned into k stable sets. •

The theorem shows that (3) is a sufficient condition for k-colourability. As a sharpening,
we prove that (3) is actually a necessary and sufficient condition for the existence of a
partition of V into k sink-stable sets. In fact, we prove a bit more.

THEOREM 3.3. Let D = (V,A) be a digraph and k ≥ 2 an integer. A subset S ⊆ V is
k-sink-stable if and only if

|S ∩ V (C)| ≤ kη(C) for every circuit C of D. (4)

Proof. We have already observed in Theorem 3.1 that a circuit C can contain at most η(K)
elements of a sink-stable set from which the necessity of (4) follows.

To see sufficiency, consider the digraph D∗ = (V,A ∪ A′) arising from D by adding the
reverse of every edge of D. Define a cost function c on A ∪ A′ as follows. For an edge a
of D, let c(a) = k and for the reverse a′ of a let c(a′) = 0. For a two-element di-circuit K
consisting of edges a and a′ we have |S ∩ V (K)| ≤ 2c̃(K) holds since k ≥ 2. Hence (4) is
equivalent to the following condition.

|S ∩ V (K)| ≤ c̃(K) for every di-circuit K of D∗. (5)

v1

v2

v3

v4

vr

k

k

k k

0

0

0 0

k

0

0

k

Figure 2: Graph D∗(V,A ∪ A′). A′ contains every edge in A in reversed direction. For
every edge a ∈ A : c(a) = k, for every edge a′ ∈ A′ : c(a′) = 0.

Revise now c in such a way that c(e) is reduced by 1 for every edge of D∗ for which
the head is in S. Let c∗ denote the resulting cost function. Observe that the c̃∗-cost of a
di-circuit K of D∗ is equal to c̃(K) minus the number of edges of K having their head in
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Section 3. Characterizing the k-union of sink-stable and F -stable sets 9

S, that is, c̃∗(K) = c̃(K) − |S ∩ V (K)|. Therefore (5) is equivalent to requiring that c∗ is
conservative.

By Lemma 2.1 there is an integer-valued c∗-feasible potential π. Since π can be translated
by a constant, we can assume that the smallest value of π is 0. Let M denote the maximum
value of π and consider the following sets for i = 0, . . . ,M .

Pi := {v : π(v) = i} and Ui := P0 ∪ P1 ∪ · · · ∪ Pi.

Moreover, define for j = 0, . . . , k − 1 the following sets.

Vj := {v : π(v) ≡ j mod k} and Sj := Vj ∩ S.

For each uv ∈ A, we have π(v) ≥ π(u) since c∗(vu) ≤ 0 from which π(u) − π(v) ≤
c∗(vu) ≤ 0. Therefore no edge of D enters any Ui, that is, the set Bi of edges of D leaving
Ui is a dicut of D. Obviously, the sets Sj partition S. We are going to prove that each Sj
is a sink-stable set from which the theorem will follow. To this end, consider the dicuts
Bj, Bj+k, Bj+2k, . . . . These are disjoint since π(v) − π(u) ≤ c∗(uv) ≤ k holds for each
edge uv ∈ A.

Let z ∈ Sj . For any edge uz ∈ A entering z, we have π(z)−π(u) ≤ c∗(uz) = k−1 and
hence uz is not in any of the dicuts Bj, Bj+k, Bj+2k, . . . . For any edge zv ∈ A leaving z,
we have c∗(vz) = −1 from which π(z)−π(v) ≤ c∗(vz) = −1 and hence π(v)−π(z) ≥ 1.
Therefore zv belongs to one of the dicuts Bj, Bj+k, Bj+2k, . . . . Consequently, each node
z ∈ Sj is a sink node in DB where B is the union of the dicuts Bj, Bj+k, Bj+2k, . . . and
DB denotes the digraph arising from D by reversing B. •

It is known that there is a polynomial time algorithm for an arbitrary cost function c
that either finds a c-feasible potential or finds a negative di-circuit. Therefore the proof
of Theorem 3.3 above gives rise to an algorithm that either finds a partition of S into k
sink-stable sets or finds a circuit C of D violating (4).

Remark It is useful to observe that for k = 1 the statement in Theorem 3.3 fails to hold:
in a digraph consisting of two nodes and a single edge, (4) holds automatically since there
is no circuit at all but V is not a stable set. This is why we assumed a priori in Theorem 3.1
that S is a stable set. We also remark that the proof technique of Theorem 3.3 can be used
for k = 1, as well, to obtain an alternative proof for the non-trivial direction of Theorem
3.1 since in the latter case the stability of S is part of the assumption.

Next, we describe a characterization for the union of k F -stable sets. Since F -stability
was defined through sink-stability, it is a straightforward task to translate the theorems
above on characterizing k-unions of sink-stable sets to those on characterizing k-unions
of F -stable sets. The resulting necessary and sufficient condition is a certain inequality
required to hold for all circuits of the digraph. In the applications, however, the digraph
in question is strongly connected, and in this case it turns out that it suffices to require an
inequality to hold only for every di-circuit.

For this simplification, we shall need a lemma. Let F ⊆ A∗ be a subset of edges of a
digraph D∗ = (V,A∗). For a closed walk W , let

σF (W ) := ϕF (W ) + βA∗−F (W )
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where ϕF (W ) and βA∗−F (W ) denote the number of forward F -edges and the backward
(A∗−F )-edges, respectively. Therefore σF (W ) = |F ∩W | for a one-way walk W and, in
particular, for a di-circuit. Recall that F was called flat if every cyclic edge of D∗ belongs
to a di-circuit covered by exactly one element of F .

Lemma 3.4. If F ⊆ A∗ is a flat subset of a digraph D∗ = (V,A∗), then the node-set V (C)
of every circuit C of D∗ consisting of cyclic edges can be covered by di-circuits K1, . . . , Kq

for which
∑

i |F ∩Ki| =
∑

i σF (Ki) ≤ σF (C).

Proof. It is more convenient to prove the more general statement asserting that the node-
set of a closed walk W consisting of cyclic edges of D∗ can be covered by di-circuits
K1, . . . , Kq for which

∑
i |F ∩ Ki| =

∑
i σF (Ki) ≤ σF (W ). We use induction on the

number of backward edges ofW . If this number is zero, that is ifW is a one-way walk, then
by traversing all the edges ofW , we obtain di-circuitsK1, . . . , Kq for which

∑
i |F ∩Ki| =∑

i σF (Ki) = σF (C).
Suppose now that e = uv ∈ A∗ is a backward edge of W . By the hypothesis, e belongs

to a di-circuit K containing one F -edge, that is, there is a directed path P from v to u.
Replace e in the walk W by P and let W ′ denote the closed walk obtained in this way.
Obviously V (W ) ⊆ V (W ′) and W ′ has one less backward edge than W . We claim that
σF (W ′) ≤ σF (W ). Indeed, if e ∈ F , then e contributes to σF (W ) by zero and P contains
no F -edge from which σF (W ′) = σF (W ). If e ∈ A∗ − F , then e contributes to σF (W ) by
1. Furthermore, since P contains one F -edge, we confer σF (W ′) = σF (W ) from which
the lemma follows by induction. •

THEOREM 3.5. Let F ⊆ A∗ be a flat subset of edges of a strongly connected digraph
D∗ = (V,A∗) and let k ≥ 1 be an integer. A subset S ⊆ V is the union of k F -stable sets
if and only if

|S ∩ V (K)| ≤ k|F ∩K| for every di-circuit K of D∗. (6)

In particular, if F is a flat transversal of di-circuits, then the minimum number of F -stable
sets covering S is equal to

max

{⌈
|S ∩ V (K)|
|F ∩K|

⌉
: K a di-circuit of D∗

}
. (7)

Proof. Let D′ = D∗F denote the digraph arising from D∗ by reversing F . Suppose that S
is the k-union of F -stable sets, that is, S is k-sink-stable in D′. Let K be a di-circuit of D∗

and letK ′ denote the corresponding circuit ofD′. Then |S∩V (K)| ≤ kη(K ′) ≤ k|F ∩K|,
from which the necessity of (6) follows.

Suppose now that (6) holds. For every set X of edges of D∗, the corresponding set in D′

will be denoted by X ′.

Claim 3.6. |S ∩ V (C ′)| ≤ kη(C ′) for every circuit C ′ of D′.

Proof. We may assume that η(C ′) = β(C ′) ≤ ϕ(C ′). Let C be the circuit of D∗ corre-
sponding to C ′. By applying Lemma 3.4 toD∗ and to C, we obtain that V (C) = V (C ′) can
be covered by di-circuitsK1, . . . , Kq ofD∗ for which

∑
i |F ∩Ki| =

∑
i σF (Ki) ≤ σF (C).
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By applying (6) to di-circuitsKi, we see that |S∩V (Ki)| ≤ k|F∩Ki|. Hence |S∩V (C ′)| =
|S ∩ V (C)| ≤

∑
i |S ∩ V (Ki)| ≤

∑
i k|F ∩Ki| ≤ kσF (C) = k[ϕF (C) + βA∗−F (C)] =

kβ(C ′) = kη(C ′), as required. •

If k = 1, then every edge of D∗ belongs to a di-circuit K for which |F ∩ K| = 1 and
hence S is stable by (6). Theorem 3.1, when applied to D′, implies that S is sink-stable in
D′, that is, S is F -stable in D∗. If k ≥ 2, then we can apply Theorem 3.3 to D′. By Claim
3.6 above, S is k-sink-stable in D′ = D∗F , showing that S is the k-union of F -stable sets in
D∗. • •

Note that, unlike the corresponding situation with sink-stable sets where we formulated
the characterization of k-unions of sink-stable sets separately for k = 1 and for k ≥ 2, in
the formulation of Theorem 3.5 these cases are not separated. It is the proof of the theorem
where the two cases were handled separately.

Corollary 3.7 (Bondy, [4]). The chromatic number χ(D) of a strongly connected digraph
D∗ = (V,A∗) is at most the length of the longest di-circuit of D∗.

Proof. Let F be a flat transversal of di-circuits ensured by Lemma 2.6. By applying Theo-
rem 3.5 to S := V , we confer that χ(D) ≤ the minimum number of F -stable sets covering
V = max{d |K||F∩K|e : K a di-circuit ofD∗} ≤ max{|K| : K a di-circuit ofD∗}, as required.
•

In the last section, we will point out a link between F -stable sets and so-called cyclic
stable sets introduced by Bessy and Thomassé [3]. It was their paper that first showed how
Bondy’s theorem follows from results on cyclic stable sets.

Remark We showed above how Theorems 3.1 and 3.3 gave rise to Theorem 3.5. But the
reverse derivation is also possible. To obtain, for example, the non-trivial sufficiency part
of Theorem 3.3, suppose that (4) holds. Then every di-circuit of D is disjoint from S. Let
F denote the set of reverse edges of D and consider the strong digraph D+ = (V,A + F ).
Then F is clearly flat since each original edge of D and its reverse edge form a di-circuit
covered once by F .

Let K be a di-circuit of D+. We are going to show that (6) holds. If K consists of
edges of D, that is, if F ∩K = ∅, then S is disjoint from V (K) and hence |S ∩ V (K)| =
0 ≤ k|F ∩ K|. Suppose now that F ∩ K 6= ∅. If |K| = 2, then |K| = 2 ≤ k|F ∩ K|.
Finally, if |K| ≥ 3, then K determines a circuit C of D so that the backward edges of C
correspond to the elements of F ∩ K. Since |S ∩ V (C)| ≤ kη(C) by (4), we obtain that
|S ∩ V (K)| ≤ k|F ∩K|.

By applying Theorem 3.5 toD∗ in place ofD, we obtain that S is the union of k F -stable
sets. By definition a set Z is F -stable if S is sink-stable in D+

F . Since D+
F arises from D by

duplicating each edge in parallel, Z is sink-stable in D, as well, and hence S is indeed the
union of k sink-stable sets.

Theorem 3.1 follows from the special case k = 1 of Theorem 3.5 in an analogous (and
even simpler) way.
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4 Optimal sink-stable and F -stable sets

Our next goal is to investigate sink-stable and F -stable sets of largest cardinality and, more
generally, of maximum weight. The main device to obtain min-max theorems for these
parameters is a result of Gallai.

A theorem of Gallai

Let D = (V,A) be a digraph and c : A → Z+ a non-negative integer-valued function.
The c-value of a circuit C is the sum of the c-values of the edges of C, that is, c̃(C). We
say that a multiset of nodes is c-independent if it contains at most c̃(K) nodes of every di-
circuitK ofD. A multiset can be identified with a non-negative integral vector x : V → Z+

and then the c-independence of x means that x̃(V (K)) ≤ c̃(K) for every di-circuit K.
Let w : V → Z+ be a weight function. For a function y ≥ 0 defined on the set of

di-circuits of D, we say that y covers w if∑
[y(K) : v ∈ V (K), K a di-circuit] ≥ w(v) for every v ∈ V . (8)

A circulation z ≥ 0 is said to cover w if %z(v) ≥ w(v) holds for every node v ∈ V . The
following lemma describes a simple and well-known relationship between circulations and
families of di-circuits covering w.

Lemma 4.1. If y ≥ 0 is a function on the set of di-circuits covering w, then the function
z : A → Z+ defined by z(e) :=

∑
[y(K) : K a di-circuit and e ∈ K] is a non-negative

circulation covering w for which cz =
∑

[y(K)c̃(K) : K a di-circuit]. Furthermore, if y is
integer-valued, then so is z. Conversely, a circulation z ≥ 0 covering w can be expressed
as a non-negative linear combination of di-circuits, and if z =

∑
y(K)χ(K) is such an

expression, then y covers w and cz =
∑

[y(K)c̃(K) : K a di-circuit]. Furthermore, if z is
integer-valued, then y can also be chosen integer-valued. •

The following result of Gallai [12] appeared in 1958. We cite it in its original form
because the literature does not seem to know about it.

(3.2.7) SATZ. Ist Γ endlich und gilt ψ[k] ≥ 0 für jeden positiven Kreis k gibt ist ferner
zu jedem Punkt X mit ϕ(X) > 0 einen positiven Kreis, der X enthält, so ist das Minimum
der ψ-Werte der punktfüllende positiven Kreissysteme gleich dem Maximum der ϕ-Werte
der kreisaufnehmbaren Punktsysteme.

That is: If Γ is finite and ψ[k] ≥ 0 holds for every positive circuit, and if, further-
more, every point X with ϕ(X) > 0 is included in a positive circuit, then the minimum ψ-
value of point-covering positive circuit-systems is equal to the maximum ϕ-value of circuit-
independent point-systems.

Here ψ and ϕ are integer-valued functions on the edge-set and on the node-set, respec-
tively, of the digraph Γ, and a positive circuit means a di-circuit. In the present context, we
use functions c and w in place of ψ and ϕ, respectively, and the theorem can be formulated
as follows.
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THEOREM 4.2 (Gallai, Theorem (3.2.7) in [12]). Let c : A → Z+ and w : V → Z+

be non-negative functions on the edge-set and on the node-set, respectively, of a digraph
D = (V,A), and assume that for each v ∈ V with w(v) > 0 that v belongs to a di-circuit.
Then the minimum total sum of c-values of a system of di-circuits covering w is equal to the
maximum w-weight of a c-independent multiset of nodes of D, or more formally, to

max{wz : z ∈ ZV+, z c-independent}. (9)

Note that in the original version cited above only the conservativeness of c (= ψ) was
assumed and not its non-negativity. But for a conservative c there is a feasible potential π
and then the cost function cπ defined by cπ(uv) = c(uv)− π(v) + π(u) is non-negative for
which c̃(K) = c̃π(K) holds for every di-circuit K. That is, the theorem for conservative c
follows from its special case for non-negative c.

In the special case of Theorem 4.2, when w is (0, 1)-valued, that is, when w := χ
U

for a
subset U ⊆ V of nodes, we have the following.

Corollary 4.3. Let U ⊆ V be a specified subset of nodes belonging to some di-circuits.
The minimum total c-value of di-circuits covering U is equal to the maximum number of
(not-necessarily distinct) c-independent elements of U . •

For completeness, we outline a proof of Theorem 4.2. LetQ denote the di-circuits versus
nodes incidence matrix of a digraph D. That is, Q is a (0, 1)-matrix with rows correspond-
ing to the di-circuits and columns corresponding to nodes. An entry corresponding to a
di-circuit C and a node v is 1 or zero according to whether v is in V (C) or not. A funda-
mental theorem of Edmonds and Giles [10] states that a polyhedron R is integral provided
thatR is described by a totally dually integral system and both the constraint matrix and the
bounding vector is integral. Combined with the l.p. duality theorem, the following result is
equivalent to Theorem 4.2.

THEOREM 4.4. Let Q be the di-circuits versus node incidence matrix of a digraph D.
Let c̃ denote a vector the components of which correspond to the rows of Q (that is, to the
di-circuits of D) and the value of a component corresponding to a di-circuit K is c̃(K).
Then the linear system

{Qx ≤ c̃, x ≥ 0} (10)

is totally dual integral.

Proof. Let w be an integer-valued function on V . Consider the following linear program:

min{
∑

[y(K)c̃(K) : K a di-circuit] : yQ ≥ w, y ≥ 0}. (11)

What we have to show is that this program has an integral-valued optimum if it has an
optimum at all. We may assume that w is non-negative. We may also assume that each
v ∈ V with w(v) > 0 belongs to a di-circuit for otherwise (11) has no feasible solution at
all.

By Lemma 4.1, it suffices to show that the linear system min{cz : z ≥ 0 a circulation
covering w} has an integer-valued optimum. But this follows from the integrality of the cir-
culation polyhedron by appplying the standard node-duplicating technique. Indeed, replace
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each node v of D by nodes v′ and v′′, replace each edge uv ∈ A by a new edge u′v′′ (with
lower capacity 0 and cost c(uv)), and finally add a new edge v′′v′ (with lower capacity w(v)
and cost 0) for every original node v ∈ V . In the resulting digraph D′, a feasible circula-
tion z′ defines a non-negative circulation z of D which covers w (that is, %z(v) ≥ w(v) for
v ∈ V ) and c′z′ = cz. •

With some work, this proof can be used to turn a min-cost circulation algorithm to one
that computes the optima in Theorem 4.2 in polynomial time.

On a solved conjecture of Gallai

Before turning to F -stable sets, we make a detour and show how Gallai’s theorem from
1958 and and Knuth’s lemma from 1974 imply immediately the following conjecture of
Gallai [13] that was first proved by Bessy and Thomassé [3]. Recall that α(D) denotes
the stability number of D while γ(D) denotes the minimum number of di-circuits fo D
covering V .

THEOREM 4.5 (Bessy and Thomassé). Let D = (V,A) be a strongly connected digraph
with at least two nodes. Then γ(F ) ≤ α(D), that is, V can be covered by α(D) di-circuits.

Proof. By Lemma 2.6 D has a flat covering F of di-circuits. By applying Corollary 4.3
to U := V and to c := χ

F
, we obtain that the minimum total c-weight γF of di-circuits

covering V is equal to the maximum number αF of c-independent elements of V . Since
F covers every di-circuit K, the c-weight of K is at least 1 and hence γ ≤ γF . Since F
is a flat covering of di-circuits, every node belongs to a di-circuit of c-cost 1. Therefore
a c-independent multiset S is actually a set. The c-independence also implies that S is a
stable set. Hence γ(D) ≤ γF = |S| ≤ α(D). •

Note that the same argument shows that the following extension also holds.

THEOREM 4.6. Let D = (V,A) be a strongly connected digraph and U a subset of nodes
of D. Then U can be covered by αU di-circuits where αU denotes the maximum cardinality
of a stable subset of U . •

We note that Cameron and Edmonds [5] (not knowing of the paper of Gallai [12]) proved
an extension of Theorem 4.4 asserting that the linear system {Qx ≤ c̃} is actually box-TDI
(see, Theorem 6.1 below). Based on this, they derived Theorem 4.5 in [6].

Optimal F -stable and sink-stable sets

Let F be a flat subset of edges of a strongly connected digraph D∗ = (V,A∗). Here F is
not necessarily a transversal of di-circuits. LetQ denote the di-circuit versus node incidence
matrix of D∗ and let cF be a vector whose components correspond to the di-circuits of D∗

and cF (K) is the F -value |F ∩K| of K for a di-circuit K.

THEOREM 4.7. Let F be a flat subset of edges of a strongly connected digraph D∗ =
(V,A∗) and let w : V → Z+ be an integer-valued weight-function on the node-set of D∗.
The maximum w-weight of an F -stable set of D∗ is equal to the minimum total F -value of
di-circuits of D∗ covering w. For a given subset U ⊆ V , the maximum cardinality of an
F -stable subset of U is equal to the the minimum total F -value of di-circuits ofD∗ covering
U .
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Proof. Apply Gallai’s theorem to cF . Since every edge of D∗ belongs to a di-circuit K for
which cF (K) = 1, a cF -independent multiset of nodes of D∗ is actually a set S ⊆ V , and
by Theorem 3.5 S is F -stable. Therefore the result is a direct consequence of Theorem 4.2.
The second half of the theorem follows by applying the the first one to w := χ

U
. •

THEOREM 4.8. Let D = (V,A) be a digraph with no isolated nodes and let w : V → Z+

be an integer-valued weight-function on the node-set of D. The maximum w-weight of a
sink-stable set of D is equal to the minimum total value of circuits and edges of D covering
w where the value of a circuit C is η(C) while the value of an edge is 1. For a given subset
U ⊆ V , the maximum cardinality of a sink-stable subset of U is equal to the minimum total
value of circuits and edges of D covering U .

Proof. For a sink-stable subset S, an edge can cover at most one element of S. In Theorem
3.1 we already observed that a circuit C can cover at most η(C) elements of a sink-stable
set from which max ≤ min follows.

The proof of the reverse direction max ≥ min can be made separately for the components
of D, and hence we can assume that D is weakly connected. Let D∗ = (V,A ∪ A′) be the
digraph arising from D by adding the reverse of each edge of D. Here A′ denotes the set
of reverse edges of D. D∗ is clearly strongly connected and F := A′ is flat since each edge
e ∈ A and its reverse e′ ∈ A′ form a 2-element di-circuit covered once by F .

There are two types of di-circuits ofD∗. Type I is of formK = {e, e′}where e = uv ∈ A
and e′ = vu ∈ A′, and in this case c̃F (K) = 1. A Type II di-circuit K arises from a circuit
C of D by reversing its forward edges or by reversing its backward edges. Therefore if K
is such a di-circuit of D∗, then the reverse ~K of K is also a di-circuit of D∗, and η(C) =

min{c̃F (K), c̃F ( ~K)}. For notational convenience, we will assume that η(C) = c̃F (K).
Let S be a sink-stable set of D with maximum w-weight. Since D∗F is a digraph that

can be obtained from D by doubling each edge of D in parallel, a subset Z of nodes is
sink-stable in D if and only of Z is F -stable in D∗. Therefore S is an F -stable set in D∗ of
maximum w-weight.

In order to prove max ≥ min, we are going to show that there is a family of circuits and
edges of D covering w for which the total value is w̃(S). Since S is a maximum w-weight
F -stable set, Theorem 4.7 implies the existence of a family C∗ of di-circuits of D∗ covering
w for which the total F -value is w(S). As mentioned above, a di-circuit in D∗ of Type I
determines an edge of D while a di-circuit K of Type II determines a circuit C of D for
which η(C) = cF (K). Therefore C∗ defines a family of edges and circuits of D covering w
for which the total value is the total cF -value of C∗, that is w̃(S), and hence the requested
direction max ≥ min follows.

The second half of the theorem follows by applying the the first one to w := χ
U

. •

Remark One may be wondering whether the minimal covering of U in Theorem 4.8 can
perhaps be realized only by circuits, without using edges. The following example shows,
however, that the use of edges is anavoidable. Let U := V := {a, b, c, d, e} and let the
edges of D be {ab, ac, ad, eb, ec, ed}. In this digraph S = {b, c, d} is a largest sink-stable
set. On the other hand, each circuit C of D has 4 edges and η(C) = 2. Therefore the total
value of the best covering of V by only circuit is 4. An optimal covering consists of a circuit
with edge-set {ab, be, ec, ca} and of an edge ad with total value 3.
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Figure 3: The largest sink-stable set in this graph is S = {b, c, d}. An optimal covering
in this graph consist of a circuit C = {ab, be, ec, ca} and an edge ad, the total value of this
covering is 3.

5 Clar number of plane bipartite graphs
As an application of Theorem 4.7, we derive a recent min-max theorem of Abeledo and
Atkinson [1] on the Clar number of bipartite plane graphs. LetG = (S, T ;E) be a perfectly
matchable 2-connected bipartite plane graph. The expression plane graph means that G is
planar and we consider a fixed embedding in the plane. Note that the embedding subdivides
the plane into regions, among them exactly one is unbounded. The bounded regions will be
referred to as faces of G. Since G is 2-connected, each region is bounded by a circuit of G.

We call a set of faces resonant if the faces are disjoint and their deletion leaves a perfectly
matchable graph. Here the deletion of a face means that we delete all the nodes of the circuit
bounding the face. The Clar number of G is defined to be the maximum cardinality of a
resonant set of faces. For example, if G is the graph of a cube, then the Clar number is
2, independently of the embedding. It is not difficult to find an example where the Clar
number does depend on the embedding. This notion was originally introduced in chemistry
by E. Clar [8] for hexagonal graphs (where each face is a 6-circuit) to capture the behaviour
of characteristic chemical and physical properties of aromatic benzenoids.

Before stating the result of Abeledo and Atkinson on the Clar number, we introduce
some notation that will be used in the theorem and also in its proof. With the bipartite
graph G = (S, T ;E), we associate a digraph D = (V,A), where V = S ∪ T , arising
from G by orienting all edges from S to T . Clearly, D is acyclic. A subset of edges of
D corresponding to a subset X of edges of G will be denoted by ~X . For a digraph H and
subset F of its edges, HF denotes the digraph arising from H by reversing F . For a subset
Z ⊆ V , the set B = ∆(Z) of edges connecting Z and V − Z will be called a cut of G
determined by Z. We call such a cut of G feasible if it determines a dicut in the associated
digraphD. The value val(B) ofB is defined to be the absolute value of |S∩Z|−|S∩T |. It
is an easy exercise to see that val(B) = dM(Z) = |M∩B| for an arbitrary perfect matching
M of G. In particular, this means for a feasible cut ∆(Z) that dM(Z) is independent of the
choice of perfect matching M .

Let G∗ = (V ∗, E∗) denote the planar dual of G. There is a one-to-one correspondence
between the regions ofG and the nodes ofG∗ and also there is a one-to-one correspondence
between the edges ofG and the edges ofG∗. We use the convention that for a subsetX ⊆ E
of edges, the corresponding subset of edges of G∗ is denoted by X∗. It is well-known that
X is a circuit of G if and only if X∗ is a bond of G∗. (A bond of a graph is a minimal cut.
A useful property is that a cut B = ∆(Z) of a connected graph is a bond if and only if
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both Z and V − Z induce a connected subgraph, and another one is that every cut can be
partitioned into bonds.)

We also need the planar dual digraph D∗ = (V ∗, A∗) of D. This is an orientation of G∗

in such a way that, for a pair e ∈ E and e∗ ∈ E∗ of corresponding edges, if the directed
edge ~e of D is represented in the plane by a vertical line segment oriented downward, then
the corresponding horizontal dual edge ~e∗ of D∗ is oriented from right to left. It follows
that a subset X of edges of D is a minimal dicut if and only if the corresponding subset X∗

of edges of D∗ is a di-circuit. Similarly, a subset X of edges of D ~M is a di-circuit if and
only if the corresponding set X∗ of edges of D∗~M∗ is a minimal dicut of D∗~M∗ . In particular,
the circuit bounding a region of D ~M is a di-circuit oriented clockwise if and only if the
corresponding node of D∗~M∗ is a sink node. Since D is acyclic, D∗ is strongly connected.
Since each node in T determines a dicut of D, each edge of D belongs to a dicut covered
exactly once by ~M . Therefore ~M∗ is flat in D∗. Note, however, that ~M need not cover all
dicuts of D and hence ~M∗ is not necessarily a transversal of di-circuits of D∗.

THEOREM 5.1 (Abeledo and Atkinson). Let G = (S, T ;E) be a 2-connected perfectly
matchable plane bipartite graph. The Clar number of a G is equal to the minimum total
value of feasible cuts intersecting all faces of G.

Proof. Let M be an arbitrary perfect matching of G. Consider the digraph D∗F which is the
planar dual digraph of D ~M , where F := ~M∗.

Lemma 5.2. A set S of disjoint faces of G is resonant if and only if the corresponding set
S of nodes of D∗ is F -stable.

Proof. By definition, S is resonant if there is a perfect matching M ′ of G so that the bound-
ing circuit of each member of S is M ′-alternating. This is equivalent to requiring that these
bounding circuits are directed circuits in D ~M ′ . By reorienting such a di-circuit if neces-
sary, we can assume that the bounding circuits of the members of S are clockwise oriented
di-circuits in D ~M ′ . Since the symmetric difference of two perfect matchings consists of
disjoint alternating circuits, D ~M ′ arises from DM by reorienting disjoint di-circuits of DM .
Therefore S is resonant if and only if it is possible to reorient disjoint di-circuits of D ~M

so that the members of S will be bounded by clockwise oriented di-circuits. This is, in
turn, equivalent to requiring that it is possible to reorient disjoint dicuts of D∗~M∗ so that the
members of S becomes sink nodes, that is, S is an F -stable set of D∗. •

By Lemma 5.2, Theorem 4.7 when applied to D∗ = (V ∗, A∗) and to F := ~M∗ implies
the theorem. • •

In the last section, we extend the theorem of Abeledo and Atkinson by deriving a min-
max formula, for the maximum number of faces that can be partitioned into k resonant
sets.

6 Optimal k-union of sink-stable and F -stable sets
In the preceding section, a result of Gallai was used to prove a min-max formula for the
maximum w-weight of the k-union of sink-stable sets and F -stable sets for the special case

EGRES Technical Report No. 2011-06
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k = 1. Now we solve the case k ≥ 2 with the help of an extension of Theorem 4.2, due to
Cameron and Edmonds [5].

THEOREM 6.1 (Cameron and Edmonds). Let Q be the di-circuits versus nodes incidence
matrix of a digraph D. Let f : V → Z+ ∪ {−∞} and g : V → Z+ ∪ {∞} be functions for
which f ≤ g. The linear system {Qx ≤ c̃, f ≤ x ≤ g} is TDI. •

In the special case when f ≡ 0 and g ≡ 1, Theorem 6.1 and the l.p. duality theorem
immediately gives rise to the following min-max formula.

THEOREM 6.2. Let D∗ = (V,A∗) be a digraph in which every node belongs to a di-
circuit and let K∗ denote the set of di-circuits of D∗. Let w : V → Z+ and c : A∗ → Z+ be
functions. Then

max {w̃(S) : S ⊆ V, |S ∩ V (K)| ≤ c̃(K) for every K ∈ K∗} = (12)

min
y:K∗→Z+

∑
K∈K∗

y(K)c̃(K) +
∑
v∈V

w(v)−
∑

K∈K∗,v∈V (K)

y(K)

+ . • (13)

We apply this result in the special case when c is the indicator function of a flat subset of
edges.

THEOREM 6.3. Let F be a flat subset of edges of a strongly connected digraph D∗ =
(V,A∗) with |V | ≥ 2 and let K∗ denote the set of di-circuits of D∗. Let k ≥ 2 be an integer
and w : V → Z+ an integer-valued weight-function on the node-set of D∗. The maximum
w-weight of the k-union of F -stable sets of D∗ is equal to

min
y:K∗→Z+

k ∑
K∈K∗

y(K)|F ∩K|+
∑
v∈V

w(v)−
∑

K∈K∗,v∈V (K)

y(K)

+ . (14)

In particular, for a specified subset U of nodes, the maximum cardinality of the k-union of
F -stable subsets of U is equal to

min
K⊆K∗

{
k
∑
K∈K

|F ∩K|+ |U − ∪(V (K) : K ∈ K)|

}
. (15)

Proof. Apply Theorem 6.2 to c′ := kχ
F

and observe that (13) transforms to (14). By
Theorem 3.5, a subset S of nodes satisfies the properties in (12) for c′ if and only if S is the
k-union of F -stable sets. Hence the first part is a consequence of Theorem 6.2. The second
part follows by applying the first one in the special case w := χ

U
. •

In the special case when F is a flat transversal of di-circuits, Theorem 6.3 is equivalent to
a min-max result of Sebő [19] concerning the maximum weight of k-unions of cyclic-stable
sets. Cyclic stability was introduced by Bessy and Thomasse [3] who proved a min-max
result on the maximum cardinality of a cyclic stable set. See the last section for details.
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Corollary 6.4 (Greene and Kleitman, [14]). In a transitive and acyclic digraph D′ =
(U,A′) the maximum cardinality of the union of k stable sets is eqaul to min{k

∑
i |V (Pi)|+

|U − ∪iV (Pi)| : {P1, . . . , Pq} a set of disjoint di-paths}.

Proof. We prove only the non trivial direction max ≥ min. Extend D′ by a new node
z, add a pair of opposite edges zu and uz for every u ∈ U . Let D = (V,A) denote the
resulting digraph and let F be the set of edges entering z. Then F is a flat transversal of
di-circuits of D. Apply the second half of Theorem 6.3. Observe that each di-circuit of D
contains exactly 1 F -edge and that the di-circuits in the optimal covering of U can be made
pairwise disjoint in U by the transitivity of D′ and hence their restrictions to U are disjoint
di-paths of D. •

It should be noted that the Greene-Kleitman theorem was derived by Cameron and Ed-
monds directly from Theorem 6.1.

We show now how Theorem 6.3 gives rise to a min-max formula for the maximum weight
of the k-union of sink-stable sets.

THEOREM 6.5. Let D = (V,A) be a digraph with no isolated nodes, k ≥ 2 an integer,
and w : V → Z+ an integer-valued weight-function on the node-set of D. Then

max{w̃(S) : S ⊆ V a k-sink-stable set} =

min
y:CD→Z+

k ∑
C∈CD

y(C)η(C) +
∑
v∈V

w(v)−
∑

C∈CD,v∈V (C)

y(C)

+ (16)

where CD denotes the set of circuits ofD. More concisely, the linear system {Qx ≤ kη, 0 ≤
x ≤ 1} is totally dual integral where Q is the circuit versus node incidence matrix of D
while η is a vector the component of which corresponding to a circuit C is η(C).

Proof. Let S be a k-sink-stable set. By Theorem 3.3, |S ∩V (C)| ≤ kη(C) for every circuit
C of D and hence z = χ

S
satisfies the primal constraints {Qx ≤ kη, 0 ≤ x ≤ 1}. The

trivial direction max ≤ min of the l.p. duality theorem implies that max ≤ min holds in
the theorem.

To prove the reverse direction, consider the digraph D∗ = (V,A ∪ A′) arising from D
by adding the reverse of each edge of D. Here A′ denotes the set of reverse edges of D.
Clearly, F := A′ is a flat subset since the pair {a, a′} is a two-element di-circuit for every
a ∈ A.

Claim 6.6. A subset S is a sink-stable set of D if and only if S is an F -stable set of D∗.

Proof. Let D2 be the digraph arising from D by duplicating in parallel each edge of D.
Clearly, S is sink-stable in D if and only if it is sink-stable in D2. On the other hand, D2

can be obtained from D∗ by reorienting F = A′, and hence S is sink-stable in D2 if and
only if it is F -stable in D∗. •

It follows from the claim that a subset S of nodes is the k-union of sink-stable sets of
D if and only if it is the k-union of F -stable sets of D∗. By Theorem 6.3, the maximum
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w-weight of a k-union of F -stable sets of D∗ is equal to

min
y:K→Z+

k ∑
K∈K∗

y(K)|F ∩K|+
∑
v∈V

w(v)−
∑

K∈K∗,v∈V (K)

y(K)

+ (17)

where K∗ denotes the sets of di-circuits of D∗

Recall that D∗ has two types of di-circuits. A Type I di-circuits is of form Ka = {a, a′}
where a ∈ A while Type II di-circuits arise from circuits of D by replacing each forward
edge by its reverse or by replacing each backward edge by its reverse.

Consider an optimal (integer-valued) solution y∗ to (17) and let z∗(v) := w(v) −∑
[y∗(K) : K ∈ K∗, v ∈ V (K)]. Now z′(v) = z∗(v) for v ∈ V −{s, t}, z′(s) = z∗(s)+α,

and z′(t) = z∗(t) + α. Hence∑
v∈V

(z′(v))+ ≤
∑
v∈V

(z∗(v))+ + 2α.

Furthermore, |F ∩Ka| = 1 implies that
∑

K∈K∗ y
′(K)|F ∩K| = k

∑
K∈K∗ y

∗(K)|F ∩
K| − kα. By combining these observations with the assumption k ≥ 2, we obtain that

k
∑
K∈K∗

y′(K)|F ∩K|+
∑
v∈V

w(v)−
∑

K∈K∗,v∈V (K)

y′(K)

+

≤

k
∑
K∈K∗

y∗(K)|F ∩K|+
∑
v∈V

w(v)−
∑

K∈K∗,v∈V (K)

y∗(K)

+

.

Since y∗ is an optimal solution to (17), so is y′ (and we must have k = 2), contradicting the
special choice of y∗. This contradiction shows that y∗(K) = 0 for every di-circuit in D∗ of
Type

Suppose now that K is a di-circuit of D∗ of Type II. By reversing the F -edges of K, we
obtain a circuit C ofD for which η(C) ≤ |F ∩K|. Let y0(C) := y∗(K). If y∗(K) > 0 for a
di-circuit ofD∗, then we must actually have η(C) = |F∩K|. Indeed, for if η(C) < |F∩K|,
then |F ′ ∩ K| = η(C) < |F ∩ K| holds for the reverse di-circuit K ′ of K and then by
increasing y∗(K) with y∗(K) and reducing y∗(K) to 0 we would obtain a solution to (17)
which is better than the optimal y∗. It follows from Theorem 6.3 that y0 is a solution to
(16) for which max{w(S) : S a k-sink-set} = k

∑
C∈CD y0(C)η(C) +

∑
v∈V (w(v) −∑

C∈CD,v∈V (C) y0(C) )+ from which the min-max result of the theorem follows. • •
In the special case w = χ

U
, we obtain the following.

THEOREM 6.7. Let D = (V,A) be a digraph with no isolated nodes, k ≥ 2 an integer,
and U ⊆ V a prescribed subset of nodes. The maximum cardinality of a k-sink-stable
subset of U is equal to

min{k
∑

[η(C) : C ∈ C] + |U − ∪(V (C) : C ∈ C)| : C a set of circuits}. • (18)
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Section 7. Link to cyclic stable sets 21

The same way as the theorem of Abeledo and Atkinson (Theorem 5.1) was derived from
Theorem 4.7, the following result can be obtained from the second part of Theorem 6.3.

THEOREM 6.8. Let G = (S, T ;E) be a 2-connected perfectly matchable bipartite plane
graph and k ≥ 2 an integer. The maximum number of faces that can be partitioned into k
resonant sets is equal to the minimum of

k
∑

i val(Bi)+the number of faces avoided by each Bi

where the minimum is taken over all choices of feasible cuts B1, . . . , Bq. In particular,
the set of faces of G can be partitioned into k resonant sets if and only if for any set B of
feasible cuts the number of faces intersected by B is at most k times the total value of B. •

Corollary 6.9. The faces of a 2-connected perfectly matchable bipartite plane graph can
be partitioned into k resonant sets if and only if, for every feasible cut B of G, the number
of faces intersected by B is at most kval(B). •

7 Link to cyclic stable sets
Suppose that D = (V,A) is a strongly connected loopless digraph on n ≥ 2 nodes and
consider a linear order L = [v1, . . . , vn] of the nodes of D. An edge e of D is a forward
edge if its tail precedes its head, otherwise e is a backward edge.

Let P be a regular n-gon in a horizontal plane and assign the nodes of V to the vertices
of P in this order. In this way, we arrive at a cyclic order O = (v1, . . . , vn) of D. A
set of consecutive elements is called an interval of O. For example, both {v2, v3, v4} and
{vn−1, vn, v1, v2} are intervals. Each edge uv of D can be represented in the plane by an
arc going clockwise outside P . Clearly, the linear order [vi, . . . , vn, v1, . . . , vi−1] defines the
same cyclic order for each vi. Each of these n linear orders is called an opening of O. The
backward edges of the opening L′ = [vi, . . . , vn, v1, . . . , vi−1] of O is called the edge-set
belonging to the opening.

Let K be a di-circuit of D. Starting from a node v of K and going along K we arrive
back to v. In the plane, this simple closed walk goes around P one ore more times. This
number is called the winding number or the index ofK and is denoted by ind(K). It follows
from this definition that if F denotes the set of edges belonging to an opening of O, then

ind(K) = |F ∩K|. (19)

For example, ifD itself is a di-circuitK consisting of the edges {v1v2, . . . , vn−1vn, vnv1},
then the index of K with respect to the cyclic order (v1, . . . , vn) is 1 while ind(K) = n− 1
with respect to the reverse cyclic order (vn, . . . , v1).

These notions were introduced by Bessy and Thomassé [3] who called a cyclic order of
D coherent if each edge of D belongs to a di-circuit of index 1. They proved that every
strong digraph has a coherent ordering. Let O be a cyclic ordering and F the set of edges
belonging to an opening of O.

Iwata and Matsuda [15] observed the following link between flat transversals of di-
circuits and coherent cyclic orderings.
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Lemma 7.1 (Iwata and Matsuda). Let D = (V,A) be a strongly connected digraph. A
subset F of edges is a flat transversal of di-circuits if and only of F belongs to an opening
of a coherent ordering of D.

Proof. (Outline) If F belongs to an opening of a cyclic orderO, then F is clearly a transver-
sal of di-circuits. If O is, in addition, coherent, that is, if each edge belongs to a di-circuit
of index 1, then F is flat since ind(K) = |F ∩K| for every di-circuit.

Conversely, if F is a flat transversal of di-circuits, then F is certainly a minimal transver-
sal with respect to inclusion. An easy excercise shows that the digraph DF arising from
D by reversing the elements of F is acyclic. Hence any topological ordering L of DF has
the property that the elements of F (in D) are precisely the backward edges. Therefore the
cyclic order determined by L is coherent. •

Due to this correspondence, the existence of a coherent cyclic order is equivalent to
Knuth’s lemma on the existence of a flat transversal of di-circuits.

Bessy and Thomasse called the exchange of two consecutive elements u and v in a cyclic
order elementary if there is no edge (in either direction) between u and v. They called two
cyclic orders equivalent if one can be obtained from the other by a sequence of elementary
exchanges. Finally, a stable set of nodes is cyclic stable with respect to a given cyclic order
O if there is an equivalent cyclic order where S forms an interval.

>From a complexity point of view, a slight disadvantage of this definition is that it does
not show (as it is) that cyclic stability is an NP-property. Indeed, in principle it could be the
case that a cyclic order can be obtained from an equivalent cyclic order only by a sequence
of exponentially many elementary exchanges, and in such a case the definition would not
provide a polynomally checkable certificate for cyclic stability. A. Sebő [20], however,
pointed out that a cyclic ordering can always be obtained from an equivalent cyclic order
by a sequence of at most n2 elementary exchanges. Hence cyclic stability is an NP-property.
Moreover, Sebő proved the following co-NP characterization of cyclic stability.

THEOREM 7.2 ([19], Statement (5)). A subset S of nodes of a strongly connected
digraph D is cyclic stable with respect to a coherent cyclic ordering if and only if
|S ∩ V (K)| ≤ind(K) for every di-circuit K of D. •

The proof of this theorem provides a polynomial algorithm that either finds a sequence
of elementary exchanges that transform S into an interval or else it finds a di-circuit K
violating the inequality in the theorem.

The two main theorems of Bessy and Thomassé [3] are as follows.

THEOREM 7.3 (Bessy and Thomassé). Given a strong digraph D = (V,A) along with a
coherent cyclic ordering, the maximum cardinality of a cyclic stable set of D is equal to the
minimum total index of di-circuits covering V . •

THEOREM 7.4 (Bessy and Thomassé). Let D = (V,A) be a strong digraph along with a
coherent cyclic ordering and let k ≥ 2 be an integer. The node-set of D can be partitioned
into k cyclic stable sets if and only if |K| ≤ k ind(K) for every di-circuit K. •

As a common generalization of the theorems of Bessy and Thomassé, Sebő [19] proved
the following.
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THEOREM 7.5 (Sebő). Let D = (V,A) be a strong digraph along with a coherent cyclic
ordering. Let k ≥ 1 be an integer and U a subset of nodes. The maximum cardinality of
the union of k cyclic stable sets of D is equal to min{k

∑
i ind(Ki) + |U − ∪iV (Ki)| :

{K1, . . . , Kq} a set of di-circuits}.

Sebő actually proved this result in a more general form by providing a min-max formula
for the maximum w-weight of the k-union of cyclic stable sets.

By combining Theorems 3.5 and 7.2, we obtain by (19) the following.

Lemma 7.6. Let F be a flat transversal of di-circuit of a strong digraph D and let O =
(v1, . . . , vn) be a coherent cyclic order so that F belongs to an opening ofO. Then a subset
S of nodes is F -stable if and only if S is cyclic stable. •

This lemma implies that Theorem 7.5 is equivalent to the that special case of the second
half of Theorem 6.3 when F is not only flat but it is a transversal of di-circuits, as-well.
Note that requiring only the flatness of F in Theorem 6.3 allowed us to derive the theorem
of Abeledo and Atkinson and its extension.

References
[1] H. Abeledo and G.W. Atkinson, Unimodularity of the Clar number problem, Linear

Algebra and its Applications, 420 (2007) 441-448.

[2] H. Abeledo and G.W. Atkinson, A min-max theorem for plane bipartite graphs, Dis-
crete Applied Mathematics, 158 (2010) 375-378.

[3] S. Bessy and S. Thomassé, Spanning a strong digraph by α circuits: A proof of Gal-
lai’s conjecture, Combinatorica, 27 (6) (2007) 659-667. A preliminary version has
appeared in: Integer Programming and Combinatorial Optimization (eds. D. Bien-
stock an G. Nemhauser) Vol. 10, New York, 2004.

[4] A. Bondy, Diconnected orientation and a conjecture of Las Vergnas, J. London Math.
Soc. (2), 14(2) (1976) 277-282.

[5] K. Cameron and J. Edmonds, Coflow polyhedra, Discrete Mathematics, 101 (1992)
1-21.

[6] K. Cameron and J. Edmonds, The travelling preacher, projection, and a lower bound
for the stability number of a graph, Discrete Optimization, 5 (2008) 290-292.
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