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A Note On Strongly Edge-Disjoint Arborescences

Kristóf Bérczi and Erika Renáta Kovács
⋆

Abstract

In [1], Colussi, Conforti and Zambelli conjectured that in a rooted k-edge-
connected digraph there exist k strongly edge-disjoint arborescences, and also
gave a proof for k = 2. In this paper, we give a generalization of the case k = 2
and show that the conjecture does not hold for k ≥ 3.

1 Introduction

Let D = (V + r, A) be a directed graph with designated root-node r. A spanning
arborescence F of D rooted at r is called an r-arborescence. A node u is an F -
ancestor of another node v if there is a directed path from u to v in F . We denote
this unique path by F (u, v). For example, in an r-arborescence F the root is the
F -ancestor of all other nodes. We call D rooted k-edge-connected if for each
v ∈ V , there exist k edge-disjoint directed paths from r to v. The maximum number
of edge-disjoint r− v paths is denoted by λ(r, v). A fundamental theorem on packing
arborescences is due to Edmonds who gave a characterization of the existence of k
edge-disjoint spanning arborescences rooted at the same node [2].

Theorem 1.1 (Edmonds' theorem). Let D = (V + r, A) be a digraph with root r.
D has k edge-disjoint spanning r-arborescences if and only if D is rooted k-edge-
connected.

A natural idea is to reformulate the problem to the node-connected case. Let D and
r denote a digraph and a root-node as previously, then D is called rooted k-node-
connected (or rooted k-connected, for short) if there exist k internally node-disjoint
directed paths from r to v for each v ∈ V , that is, any two of the paths have only r
and v in common. The maximum number of node-disjoint r − v paths is denoted by
κ(r, v).
Note that two r-arborescences F1 and F2 are edge-disjoint if and only if for each

v ∈ V the two paths F1(r, v) and F2(r, v) are edge-disjoint. That gives the idea of the
following de�nition: we call two spanning r-arborescences F1 and F2 independent if
F1(r, v) and F2(r, v) are internally node-disjoint for each v ∈ V .
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Section 1. Introduction 2

As a node-disjoint counterpart of Edmonds' theorem, Frank conjectured that in a
rooted k-connected graph there exist k independent arborescences (see eg. [12]). The
case k = 2 was veri�ed by Whitty [13], but for k ≥ 3 the statement does not hold
as was shown by Huck [4]. However, Huck also proved that the conjecture is true for
simple acyclic graphs [5] and veri�ed the statement for planar multigraphs except for
a few values of k [6].

Theorem 1.2.

(i) (Whitty) Let D = (V + r, A) be a digraph with root r. D has two independent
spanning r-arborescences if and only if D is rooted 2-connected.

(ii) (Huck) Let D = (V + r, A) be an acyclic digraph with root r such that D − r is
simple. D has k independent spanning r-arborescences if and only if D is rooted
k-connected.

(iii) (Huck) Let D = (V + r, A) be a directed multigraph with root r and k ∈ {1, 2} ∪
{6, 7, 8, ...} such that D is planar if k ≥ 6. D has k independent spanning
r-arborescences if and only if D is rooted k-connected.

In [1], Colussi, Conforti and Zambelli introduced another type of disjointness con-
cerning arborescences, which put slightly stronger restrictions on the paths than edge-
disjointness. In a digraph we call two arcs symmetric if they share the same end-
nodes but have opposite orientations. Two arborescences F1, F2 rooted at r are called
strongly edge-disjoint if the paths F1(r, v), F2(r, v) do not contain a pair of sym-
metric arcs. In [1], the following strengthening of Edmonds' theorem was proposed.

Conjecture 1.3 (Colussi, Conforti, Zambelli). Let D = (V + r, A) be a digraph with
root r. D has k strongly edge-disjoint spanning r-arborescences if and only if D is
rooted k-edge-connected.

For k = 2, the conjecture was veri�ed in [1]. As Colussi et al. note, the motivation
of the problem is the following. It is easy to see that a similar statement holds for
strongly edge-disjoint directed s− t paths. Hence the conjecture, if it were true, could
be considered as a common generalization of Edmonds' disjoint arborescences theorem
and Menger's theorem. Note that the arborescences in the conjecture are allowed to
contain pairs of symmetric arcs, only the paths in question are required not to do so.

Throughout the paper, we use the following notation. A directed graph is denoted
by D = (V + r, A) where V and A stand for the set of nodes and arcs, respectively,
and r is a root-node. We always assume that each node v ∈ V − r is reachable from r
on a directed path. By an arborescence, if not stated otherwise, we mean a spanning
r-arborescence. The in-degree of a set X ⊆ V is denoted by ϱ(X). For a singleton v,
we abbreviate ϱ({v}) by ϱ(v). We say that a node w dominates a node v if every path
from r to v includes w. We denote the set of nodes dominating v by dom(v). Clearly,
r and v are in dom(v). Sometimes we use these notations with subscripts when only
a subset F ⊆ E is considered or we work with di�erent graphs simultaneously.
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Section 2. Disjoint Steiner-arborescences 3

The rest of the paper is organized as follows. Section 2 gives a short overview
of the corresponding results concerning Steiner-arborescences and describes a special
ordering of the nodes. As a consequence, we get a new proof of a theorem of Georgiadis
and Tarjan [3]. Based on this theorem, we prove a generalization of Conjecture 1.3
for k = 2 in Section 3. In Section 4, we give a disproof of the conjecture for k ≥ 3.
Finally, in Section 5, we propose a new conjecture concerning strongly edge-disjoint
arborescences.

2 Disjoint Steiner-arborescences

For a digraph D = (V + r, A) with root r and terminal set T ⊆ V , an r-arborescence
spanning T is called a Steiner-arborescence. Two Steiner-arborescences F1 and F2

are called edge-independent if the paths F1(r, t), F2(r, t) are edge-disjoint for every
terminal t ∈ T . Independent Steiner-arborescences can be de�ned in a straightfor-
ward manner. Note that paths corresponding to non-terminal nodes are allowed to
violate the disjointness condition hence the arborescences are not necessarily edge-
disjoint.
Z. Király asked [10] whether the existence of k edge-independent Steiner-arborescences

is ensured by λ(r, t) ≥ k for each t ∈ T . As Frank's conjecture would follow from
such a result, Huck's counterexample shows that k = 2 is the only case when this
statement may hold. Indeed, the following theorem appeared in [11].

Theorem 2.1. Let D = (V + r, A) be a digraph with root r, terminal set T ⊆ V
and λ(r, t) ≥ 2 for each t ∈ T . Then there exist two edge-independent Steiner-
arborescences.

Proof. We may assume that all of the terminal nodes have in-degree two. Indeed, if
ϱ(t) ≥ 3 for some t ∈ T , then take 2 edge-disjoint r− t paths. We claim that any edge
entering t and not used by these paths can be left out without violating the conditions
of the theorem. Indeed, the only problem may arise if after the deletion of an edge
e we have λD−e(r, t

′) ≤ 1 for some t′ ∈ T , that is, there exist a set t′ ∈ X ⊆ V such
that ϱD−e(X) ≤ 1. Clearly, e enters X so t ∈ X, contradicting the fact that there
are two r − v paths in D − e. We may also assume that T contains all the nodes for
which λ(r, v) ≥ 2, hence the non-terminal nodes have in-degree one.
We prove by induction on the number of nodes plus edges. Assume �rst that

there is a terminal node t for which dom(t) − {r, t} is not empty and take a node
x ∈ dom(t) − {r, t}. Let M denote the set of nodes that are cut from r by x,
excluding x.
As λ(r, t) ≥ 2, we have λ(r, x) ≥ 2 and so x ∈ T . That means that in the subgraph

spanned by M + x with root x, the set of terminal nodes (that is, the set of nodes
with λ(x, t) ≥ 2) is exactly T ∩M . As r is not included in this graph, the number of
nodes and edges together is strictly smaller than that of in D, hence the theorem can
be applied for this smaller graph. Let F x

1 and F x
2 denote the arborescences obtained

this way.
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Section 2. Disjoint Steiner-arborescences 4

On the other hand, let D′ denote the graph obtained from D by contracting M to
a single node m and deleting all but one xm edges. As M contained a terminal, the
number of nodes plus edges in D′ is strictly smaller than in D so we can apply the
theorem to D′. Let F ′

1 and F ′
2 denote the independent arborescences in D′. Note that

κD′(r, t) remains 2 for each t ∈ T \M .
Now take the two pairs of edge-disjoint arborescences and match them arbitrarily,

say, F ′
1, F

x
1 and F ′

2, F
x
2 . Now we can build a Steiner arborescence of D from F ′

i and F x
i

by simply leaving out m from D′ and unifying the arborescences at x. The resulting
edge set is clearly an arborescence Fi which spans all the terminals. It only remains
to verify that the paths F1(r, t) and F2(r, t) are edge-disjoint for each t ∈ T .
This clearly holds for t ∈ M + x. Since ϱD′(m) = 1, for each terminal t ∈ T \

M , at most one of its paths uses m in D′ so at most one of the paths is modi�ed
when constructing Fi from F ′

i and F x
i . As we only add new edges to the graph, the

disjointness still holds after this step.
So assume that κ(r, t) ≥ 2 for every terminal t ∈ T . Now modify the graph in the

following way. If the set of non-terminal nodes spans an arc then contract its ends.
Then for each non-terminal node u, if its ancestor is r then add another ru edge to
the graph; if its ancestor v is not r (which also means that it is a terminal node) then
contract u with v.
The resulting graph is rooted 2-connected, hence Whitty's theorem can be applied

to get two node-independent spanning arborescences. By inverting the modi�cations
on the non-terminals, the arborescences naturally extend to edge-independent Steiner-
arborescences in the original graph.

The node-independent version of the theorem is also of interest. However, the result
of Georgiadis and Tarjan in [3] is a generalization of Theorem 1.2 (i).

Theorem 2.2 (Georgiadis and Tarjan). Let D = (V + r, A) be a digraph with root r,
terminal set T ⊆ V and κ(r, t) ≥ 2 for each t ∈ T . Then there exists two independent
Steiner-arborescences.

In fact, it can be showed that the two versions are equivalent.

Claim 2.3. Theorems 2.2 and 2.1 are equivalent.

Proof. Theorem 2.2 follows from Theorem 2.1 by substituting every node by an edge
in the usual way. That is, for each v ∈ V we substitute v by two new nodes v1, v2
where the ancestors of v1 are the ancestors of v, the children of v2 are the children of v
and we add the arc v1v2 to the graph. It is easy to see that if there are two internally
node-disjoint paths from r to v in the original graph then there are two edge-disjoint
paths from r to v1 in the new graph. Let T1 = {v1 : v ∈ T}. Then, by Theorem 2.1,
there exist two edge-disjoint Steiner-arborescences w.r.t. T1. It is easy to see that
their restriction to the original graph gives two independent Steiner-arborescences
w.r.t. T .
To see the opposite direction, consider an extension of the edge-graph of D. More

precisely, take the following graph: r and nodes in T belong to the new graph. Also,
for each edge uv we add a new node to the graph denoted by nuv. The edge set consists
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Section 2. Disjoint Steiner-arborescences 5

of edges of form rnrv for rv ∈ A, nvtt for some t ∈ T and nuvnvw for edges uv, vw.
In the graph thus obtained, κ(r, t) ≥ 2 for each t ∈ T . Then, by Theorem 2.2, there
exist two independent Steiner-arborescences w.r.t. T . If we take their corresponding
image in the original digraph in the natural way, we get two edge-disjoint Steiner-
arborescences as required.

Whitty's proof of Theorem 1.2 (i) is based on a special ordering of the nodes.

Lemma 2.4. Let D = (V + r, A) be a digraph with root r and κ(r, v) ≥ 2 for each
v ∈ V . There is an ordering r = v0, v1, ..., vn, vn+1 = r of the nodes so that, for each
vi ∈ V , there is an edge vhvi with h < i and an edge vivj with i < j.

The proof of Theorem 2.2 in [3] uses the properties of depth-�rst search (DFS) to
�nd the two arborescences in question. Huck's proof for Theorem 1.2 (ii) is based on
the following lemma which is a variant of Lemma 2.4 for acyclic graphs.

Lemma 2.5. Let D = (V +r, A) be a simple acyclic graph with ϱ(r) = 0 and ϱ(v) ≥ 1
for each v ∈ V . There is an ordering o : V +r → Z of the nodes and an r-arborescence
F such that for each uv ∈ A, we have uv ∈ F if and only if o(u) < o(v), that is, the
set of edges going forward is exactly F .

Proof. Consider the following version of the DFS algorithm. For each node v ∈ V let
w(v) denote the length of the longest directed path from r to v. The only restriction
is that when being at node v, the algorithm steps to one of its child

with the largest w value. (I)

We start the search from the root-node r with o(r) = 0 and an arborescence F con-
taining only the single node r. We extend the ordering and build up the arborescence
while running the search as follows: when we arrive at a node v not reached yet we
add it to the end of the ordering. Also, if we reach it from node u, we add the arc uv
to the arborescence.
We claim that the ordering and the arborescence thus obtained satisfy the conditions

of the Lemma. First of all, the edges of F are going forward as if uv ∈ F then v was
reached from u during the search so o(u) < o(v). Hence it su�ces to show that no
arc in A \ F goes forward.
Let uv ∈ A \ F . If o(u) < o(v), then, by the rule of the DFS algorithm, there must

be a directed path u = v1, v2, ..., vq = v such that o(vi) < o(vi+1) and vivi+1 ∈ F for
i = 1, ..., q − 1. As D is acyclic, w(v) = w(vq) > w(vq−1) > ... > w(v2), contradicting
uv2 ∈ F, uv /∈ F and (I).

With the help of Lemma 2.4 and using the idea of the above proof of Theorem
2.1, the following ordering of the nodes immediately shows the existence of proper
Steiner-arborescences.

Theorem 2.6. Let D = (V + r, A) be a digraph with root r, ρ(v) = λ(r, v) ≤ 2 for
each v ∈ V and assume that the set of nodes with in-degree 1 is stable. Then there
exists an ordering v0, v1, . . . , vn+1 of the nodes for which
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(i) v0 = vn+1 = r

(ii) Cutting nodes appear twice, other nodes appear once.

(iii) Entering edges of nodes with in-degree 1 appear twice, other edges appear once.

(iv) For a cutting node p, if vi = vj = p and i < j then there is an edge entering vi
from the left and there is an edge entering vj from the right, and all the copies
of nodes cut by p from r lie between them.

(v) For every non-cutting node v, there is an edge entering v from the left and one
from the right.

(vi) If F1 and F2 denote the sets of edges going forward and backward, respectively,
then F1 and F2 are independent Steiner-arborescences with terminal set T =
{v ∈ V : λ(r, v) = 2}.

Proof. We prove by induction and follow the main steps of the proof of Theorem 2.1.
If there is a terminal node t ∈ T and x ∈ V with x ∈ dom(t) − {r, t}, then we can
apply the induction step for the two smaller graphs that was described in the proof.
The obtained orderings can be put together as x is a cutting node and so it appears
twice in the �nal ordering.
If there is no cutting node, we can eliminate the nodes with in-degree 1 in the same

way as before. The resulting graph is rooted 2-connected, hence Whitty's theorem
can be applied. The ordering provided by Lemma 2.4 can be modi�ed to a proper
ordering of the original graph: we make two copies of the nodes that are ancestors of
a node with in-degree 1 (the edges leaving this node to the right and entering it from
the left will belong to the left copy of the node, and the other way around), then the
nodes with in-degree 1 can be placed between the two copies of its ancestor.
In such an ordering the set of edges going right and the set of edges going left form

two edge-disjoint Steiner-arborescences. To see this, it su�ces to show that the edges
appearing twice can not belong to both the left and right path of a node. This edges
are exactly the edges entering a node with in-degree 1. As we assumed that the set
of nodes with in-degree 1 is stable, none of them is a cutting node so they appear in
the ordering once. Hence the two copies of the entering edge of a node can appear in
both paths only if these paths cross each other, that is, they share a common node
(namely the node with in-degree 1 in question). But the left and right paths of a node
cannot cross each other, so they use di�erent edges.

The most important consequence of the existence of the above ordering is the fol-
lowing. Note, that each non-cutting node appears only once in the ordering. This
observation immediately implies the following theorem, which was also proved in [3].

Theorem 2.7. Let D = (V,A) be a digraph with root r. There exist two arborescences
F1 and F2 such that for each v ∈ V − r, the paths F1(r, v) and F2(r, v) intersect only
at the nodes of dom(v).
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This theorem is the base of our proof for a slight generalization of Conjecture 1.3
when k = 2.
The following example shows that even acyclicity is not satisfactory for the existence

of edge-independent Steiner-arborescences.

Theorem 2.8. There is an acyclic graph for which there are three internally node-
disjoint paths to all of the terminals but there are no three edge-independent Steiner-
arborescences.

Proof. The terminal set of the example consists of two nodes t1, t2 (see Figure 1). It
can be easily checked that three edge-disjoint paths can be chosen only one way for
both terminals but these cannot be partitioned into three arborescences.

t1 t2 t2t1

Figure 1: Example for an acyclic graph where there are no three edge-independent
Steiner-arborescences

3 A generalization

Note that a pair of symmetric arcs can be considered as a directed cycle. This gives
the idea of the following de�nition. Let D = (V + r, A) be a digraph with root r and
terminal set T ⊆ V . We call two Steiner-arborescences F1 and F2 dicycle-disjoint
if for each t ∈ T the union F1(r, t) ∪ F2(r, t) does not contain a directed cycle. The
motivation of this de�nition is the following: if T = V and the arborescences are
dicycle-disjoint then they are also strongly edge-disjoint.
The following theorem generalizes the theorem of Colussi, Conforti and Zambelli

for k = 2.

Theorem 3.1. Let D = (V,A) be a directed graph with root r and terminal set T .
There exist two dicycle-disjoint Steiner-arborescences if and only if λ(r, t) ≥ 2 for
each t ∈ T .
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Proof. The necessity is clear, we prove su�ciency. Consider the arborescences pro-
vided by Theorem 2.7. We claim that these arborescences are dicycle-disjoint.
Assume indirectly that there is a node t ∈ T such that the union of the paths F1(r, t)

and F2(r, t) contains a directed cycle. Let r = x1, x2, ..., xp = t and r = y1, y2, ..., yq = t
denote the nodes along these paths. As the union of the paths contains a cycle, there
are indices i1, i2, j1, j2 such that xi1 = yj2 , xi2 = yj1 and i1 < i2, j1 < j2. Let
xi1 = yj2 = w and xi2 = yj1 = z. The choice of F1 and F2 implies w, z ∈ dom(t). Now
consider the graph G− z. Then the union F1(r, w) ∪ F2(w, t) contains a path from r
to t, which contradicts to z ∈ dom(t).

4 Disproof of Conjecture 1.3 for k ≥ 3

We give a counterexample for k = 3 based on a graph given by Huck [4], for other
values a similar construction works. Let D be the graph of Figure 2. It is easy to
check that D is rooted 3-edge-connected. The set of nodes in V − r is partitioned into
three blocks B1, B2 and B3. There is one arc from r to Bi, and there are two arcs from
Bi to Bi+1 for each i (the indices are meant modulo 3 plus 1) such that together they
form two directed cycles of length three. The edges of these triangles are denoted by
e12, e23, e31 and f12, f23, f31, respectively (see Figure 2).
Assume that there exist three strongly edge-disjoint arborescences F1, F2 and F3.

Clearly, each Fi contains an edge from r to one of the blocks, say Fi contains the one
that goes to Bi, and it uses exactly one of eii+1 and fii+1 and the same holds for ei+1i+2

and fi+1i+2. Also, at least one of the arborescences has to use the pair eii+1, fi+1i+2

or fii+1, ei+1i+2. Assume that F1 does so. But that implies that F1 and F2 can not
be strongly edge-disjoint as they have to share a symmetric pair in B2 that they use
when going to B3, so for any node v ∈ B3 the paths F1(r, v) and F2(r, v) contain a
pair of symmetric arcs.

5 Conclusion

We have given a generalization of a theorem of Colussi et al. about packing strongly
edge-disjoint arborescences. We also showed that Conjecture 1.3 does not hold for
k ≥ 3.
Concluding the results, Edmonds' theorem gives a characterization of the existence

of k edge-disjoint arborescences. On the other hand, we have seen that the analogue
statement about independent arborescences does not hold. The notion of strongly
edge-disjointness somehow lies between these two types of disjointness, but, as we
showed, the conditions of Edmonds' theorem do not ensure the existence of such
arborescences. So a natural idea is to turn to the other 'extremity' concerning the
necessary conditions, and formulate the following conjecture.

Conjecture 5.1. Let D = (V + r, A) be a digraph with root r and assume that
κ(r, v) ≥ k for each v ∈ V . Then there exist k dicycle-disjoint arborescences.
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r

B1

B2B3

e12
f12

e23

f23

e31
f31

Figure 2: Counterexample for Conjecture 1.3
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