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Highly connected molecular graphs are rigid in three
dimensions

Tibor Jordan*

Abstract

We show that every 7-vertex-connected molecular graph is generically rigid
in three dimensions. This verifies a special case of a conjecture of Lovasz and
Yemini. For this family of graphs the bound is best possible.

1 Introduction

Lovéasz and Yemini [6] conjectured in 1982 that there exists a constant ¢ such that
every c-vertex-connected graph is rigid in three-space, when it is realized as a generic
bar-and-joint framework. Their conjecture is still open. The existence of 11-vertex-
connected non-rigid graphs shows that if ¢ exists, it is at least 12. Note that the
characterization of rigid graphs in three-space is a difficult unsolved problem. The
reader is referred to [, (1] for basic definitions and results of combinatorial rigidity.

In this paper we consider an important special case, which has been a focus of
recent research: squares of graphs. The square G? of a graph G is obtained from G
by adding a new edge uv for each pair u,v € V(G) of distance two in G, see Figure
M. Squares of graphs are sometimes called molecular graphs, because they are used to
study the flexibility of molecules [2, [0, 17].

We shall verify the conjecture of Lovasz and Yemini in the special case of molecular
graphs by showing that every 7-vertex-connected molecular graph is rigid in three
dimensions. We also give an example showing that for this family of graphs the
bound is best possible.

Our proof relies on a recent result of Katoh and Tanigawa [5], who characterized
rigid molecular graphs in three-space®. For a graph G let 5G denote the multigraph
obtained from G by replacing each edge e € E(G) by five copies of e.

*Department of Operations Research, E6tvos University, Pdzmény Péter sétény 1/C, 1117 Bu-
dapest, Hungary. e-mail: jordan@Qcs.elte.hu. Supported by the MTA-ELTE Egervéry Research
Group on Combinatorial Optimization and the Hungarian Scientific Research Fund grant K81472.

1Katoh and Tanigawa [B] proved the Molecular Conjecture due to Tay and Whiteley [8, Conjecture
1], which is formulated in terms of non-generic d-dimensional body-and-hinge frameworks, for d > 2.
The bar-and-joint version, given in Theorem [, can be deduced from the three-dimensional version
of their result, see e.g. [3]. Note that a direct proof for the necessity of the spanning tree condition
and an extension of Theorem I, characterizing the degrees of freedom of a molecular graph, can
be found in [B].

December 31, 2010



Section 2. Highly connected molecular graphs 2

Figure 1: A graph G and its square G2, obtained from G by adding the dashed edges.

Theorem 1.1. fA] Let G be a graph with minimum degree at least two. Then G?* is
rigid in three-space if and only if 5G contains six edge-disjoint spanning trees.

Let G = (V, E) be a graph. For a partition P of V' let eq(P) denote the number of
edges of G connecting distinct members of P. Let

defg(P) = 6(|P| — 1) — beg(P)
denote the deficiency of P in G and let
def(G) = max{def;(P) : P is a partition of V}.

We say that a partition P of V' is a tight partition of G if defg(P) = def(G). Note that
def(G) > 0 since defg({V'}) = 0. By a celebrated result of Tutte and Nash-Williams
5G contains six edge-disjoint spanning trees if and only if def(G) = 0. We shall use
this fact and deficient partitions in the next section.

2 Highly connected molecular graphs

Let G = (V,E) be a graph. For a subset U C V let §(U) denote the set of edges
connecting U and V — U. A subset F' of E is called an edge-cut if F' = §(U) for some
U CV. A subset U of V is called a vertez-cut if G — U is disconnected. G is said to
be k-vertex-connected if |V| > k + 1 and there is no vertex-cut in G containing less
than k vertices. Let F' = 6(U) be an edge-cut. The border of F, denoted B(F), is
the set of end-vertices of the edges of F'. We say that F'is essential if U — B(F') and
V — U — B(F) are both non-empty.

Proposition 2.1. Suppose that G has an essential edge-cut of size f. Then G? has
a vertez-cut of size at most 2f.

Proof: Let F be an essential edge-cut in G. Then G? — B(F)) is disconnected. Since
|B(F)| < 2|F|, the proposition follows. o
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Our goal is to prove that if G? is not rigid then G has an essential edge-cut of size
at most three. First we need a lemma about ‘claws’.

Let G be a graph and u,v be, not necessarily distinct, vertices of G. A wv-ear in
G is subgraph X which is a uv-path if u # v or a cycle containing v if v = v, and
is such that all vertices of V(X) — {u,v} have degree two in G, and u,v both have
degrees not equal to two in G. We say that X is an ear of length r if X has length r,
and that X is a closed ear if X is a cycle.

Let v be a vertex of degree i, ¢« > 3, which is not incident with any closed ears.
Then the i-claw centered at v is the subgraph of G which is the union of the 7 ears
Py, Py, ..., P; incident with v. We say that the claw is of size (71,79, ...,7;), where ear
P; is of length 7;, 1 < j <4. We will assume throughout that r; > ry > ... > r;.

Lemma 2.2. Let G = (V, E) be a connected graph with minimum degree at least two.
Suppose that G is not a cycle, G contains no closed ears, and 5|E| < 6(|V|—=1). Then
G has an i-claw of size (r1,72,...,1;) with Y\ r; > 6(i —2) + 1 for some i > 3.

Proof: Let H be the multigraph obtained by suppressing all vertices of degree two
in G and w: E(H) — Z, be defined by letting w(e) be the length of the ear in G
corresponding to e, for each e € E(H). Note that H is loopless, since G is not a cycle
and G contains no closed ears, and H has minimum degree at least three.

For v € V(H) let w(v) be the sum of the weights of the edges incident to v and let
n; be the number of vertices of degree 7 in G, ¢ > 2. Then we have

A(G)
> w)=21E| = in; (1)
VeV (H) =2

where A(G) denotes the maximum degree in G. Since 5|E| < 6(|V|—1), we also have

A(G) ; A(G)
5() JMi) < 6()  ni)—6, (2)
i=2 i=2
and hence A
57— 12
ny > ; ot 6 (3)

Substituting into ([) we obtain

A@G) AG)
> ww) =Y (5i = 12)n; +in +12= Y 6(i — 2)n; + 12. (4)
veV (H) i=3 i=3

Thus there exists a vertex v € V(H) with d(v) =i and w(v) > 6(i — 2) + 1, for some
1> 3. °

Let G = (V,E) be a graph and X C V. We use ig(X) to denote the number of
edges induced by X in G.
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Lemma 2.3. Let G be a graph with minimum degree at least two. Suppose that
Sig(X) < 6(|X]—1) (5)
for all X CV with | X| > 2. Then G has an essential edge-cut of size at most three.

Proof: Observe that (H) implies that G has no cycles of length at most six. First
suppose that G is a cycle or G contains a closed ear. Then the cycle (or the closed
ear) must have length at least seven, which implies that there is an essential edge-cut
in G of size at most two. Thus we may suppose that GG is not a cycle and G contains
no closed ears. .

Consider an i-claw of size (rq,72,...,7;) with > r; > 6(i — 2) + 1 with center v,
which exists by Lemma 2.

First suppose ¢ > 4. Then 6(i —2) + 1 > 3i + 1, which implies r; > 4. Let
Vx1%o...2,—1u be the sequence of vertices of P;. Put U = {z1,x9,...,x,_1}. We claim
that F' = 0(U) is an essential edge-cut. It is clear that xo € U — B(F'). If ry > 2 then
any inner vertex of Py isin V — U — B(F'). If ro = 1 then, since i(> 4) > 3 and G is
simple, P, or P; must have an end-vertex which is different from v and also different
from u. This vertex is in V' — U — B(F'). Thus F is essential. Since F' has size two,
the lemma follows when 7 > 4.

Next suppose ¢ = 3. Then ry + 19 +1r3 > 7. If r; > 4 then we are done as above,
so we may assume that r; = 3. Let P, P», P; be the ears incident with v with end-
vertices uy, ug, u3. Since G has no cycles of length at most six, we can deduce that
U1, Uo, ug are pairwise distinct.

Let U = {v,x1, 22}, where z1, x5 are the inner vertices of P;. Then F = §(U)
is an essential edge-cut. This follows by observing that x; € U — B(F) and us €
V — U — B(F). We have |F| < 3. This completes the proof of the lemma. .

We can now prove our main result. Let G = (V, E) be a connected graph on at
least two vertices. Let G, be the maximal subgraph of G of minimum degree at
least two. Note that G, is empty if and only if G is a tree, and G = G, if and
only if the minimum degree of G is at least two.

Theorem 2.4. Let G be a graph and suppose that G? is T-connected. Then G? is
rigid in three-space.

Proof: First suppose that G.,.. is empty, which is equivalent to saying that G is a
tree. In this case it is easy to see that either G has an essential edge-cut F' of size
one, or G is a star. In the former case G? cannot be 7-connected by Proposition 2T,
a contradiction. In the latter case G? is a complete graph, which is rigid, as required.

Thus we may assume that G.,.. is non-empty. As above, it is easy to see that if G
has a vertex v of degree at least two which does not belong to the core then G has
an essential edge-cut F' of size one, a contradiction by Proposition EZ1. It follows that
each vertex not in the core of G has degree one. In this case G? is rigid if G2, is

rigid (which is easy to see, see e.g. [3, Lemma 4.2]). Hence it suffices to prove that
G2 . is rigid.

core
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Let H = G0 and suppose, for a contradiction, that H? is not rigid. Then it follows
from Theorem [T that def(H) > 1. Consider a tight partition P = {X1, Xs, ..., X}
of H for which |P| is as small as possible. Let K = (W, F') denote the graph obtained
from H by contracting each member X; to a single vertex z;, 1 < i < t. By the choice
of P we must have

Sk (X) <6(|X[—1) (6)

for all X C W with |X| > 2 (see [@, Lemma 2.2(b)]).

We can now use Lemma to deduce that K has an essential edge-cut of size at
most three. Thus H also has an essential edge-cut of size at most three, which is an
essential edge-cut in G, too. Thus, by Proposition 270, G? is not 7-connected. This
contradiction completes the proof of the theorem. °

The graph in Figure B shows that the bound on the vertex-connectivity of G? is
best possible.

Figure 2: The square of this graph G is 6-connected and non-rigid. To see that G? is
not rigid consider the partition P of V(@) consisting of the vertex sets of the six copies
of Kg and the remaining eighteen copies of K. Since def(G) > defg(P) = 3 > 0,
5G does not contain six edge-disjoint spanning trees, and hence G? is not rigid by
Theorem [.

References

[1] J. GRAVER, B. SERvATIUS, AND H. SERVATIUS, Combinatorial Rigidity, AMS
Graduate Studies in Mathematics Vol. 2, 1993.

2] B. JAcksON AND T. JORDAN, Rigid components in molecular graphs, Algo-
rithmica, 48 (2007) 399-412.

[3] B. JACKSON AND T. JORDAN, On the rigidity of molecular graphs, Combina-
torica, Vol. 28, Number 6, 2008, pp. 645-658.

EGRES Technical Report No. 2010-11



References 6

[4] B. JACKSON AND T. JORDAN, Brick partitions of graphs, Discrete Mathematics,
Vol. 310, Tssue 2, 2010, pp. 270-275.

[5] N. KATOH AND S. TANIGAWA, A proof of the molecular conjecture, Proceed-
ings of the 25th Annual Symposium on Computational Geometry, Aarhus, Den-
mark, pp. 296-305, 2009, to appear in Discrete and Comp. Geometry. See also
arXiv:0902.0236v2, July 12, 2009.

[6] L. LovAsz AND Y. YEMINI, On generic rigidity in the plane, SIAM J. Algebraic
Discrete Methods 3 (1982), no. 1, 91-98.

(7] C.ST.J.A. NASH-WILLIAMS, Edge-disjoint spanning trees of finite graphs, The
Journal of the London Mathematical Society 36 (1961) 445-450.

[8] T.S. TAY AND W. WHITELEY, Recent advances in the generic rigidity of struc-
tures, Structural Topology 9, 1984, pp. 31-38.

9] W.T. TuTTE, On the problem of decomposing a graph into n connected factors,
The Journal of the London Mathematical Society 36 (1961) 221-230.

[10] W. WHITELEY, Rigidity of molecular structures: geometric and generic analysis,
in: Rigidity theory and applications (Edited by Thorpe and Duxbury), Kluwer
1999, pp. 21-46.

[11] W. WHITELEY, Rigidity and scene analysis, in: Handbook of Discrete and
Computational Geometry (J. E. Goodman and J. O’Rourke, eds.), CRC Press,
Second Edition, pp. 1327-1354, 2004.

[12] W. WHITELEY, Counting out to the flexibility of molecules, Physical Biology 2
(2005) S116-S126.

EGRES Technical Report No. 2010-11



	Introduction
	Highly connected molecular graphs

