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A note on a conjecture on clutters

Júlia Pap?

Abstract

We prove some partial results on a conjecture of Király on minimally nonideal

clutters. We show on one hand that it is true if the core of the clutter (or of

its blocker) is cyclic, and on the other hand that it is true if we restrict the

conjecture to the cores.

1 Introduction

A set family C on a �nite ground set S is called a clutter if no set of it contains
another. We will call the sets in a clutter its edges. Its blocker b(C) is de�ned as the
family of the (inclusionwise) minimal sets that intersect each set in C, in other words
the minimal transversals of C. It is known that b(b(C)) = C for any clutter C. (We
regard ∅ and {∅} as clutters too, and they are blockers of each other.)

De�nition 1.1. The covering polyhedron of a clutter C is the following:

P (C) = {x ∈ RS
+ : x(C) ≥ 1 for every C ∈ C}.

The clutter C is ideal if P (C) is an integer polyhedron.

It is easy to see that the 0− 1-elements in P (C) are the transversals of C, and that
C is ideal if and only if P (C) = conv{χB : B ∈ b(C)}+ RS

+. It is known that a clutter
is ideal if and only if its blocker is. For basic results on clutters see [1].
Tamás Király formulated the following conjecture:

Conjecture 1.2. Let A be clutter on ground set S and let B be its blocker. Then A
and B are nonideal if and only if there exist functions p : A → S and q : B → S such
that p(A) ∈ A ∀A ∈ A and q(B) ∈ B ∀B ∈ B and if p(A) = q(B) for some A ∈ A
and B ∈ B then |A ∩B| > 1.

In this note we give some partial results about this conjecture.
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2 Results

First we prove that the "if" direction is true, using the following result of Király and
the auhor:

Theorem 2.1. [Király, Pap, [2]] Let P be an n-dimensional pointed polyhedron whose
characteristic cone is generated by n linearly independent vectors. If we colour the
facets of the polyhedron by n colours such that facets containing the i-th extreme
direction do not get the i-th colour, then there is a vertex for which there is a facet
incident to it of every colour.

We shall apply this theorem for the covering polyhedron of an ideal clutter.

Claim 2.2. Let A be an ideal clutter on ground set S and let B be its blocker. Then
there are no functions p : A → S and q : B → S with the desired properties in 1.2.

Proof. Suppose that there are functions p and q with the above properties. Let us
examine the following colouring of the facets of P (A): we colour a facet corresponding
to a set A ∈ A (namely the facet de�ned by x(A) ≥ 1) with colour p(A), and a facet
corresponding the i-th nonnegativity constraint gets the i-th colour. This colouring
satis�es the condition in Theorem 2.1 since the extreme directions of P (A) are the
unit vectors and if a facet has colour i then the i-th coordinate of its normal vector
is nonzero, thus the i-th unit vector is not an extreme direction of the facet. Thus
we can apply Theorem 2.1 which asserts the existence of a vertex of P (A) which is
incident to every colour. Since A is ideal, we know that the vertex is the characteristic
vector of a set in the blocker, say B ∈ B. It follows that for every i ∈ B there exists
a set Ai for which |Ai ∩ B| = 1 (i.e. the facet corresponding to Ai is incident to χB)
and p(Ai) = i (i.e. Ai has colour i). However for i = q(B) there can not be such a
set, which is a contradiction.

We now prove that it is enough to prove Conjecture 1.2 for a special class of clutters.
First we need some more de�nitions. We can de�ne two types of minor operations of
clutters corresponding to including or excluding an element in the transversal.

De�nition 2.3. Let C be a clutter and s ∈ S an element. By deleting s we get the
clutter C\s on vertex set S \{s} consisting of {C : C ∈ C, s /∈ C}. By contracting s we
get the clutter C/s on vertex set S\{s} containing the minimal sets in {C \s : C ∈ C}.
A minor of C is a clutter obtained by these two operations (it is easy to see that the
order of the operations does not matter).

It is known that the minor operations act nicely with the blocker operation: b(C/s) =
b(C)\s and b(C\s) = b(C)/s, and that their covering polyhedra can be obtained from
the covering polyhedron of C:

P (C/s) = {x ∈ RS−s
+ : (x, 0) ∈ P (C)} ∼= P (C) ∩ {x ∈ RS : xs = 0},

P (C\s) = {x ∈ RS−s
+ : ∃t : (x, t) ∈ P (C)} ∼= projs(P (C)).
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Claim 2.4. If Conjecture 1.2 holds for A/s or A\s then it holds for A as well.

Proof. First suppose that the conjecture is true for A/s, and let p : A/s → S and
q : B\s→ S be functions satisfying the conditions (in which case A/s 6= {∅}).
For a set A ∈ A let p′(A) := p(A′) for an arbitrary edge A′ ∈ A/s for which A′ ⊆ A,

and for a set B ∈ B let q′(B) :=

{
s if s ∈ B
q(B) otherwise.

So p′(A) 6= s for any A ∈ A. The conditions p′(A) ∈ A and q′(B) ∈ B hold. If
p′(A) = q′(B), then this element is not s, so q′(B) = q(B), and for some A′ ⊆ A,
p′(A) = p(A′). Thus |A′ ∩B| > 1 so |A ∩B| > 1, so the second condition also holds.
The other case follows from the �rst because of symmetry.

De�nition 2.5. A clutter C is called minimally nonideal (or mni for short) if it is
not ideal but every (other) minor of it is ideal.

Claim 2.4 asserts that it is enough to show Conjecture 1.2 for minimally nonideal
clutters.
It follows from the above mentioned facts that a clutter is mni if and only if

its blocker is. We note that an excluded minor characterization for mni clutters
is not known (which would be a counterpart of the strong perfect graph theorem) but
Lehman proved that mni clutters have special structure.
For an integer t ≥ 2, the clutter Jt = {{1, 2, . . . t}, {0, 1}, {0, 2}, . . . {0, t}} on

ground set {0, 1, . . . t} is called the �nite degenerate projective plane. It is known
that Jt is an mni clutter whose blocker is itself.
For a clutter A we denote its edge-element incidence matrix by MA.

Theorem 2.6 (Lehman's theorem, [3]). Let A be a minimally nonideal clutter noni-
somorphic to Jt (t ≥ 2) and let B be its blocker. Then P (A) has a unique noninteger
vertex, namely 1

r
1 where r is the minimal size of an edge in A, and P (B) has a unique

noninteger vertex, namely 1
s
1 where s is the minimal size of an edge in B. There are

exactly n sets of size r in A and each element is contained in exactly r of them;
and similarly for B. Moreover if we denote the clutter of minimum size edges in A
resp. B by Ā and B̄, then the edges of Ā and B̄ can be ordered in such a way that
MĀM

T
B̄ = MT

ĀMB̄ = J + dI, where J is the n× n matrix of ones, and d = rs− n.

De�nition 2.7. The clutter Ā de�ned above is called the core of the mni clutter A.

Claim 2.8. Let A be an mni clutter on ground set S = {s1, s2, . . . , sn} and let B
be its blocker. Then there exist functions p : Ā → S and q : B̄ → S such that
p(A) ∈ A ∀A ∈ Ā and q(B) ∈ B ∀B ∈ B̄ and if p(A) = q(B) for some A ∈ Ā and
B ∈ B̄ then |A ∩B| > 1

Proof. If A = Jt then the following functions satisfy the properties: p({1, 2, . . . t}) =
q({1, 2, . . . t}) = 1, p({0, 1}) = q({0, 1}) = 0, p({0, i}) = q({0, i}) = i (for i ∈
{2, 3, . . . t}).
If A is not a degenerate projective plane then due to Lehman's Theorem 2.6 the sets

in Ā and B̄ can be indexed as A1, A2, . . . , An and B1, B2, . . . Bn such that |Ai∩Bj| > 1
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if and only if i = j. So we want to choose p(Ai) = q(Bi) ∈ Ai ∩ Bi so that they are
all di�erent. To this end we construct the bipartite graph G = (S, T ;E) where
T = {t1, t2, . . . tn} and sitj ∈ E ⇔ si ∈ Aj ∩Bj. Lehman's Theorem implies that G is
(d+ 1)-regular: on the side of S because MT

ĀMB̄ = I + dJ which implies that for any
element in S there are d + 1 indices i ∈ [n] such that s ∈ Ai ∩ Bi. And on the side
of T because MĀM

T
B̄ = I + dJ which implies that |Ai ∩Bi| = d+ 1 for every i ∈ [n].

Therefore the bipartite graph G is regular, so König's Theorem implies that there is a
perfect matching in G which gives functions p and q with the desired properties.

De�nition 2.9. A clutter is cyclic if it is isomorphic to a clutter of all the sets
containing r consecutive elements in cyclic order for some r.

Claim 2.10. If the core Ā of the mni clutter A is cyclic, then Conjecture 1.2 is true
for A.

Proof. Suppose that S = {s1,2 , . . . sn} and that the order of the indices is the order
for which A is cyclic. Let us de�ne p and q as follows. For A ∈ Ā let p(A) be the last
element of A in cyclic order. For A ∈ A \ Ā take a modulo r congruence class (here
we look at the indices of the elements) which has more than one elements in A and
let p(A) be the smallest element among these (there is such a congruence class since
in this case |A| > r).
For B ∈ B let q(B) be the element with the largest index such that the preceding

r − 1 elements intersect B. There is such an element because otherwise every rth
element would be in B but |B| ≥ s = n+d

r
> n

r
.

Now suppose that for A ∈ A and B ∈ B we have p(A) = q(B) = si. If A ∈ Ā, then
by the de�nition of p and q, A and B meet at an element among the r − 1 elements
preceding si. If A ∈ A\Ā then on one hand A contains an element sj for which j > i
and j ≡ i (mod r) because of the de�nition of p(A). On the other hand B contains
all these elements since after si it has to contain every rth element. So they have
another common element, which shows that p and q ful�ll the criteria.

3 An example

Let us examine the clutter OK5 whose ground set is the edge set of the graph K5

and which consists of the odd cycles. The blocker b(OK5) of it consists of the K4

subgraphs and the triangles together with the edge disjoint from them. These clutters
are minimally nonideal as was shown by Seymour [4].
Figure 3 shows functions on the coresOK5 and b(OK5) whose existence is guaranteed

by Claim 2.8: it satis�es the conditions for the cores (the graph-edges selected by pbad
and qbad are drawn in thick; on the other clutter-edges pbad and qbad act with a rotation
symmetry).
However this function can not be extended to the whole clutter, as shown by the

5-cycle of the �outer� edges. But there are functions pgood and qgood which satisfy
all the requirements of Conjecture 1.2; Figure 3 shows such a function (again the
clutter-edges not shown have their selected edges symmetrically).
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a) b)

Figure 1: a) Function pbad on OK5 , b) function qbad on b(OK5)

a)

b)

Figure 2: a) Function pgood on OK5 , b) function qgood on b(OK5)
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