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Abstract

In this note we consider the following problem: is there a (smallest) integer

kd such that every graph G is uniquely determined by its d-dimensional rigidity

matroid Rd(G), provided that Rd(G) is kd-connected? Since R1(G) is isomor-

phic to the cycle matroid of G, a celebrated result of H. Whitney implies that

k1 = 3. We prove that if G is 7-vertex-connected then it is uniquely determined

by R2(G). We use this result to deduce that k2 ≤ 11, which gives an a�rmative

answer for d = 2.

1 Introduction

LetM be a matroid on ground set E with rank function r and let k be a positive
integer. We say that a partition (X, Y ) of E is a k-separation if

min{|X|, |Y |} ≥ k, and

r(X) + r(Y ) ≤ r(E) + k − 1.

The connectivity ofM, denoted by λ(M), is de�ned to be the smallest integer j for
whichM has a j-separation. Note that λ(M) ≥ 1 for all matroidsM. We say that
M is h-connected if λ(M) ≥ h holds. We refer the reader to [7] for more details on
matroids and matroid connectivity.

The following problem was recently proposed by Brigitte and Herman Servatius [1,
Problem 17].

Problem Let G be a graph and Rd(G) its d-dimensional generic rigidity matroid. Is
there a (smallest) constant kd such that G is uniquely determined by Rd(G) provided
that Rd(G) is kd-connected?
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Section 2. Highly connected graphs 2

The d-dimensional generic rigidity matroid (or simply rigidity matroid) Rd(G) of
graph G = (V,E) is de�ned on the edge set of G, see [2, 8]. It is not hard to see that
R1(G) is isomorphic to the cycle matroid of G, which implies, by a theorem of H.
Whitney [9], that k1 = 3. The two-dimensional rigidity matroid was characterized by
G. Laman [5], who proved that a set F ⊆ E is independent in R2(G) if and only if

|E(G[X]) ∩ F | ≤ 2|X| − 3 for all X ⊆ V with |X| ≥ 2, (1)

where G[X] denotes the subgraph of G induced by X. Note that r2(E) ≤ 2|V | − 3 by
(1). In this note we shall prove that k2 exists and provide an explicit bound k2 ≤ 11.
It is a major open problem to �nd a good characterization for independence in d-
dimensional rigidity matroids, for d ≥ 3. Thus the problem for higher dimensions is
probably substantially harder.
We shall consider graphs without loops and isolated vertices. Henceforth we shall

assume that d = 2 and omit the subscripts referring to the dimension.

2 Highly connected graphs

We �rst show that if G is highly connected then its rigidity matroid uniquely de-
termines G. We need some more de�nitions. Let G = (V,E) be a graph. We say that
G is rigid if r(E) = 2|V | − 3 and that G is redundantly rigid if G − e is rigid for
all e ∈ E. A k-vertex separation of a graph H = (V,E) is a pair (H1, H2) of edge-
disjoint subgraphs of G each with at least k + 1 vertices such that H = H1 ∪H2 and
|V (H1) ∩ V (H2)| = k. The graph is said to be k-vertex-connected if it has at least
k + 1 vertices and has no j-vertex separation for all 0 ≤ j ≤ k − 1.
We shall also need the following three results from combinatorial rigidity.

Lemma 2.1. [2, Theorem 4.7.2], [4, Lemma 3.1] Suppose that R(G) is 2-connected.
Then G is redundantly rigid.

Theorem 2.2. [6, Theorem 2] Every 6-vertex-connected graph is redundantly rigid.

Theorem 2.3. [4, Theorem 3.2] Suppose that G is 3-vertex-connected and redundantly
rigid. Then R(G) is 2-connected.

The proof method of our �rst result is motivated by a proof for (a special case of)
Whitney's theorem, due to J. Edmonds (see [7]). Let J ⊆ E be a set of elements in
matroid M. We say that J is a 2-hyperplane of M if r(J) = r(E) − 2 and for all
e ∈ E − J we have r(J + e) = r(E)− 1.

Theorem 2.4. Let G and H be two graphs and suppose that R(G) is isomorphic to
R(H). If G is 7-vertex-connected then G is isomorphic to H.

Proof. We say that a 2-hyperplane J of R(G) is 2-connected if the matroid restriction
of R(G) to J is 2-connected. Since G is 7-vertex-connected, Theorems 2.2 and 2.3
imply that G is rigid and E(G− v) (i.e. the edge set E minus the vertex bond of v)
is a 2-connected 2-hyperplane of R(G) for all v ∈ V (G).
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Now consider an arbitrary 2-connected 2-hyperplane J of R(G). By Lemma 2.1
the subgraph L = (V (J), J) of G on the set of end vertices of J is rigid. Thus
r(J) = 2|V (J)| − 3 and, since 2-hyperplanes are closed sets, it follows that L is an
induced subgraph ofG. By using the fact thatG is rigid, we obtain |V (G)| = |V (J)|+1.
Thus the complement of J corresponds to a vertex bond of G.
It follows that there is a bijection between V (G) and the 2-connected 2-hyperplanes

of R(G) and that R(G) uniquely determines the vertex-edge incidencies in G.
By the assumption of the theorem R(G) and R(H) are isomorphic. It follows from

Theorems 2.2 and 2.3 that R(G) is 2-connected. Thus R(H) is also 2-connected and
hence H is rigid by Lemma 2.1. This implies that 2|V (G)| − 3 = r(G) = r(H) =
2|V (H)| − 3 and hence |V (G)| = |V (H)|. Thus R(H) has |V (H)| 2-connected 2-
hyperplanes. So G and H are isomorphic, as claimed.

2.1 Examples

The bound on the connectivity of G in Theorem 2.4 might be improved to 6, but it
cannot be replaced by 5. To prove this claim we recall the following family of graphs
from [6]: let G be a 5-regular 5-vertex-connected graph on k vertices. Split every vertex
of G into 5 vertices of degree one, and identify these 5 vertices with the vertices of
a complete graph K5 on 5 vertices. See Figure 1 for two (non-isomorphic) examples
with k = 8.
It is easy to see that the resulting graph G′ on 5k vertices is 5-vertex-connected.

It is also easy to verify that G′ has rank at most 19
2
k, hence G′ is not rigid when

k ≥ 8, see [6]. Furthermore, by using the Henneberg inductive construction to verify
independence, one can also show that the rank of G′ is exactly 19

2
k and that the

deletion of an arbitrary edge connecting distinct K5's decreases the rank by one.
Thus R(G′) is the direct sum of k copies of R(K5) and

5
2
k copies of R(K2), for any

choice of the initital graph G. Our claim follows, since there exist non-isomorphic
5-regular 5-vertex-connected graphs on k ≥ 8 vertices for all k ≥ 8.
We also have similar examples with rigid graphs, but with smaller connectivity.

The graphs on Figure 2 are non-isomorphic 3-vertex-connected rigid graphs of the
same size. Their rigidity matroids are isomorphic, since the edge set of both graphs is
a circuit in the corresponding rigidity matroid. This implies that 7-vertex-connected
cannot be replaced by 3-vertex-connected in Theorem 2.4, even if we add the assump-
tion that G is rigid.

3 Highly connected matroids

In this section we show that highly connected rigidity matroids have unique un-
derlying graphs. We shall need the following two lemmas and Theorem 2.4. Let d(v)
denote the degree of vertex v in G and let δ(G) = min{d(v) : v ∈ V (G)} denote the
minimum degree of G.

Lemma 3.1. Let G = (V,E) be a rigid graph on at least three vertices and suppose
that R(G) is k-connected for some k ≥ 1. Then δ(G) ≥ k + 1.
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Figure 1: Two non-isomorphic 5-vertex-connected graphs with isomorphic rigidity
matroids.

Figure 2: Two non-isomorphic 3-vertex-connected rigid graphs whose edge sets are
circuits in their rigidity matroids.

Proof. Since G is rigid, G is 2-vertex connected and δ(G) ≥ 2. Let X be the set
of edges obtained from the vertex bond of some vertex v of degree d(v) by deleting
an arbitrary edge. Let Y = E − X. The 2-vertex connectivity of G implies that
|Y | = |E(G− v)|+ 1 ≥ |V (G)| − 1 + 1 ≥ d(v). Thus min{|X|, |Y |} ≥ d(v)− 1 holds.
Since X is a co-circuit of R(G), we have

r(X) + r(Y ) ≤ d(v)− 1 + r(E)− 1 = r(E) + d(v)− 2.

Hence (X, Y ) is a (d(v) − 1)-separator of R(G), which implies δ(G) ≥ k + 1, as
required.

Lemma 3.2. Let G = (V,E) be a graph and suppose that R(G) is (2k− 3)-connected
for some k ≥ 3. Then G is k-vertex connected.

Proof. The hypothesis of the lemma implies that R(G) is 2-connected. Thus G is rigid
by Lemma 2.1. Hence r(E) = 2|V | − 3 and, by Lemma 3.1, we have δ(G) ≥ 2k − 2
and |V | ≥ 2k − 1 ≥ k + 1.
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For a contradiction suppose that G has a j-vertex separation (G1, G2) for some
j ≤ k − 1. Let X = E(G1) and Y = E(G2). Since δ(G) ≥ 2k − 2, we must have
min{|X|, |Y |} ≥ 2k − 2. By using (1) we can now deduce that

r(X)+r(Y ) ≤ 2|V (G1)|−3+2|V (G2)|−3 = 2(|V |+j)−6 ≤ 2|V |+2k−8 = r(E)+2k−5.

Hence (X, Y ) is a (2k−4)-separator of R(G), a contradiction. This proves the lemma.

Note that a highly vertex-connected graph G does not necessarily have a highly
connected rigidity matroid. The existence of a complete graphK4 in G (whose edge set
is a circuit in R(G)) implies that λ(R(G)) ≤ 6, even if G is highly vertex-connected.
The main result of this section is now a direct corollary of Theorem 2.4 and Lemma

3.2.

Theorem 3.3. Let G and H be two graphs and suppose that R(G) is isomorphic to
R(H). If R(G) is 11-connected then G is isomorphic to H.

Theorem 3.3 implies that k2 ≤ 11. By the example of Figure 2 we have k2 ≥ 3.
We remark that the proofs and results in this section can easily be extended to

vertical connectivity, which is another natural form of matroid connectivity [7]. In
particular, we can replace 11-connected by vertically 11-connected in Theorem 3.3.

4 Concluding remarks

In this note we have shown that a highly connected two-dimensional rigidity matroid
uniquely determines its underlying graph. Since no good characterization is known
for independence in the three-dimensional rigidity matroid, the question whether k3
exists seems more di�cult. We note that three-dimensional versions of some of the
key results that we used in the proofs exist as conjectures: Lovász and Yemini [6]
conjecture that 12-vertex-connected graphs are rigid in three-space, while Jackson
and Jordán [3] conjecture that if G is 5-vertex-connected and R3(G) is 2-connected
then G is redundantly rigid. The bounds on the vertex connectivity would be best
possible in both conjectures.

We thank B. Jackson and B. Servatius for their comments on an earlier version of
this paper.
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