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Abstract

For an undirected graph and a fixed integer k, a 2-matching is said to be
k-restricted if it has no cycle of length k or less. The problem of finding a
maximum k-restricted 2-matching is polynomially solvable when k ≤ 3, and
NP-hard when k ≥ 5. On the other hand, the degree sequences of the k-
restricted 2-matchings form a jump system for k ≤ 3, and do not always form
a jump system for k ≥ 5, which is consistent with the polynomial solvability of
the maximization problem. In 2002, Cunningham conjectured that the degree
sequences of 4-restricted 2-matchings form a jump system and the maximum
4-restricted 2-matching can be found in polynomial time.

In this paper, we show that the first conjecture is true, that is, the degree
sequences of 4-restricted 2-matchings form a jump system. We also show that
the weighted 4-restricted 2-matchings in a bipartite graph induce an M-concave
function on the jump system if and only if the weight function is vertex-induced
on every square. This result is also consistent with the polynomial solvability
of the weighted 4-restricted 2-matching problem in bipartite graphs.

Keywords: restricted 2-matchings, jump systems, M-convex func-
tions

1 Introduction

A jump system, introduced by Bouchet and Cunningham [5], is a set of integer lattice
points with an exchange property (to be described in Section 2); see also [20, 26].
It is a generalization of a matroid [32, 38, 41], a delta-matroid [4, 6, 10], and a base
polyhedron of an integral polymatroid (or a submodular system) [15]. Many efficiently
solvable combinatorial optimization problems closely relate to these structures. For
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Section 1. Introduction 2

instance, the degree sequences of all matchings in an undirected graph form a delta-
matroid, and the degree sequences of all even factors form a jump system if the given
digraph has a certain property called odd-cycle-symmetric [25].

In the present paper, we investigate the relationship between jump systems and
k-restricted 2-matchings, which was first considered by Cunningham [7]. We consider
only simple undirected graphs in this paper. An edge set M is called a t-matching
if at most t edges in M are incident to each vertex (these are usually called simple
t-matchings in the literature). For an integer k, a 2-matching M is said to be k-
restricted if M has no cycle of length k or less. The k-restricted 2-matching problem is
to find a k-restricted 2-matching of maximum size for a given graph and given k. Note
that the case k ≤ 2 is exactly the classical simple 2-matching problem, which can be
solved efficiently. Papadimitriou showed that the k-restricted 2-matching problem is
NP-hard for k ≥ 5 (see [9]), and Geelen [16] proved that it is NP-hard when k = 6 and
the graph is bipartite. On the other hand, Hartvigsen [17] proved that the problem
is polynomial-time solvable for k = 3. The case k = 4 is left open.

Cunningham [7] conjectured that the degree sequences of k-restricted 2-matchings
form a jump system if and only if the k-restricted 2-matching problem is polynomial-
time solvable (see Section 2 for the definition of degree sequences). He proved this
conjecture for cases k = 3 and k ≥ 5. That is, he proved that the degree sequences
of the 3-restricted 2-matchings form a jump system and those of the 5-restricted
2-matchings do not. (His counterexample for the case k ≥ 5 will be simplified in
Section 3.2.)

For the case k = 4, Cunningham [7] conjectured that the 4-restricted 2-matching
problem is polynomial-time solvable and that the degree sequences of the 4-restricted
2-matchings form a jump system. In this paper we prove the second conjecture. These
conjectures of Cunningham were based on Russel’s augmenting path theorem [35]
and Király’s min-max formula for the 4-restricted 2-matching problem in bipartite
graphs [21]. Later, polynomial-time algorithms for the 4-restricted 2-matching prob-
lem in bipartite graphs are devised by Hartvigsen [18] and Pap [34].

Recently, generalizations of k-restricted 2-matchings to t-matchings are studied
actively. Frank [14] first considered Kt,t-free t-matchings, which are t-matchings not
containing a Kt,t as a subgraph. Note that, when t = 2 and the given graph is
bipartite, the Kt,t-free t-matchings are exactly the 4-restricted 2-matchings. Also,
the notion of Kt+1-free t-matchings, which are t-matchings not containing a Kt+1 as
a subgraph, is a generalization of that of 3-restricted 2-matchings. The Kt,t-free t-
matching problem and the Kt+1-free t-matching problem are solved in some classes of
graphs. For the former problem in bipartite graphs, a min-max formula is given by
Frank [14], and a combinatorial algorithm by Pap [34, 33]. For the both problems in
graphs with degree at most t + 1, a min-max formula and a combinatorial algorithm
are given by Bérczi and Végh [3].

In this paper, we prove Cunningham’s conjecture, stating that the degree sequences
of 4-restricted 2-matchings form a jump system, by showing a general theorem for t-
matchings. Now we state our main result. We say that a graph G = (V,E) is a
complete partite graph if there exists a partition {V1, . . . , Vp} of V such that E =
{(u, v) | u ∈ Vi, v ∈ Vj, i 6= j}. In other words, a complete partite graph is the
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Section 1. Introduction 3

complement of the disjoint union of complete graphs. A graph is t-regular if the
degree of every vertex is t. For a set H of graphs, a subgraph of G is an H-subgraph
if it is isomorphic to a member of H, and a subgraph (or an edge set) is H-free if
it contains no H-subgraph (resp. no edge set of an H-subgraph). In particular, “k-
restricted” and “{C3, . . . , Ck}-free” mean the same condition for a 2-matching, where
Ct denote a cycle with t vertices. For a graph H, we denote “{H}-subgraph” and
“{H}-free” simply by “H-subgraph” and “H-free,” respectively. Our main result is
stated as follows.

Theorem 1.1. Let t be an integer and H be a set of t-regular graphs such that any
proper subgraph of a member of H is not in H. Then, the degree sequences of all
H-free t-matchings in G form a jump system for any graph G if and only if every
member of H is a complete partite graph.

As special cases of this theorem, we obtain the following as corollaries. In particular,
Corollary 1.4 solves Cunningham’s conjecture.

Corollary 1.2. The degree sequences of all Kt+1-free t-matchings in a graph form a
jump system.

Corollary 1.3. The degree sequences of all Kt,t-free t-matchings in a graph form a
jump system.

Corollary 1.4. The degree sequences of all 4-restricted 2-matchings in a graph form
a jump system.

We also discuss the weighted version from the viewpoint of discrete convex analy-
sis [29]. The concept of M-concave (M-convex) functions on constant-parity jump sys-
tems is a general framework of optimization problems on jump systems [30] (see Sec-
tion 4.1 for a definition), and it is a generalization of valuated matroids [11, 13],
valuated delta-matroids [12], and M-convex functions on base polyhedra [28].

We consider the weighted k-restricted 2-matching problem in bipartite graphs.
When k ≥ 6, it is NP-hard even for the unweighted case [16]. Moreover, Z. Király
proved that the weighted 4-restricted 2-matching problem in bipartite graphs is also
NP-hard (see [14]). This problem is, however, tractable if the weight function is
vertex-induced on every K2,2. A weight function is said to be vertex-induced on H
for a subgraph H if there exists a function pH on the vertex set of H such that
w(e) = pH(u) + pH(v) for every edge e = (u, v) in H. If the given graph is bipar-
tite and the given weight function is vertex-induced on every Kt,t, then the weighted
Kt,t-free t-matching problem can be solved in polynomial time [27, 37].

In this paper, we show a relationship between the weighted Kt,t-free t-matchings
in bipartite graphs and M-concave functions on constant-parity jump systems. For a
weighted bipartite graph (G,w), let Jt,t(G) be the set of degree sequences of all Kt,t-
free t-matching in G, which is a jump system by Corollary 1.3. We define a function
ft,t on Jt,t(G) by

ft,t(x) = max

{∑
e∈M

w(e)

∣∣∣∣ M is a Kt,t-free t-matching, dM = x

}
.
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Section 2. Definitions 4

Theorem 1.5. For a weighted bipartite graph (G,w) and an integer t ≥ 2, ft,t is
an M-concave function on the constant-parity jump system Jt,t(G) if and only if w is
vertex-induced on every Kt,t in G.

This theorem suggests that assuming the weight function to be vertex-induced on
every Kt,t is reasonable in considering the weighted Kt,t-free t-matching problem in
bipartite graphs. We also remark that a general algorithm maximizing an M-concave
function on a constant-parity jump system [30, 31, 36] cannot be applied directly to
the weighted Kt,t-free t-matching problem in this assumption. In such an algorithm,
we compute the function value polynomially many times. Thus, in order to obtain a
polynomial algorithm based on Theorem 1.5 and the general framework of maximizing
M-concave functions on a constant-parity jump system, we need a polynomial-time
algorithm computing ft,t.

This paper is organized as follows. In Section 2, we give some definitions on graphs
and jump systems. In Sections 3 and 4, we prove Theorems 1.1 and 1.5, respectively.

2 Definitions

Let G = (V, E) be an undirected graph with vertex set V and edge set E. Assume
that G is simple, that is, G has neither parallel edges nor self-loops. In what follows,
we often omit to declare that the graph is simple or undirected. An edge connecting
u, v ∈ V is denoted by (u, v). The set of edges incident to v ∈ V is denoted by δ(v).
Recall that, for a positive integer t, an edge set M ⊆ E is said to be a t-matching
if |M ∩ δ(v)| ≤ t for every v ∈ V . In particular, a 2-matching is a vertex-disjoint
collection of paths and cycles. The degree sequence dF ∈ ZV of an edge set F ⊆ E is
defined by

dF (v) = |F ∩ δ(v)| (v ∈ V ).

We denote a bipartite graph with color classes V1 and V2 by (V1, V2; E). For a
positive integer t, Kt and Ct denote a complete graph with t vertices and a cycle
with t vertices, respectively. For positive integers a and b, Ka,b is a complete bipartite
graph (A,B; E) with |A| = a, |B| = b and E = {(u, v) | u ∈ A, v ∈ B}. A graph K1,t

is called a star.
For a subgraph H of G, the vertex set and edge set of H are denoted by V (H)

and E(H), respectively. Recall that, for a set H of graphs, a subgraph of G is an
H-subgraph if it is isomorphic to a member of H, and a subgraph (or an edge set)
is H-free if it contains no H-subgraph (resp. no edge set of an H-subgraph). While
it causes no confusion, we sometimes identify a subgraph and its edge set. We also
recall that for a positive integer k, we say that a 2-matching is k-restricted if it has
no cycle of length k or less, that is, it is {C3, . . . , Ck}-free.

Let V be a finite set. For u ∈ V , we denote by χu the characteristic vector of u,
with χu(u) = 1 and χu(v) = 0 for v ∈ V \ {u}. For x, y ∈ ZV , a vector s ∈ ZV is
called an (x, y)-increment if x(u) < y(u) and s = χu for some u ∈ V , or x(u) > y(u)
and s = −χu for some u ∈ V .
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Section 3. H-free subgraphs and jump systems 5

Definition 2.1 (Jump system [5]). A nonempty set J ⊆ ZV is said to be a jump
system if it satisfies an exchange axiom, called the 2-step axiom:

Axiom 1. For any x, y ∈ J and for any (x, y)-increment s1 with x + s1 6∈ J , there
exists an (x + s1, y)-increment s2 such that x + s1 + s2 ∈ J .

A set J ⊆ ZV is a constant-parity system if
∑

v∈V (x(v)−y(v)) is even for any x, y ∈
J . A constant-parity jump system is a generalization of the base family of a matroid,
an even delta-matroid [39, 40], and a base polyhedron of an integral polymatroid.
The degree sequences of all subgraphs in an undirected graph is a typical example of
a constant-parity jump system. That is, for a graph G = (V,E),

JSG(G) = {dF | F ⊆ E}

is a constant-parity jump system [5, 26]. The set of all degree sequences of t-matchings
is the intersection of JSG(G) and a box {0, 1, . . . , t}V , and hence it is also a constant-
parity jump system. However, Corollaries 1.2, 1.3, and 1.4 are not obvious since the
additional conditions make the situation more complicated.

3 H-free subgraphs and jump systems

In this section, we first investigate the relationship between H-free t-matchings and
jump systems. We prove the sufficiency and the necessity in Theorem 1.1 in Sec-
tions 3.1 and 3.2, respectively. After that, we consider the relationship between H-free
subgraphs and jump systems in Section 3.3.

3.1 Sufficiency

First, we show the sufficiency (“if” part) in Theorem 1.1.

Proposition 3.1. Let H be a set of t-regular complete partite graphs and G = (V, E)
be a graph. Then, the degree sequences of all H-free t-matchings in G form a jump
system.

Proof. Let JH(G) be the set of the degree sequences of all H-free t-matchings in G.
For x, y ∈ JH(G), let M and N be H-free t-matchings in G such that dM = x and
dN = y, and let s1 be an (x, y)-increment. Note that x + s1 6∈ JH(G). We present an
algorithm for finding an (x + s1, y)-increment s2 satisfying Axiom 1. In what follows,
we consider the case where s1 = χu for some u ∈ V . The case where s1 = −χu can
be dealt with in a similar way.

Let P be the set of pairs of an H-free t-matching and a vertex defined by

P = {(M ′, u′) | M ′ is an H-free t-matching in G, u′ ∈ V , dM ′ + χu′ = x + s1}.

In order to show the proposition, we use the following lemma, whose proof is given
below.

EGRES Technical Report No. 2010-04



3.1 Sufficiency 6

Lemma 3.2. When we are given a pair (M ′, u′) ∈ P, we can find either an (x +
s1, y)-increment s2 with x + s1 + s2 ∈ JH(G) or a new pair (M ′′, u′′) ∈ P such that
(|M ′′ ∪N |, dM ′′∩N(u′′)) is lexicographically less than (|M ′ ∪N |, dM ′∩N(u′))

Since (M,u) ∈ P and (|M ′∪N |, dM ′∩N(u′)) is finite for (M ′, u′) ∈ P , we obtain the
proposition by using Lemma 3.2, repeatedly.

Hence, what remains is the proof of Lemma 3.2.

Proof of Lemma 3.2. For (M ′, u′) ∈ P , −χu′ is a desired (x + s1, y)-increment if
dM ′(u′) ≥ y(u′). Thus, we may assume that dM ′(u′) < y(u′), that is, χu′ is a (dM ′ , y)-
increment, which means that it suffices to consider the case where the given pair is
(M,u).

To prove Lemma 3.2, we use the following claims.

Claim 3.3. For t ≥ 3, there exists at most one edge e ∈ (N \M) ∩ δ(u) such that
M ∪ {e} contains an H-subgraph.

Proof. Assume that both e1 = (u, v1) and e2 = (u, v2) are in (N \M)∩ δ(u) and both
M ∪ {e1} and M ∪ {e2} contain H-subgraphs. Let Hi be an H-subgraph contained
in M ∪ {ei} for i = 1, 2. Since χu is a (dM , y)-increment and y(u) ≤ t, we have that
|M ∩ δ(u)| = t − 1. Therefore, there exists an edge (u,w1) ∈ M ∩ δ(u), which is
contained in both H1 and H2. Since M is a t-matching, |M ∩ δ(w1)| = t and all edges
in M ∩ δ(w1) are contained in both H1 and H2.

Assume that there exists an edge (w1, w2) in M with w2 6= u, v1, v2. Then, |M ∩
δ(w2)| = t and all edges in M ∩ δ(w2) are contained in both H1 and H2. This
means that, by the definition of complete partite graphs, both V (H1) and V (H2)
are identical to the set of all end vertices of M ∩ (δ(w1) ∪ δ(w2)), denoted by V (H).
Hence, v1 is adjacent to t vertices of V (H) both in H1 and H2, which contradicts that
(u, v1) ∈ E(H1) \ E(H2).

Thus, the remaining case is when t = 3 and M∩δ(w1) = {(w1, u), (w1, v1), (w1, v2)}.
Note that 3-regular complete partite graph is either K4 or K3,3. Since (u, v2) is not in
H1, H1 is not a K4 but a K3,3. However, H1 contains {(u, v1), (w1, u), (w1, v1)}, which
is a contradiction.

Claim 3.4. For t = 2, either one of the following statements holds.

• There exists at most one edge e ∈ (N \M) ∩ δ(u) such that M ∪ {e} contains
an H-subgraph.

• H = {K3, K2,2} and there exist three vertices v, w, z ∈ V such that (u, v), (u,w) ∈
N \M and (u, z), (z, w), (w, v) ∈ M .

Proof. Assume that the former statements does not hold, that is, M ∪ {e1} and
M ∪ {e2} contain H-subgraphs for distinct edges e1 = (u, v1) and e2 = (u, v2) in
(N \ M) ∩ δ(u). Note that 2-regular complete partite graph is either K3 or K2,2.
Let Hi be an H-subgraph contained in M ∪ {ei} for i = 1, 2. In the same way as
Claim 3.3, we can take an edge (u,w1) ∈ M ∩ δ(u) such that |M ∩ δ(w1)| = 2 and all
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3.1 Sufficiency 7

edges in M ∩ δ(w1) are contained in both H1 and H2. Let (w1, w2) be an edge in M
with w2 6= u. Since both M ∪ {e1} and M ∪ {e2} contain H-subgraphs, we have that
w2 coincides with v1 or v2, one of H1 and H2 is K3 and the other is K2,2, and there
exists an edge (v1, v2) ∈ M . This shows that we have the latter statement by setting
z = w1, {v, w} = {v1, v2}.

In order to prove Lemma 3.2, we consider the following two cases separately.
Case 1. Assume that there exists an edge e = (u, v) ∈ (N \ M) ∩ δ(u) such that
M ∪ {e} contains no H-subgraph. Then, we define M ′ = M ∪ {e}. If dM(v) < dN(v),
then s2 = χv is an (x + s1, y)-increment and x + s1 + s2 = dM ′ ∈ JH(G). Otherwise,
since dM ′(v) = dM(v) + 1 > dN(v), there exists an edge (v, w) ∈ (M ′ \N) ∩ δ(v). In
this case, the pair (M ′′, w) defined by M ′′ = M ′ \ {(v, w)} is in P and satisfies the
condition in Lemma 3.2, because |M ′′ ∪N | = |M ∪N | − 1.
Case 2. Assume that there exist no such edges, that is, for every edge e ∈ (N \M)∩
δ(u), M ∪ {e} contains an H-subgraph. Since dN(u) > dM(u) by the definition of an
(x, y)-increment, at least one edge is in (N \M)∩ δ(u). Hence, by Claims 3.3 and 3.4,
we have the following two possibilities.

(2-1) There exists an H-subgraph H containing u such that δ(u) ∩ E(H) ⊆ N and
E(H) \ {(u, v)} ⊆ M for some v ∈ V (H).

(2-2) t = 2, H = {K3, K2,2}, and there exist three vertices v, w, z ∈ V such that
(u, v), (u, w) ∈ N \M and (u, z), (z, w), (w, v) ∈ M .

In the case (2-2), the pair (M ′, z) ∈ P defined by M ′ = (M ∪ {(u, v)}) \ {(v, w)}
satisfies the condition in Lemma 3.2, because |M ′ ∪ N | = |M ∪ N | − 1. Note that
(v, w) 6∈ N , because N contains no H-subgraph.

In the case (2-1), there exists an edge (w1, w2) ∈ E(H) that is not contained in N ,
because N does not contain H. Since at least one of (v, w1) and (v, w2) is in E(H) by
the definition of complete partite graphs, we can assume that (v, w1) ∈ E(H) without
loss of generality. Now we show the following claim.

Claim 3.5. Suppose that there exists an H-subgraph H such that u ∈ V (H), δ(u) ∩
E(H) ⊆ N and E(H) \ {(u, v)} ⊆ M for some v ∈ V (H). Then, H is the unique
H-subgraph in M ∪ {(u, v)}.
Proof. Let M ′ = M ∪ {(u, v)}. Assume that M ′ contains an H-subgraph H ′ 6= H.
Since |M ∩ δ(u)| ≤ t − 1, we have |M ′ ∩ δ(u)| = t and all edges in M ′ ∩ δ(u) are
contained in both H and H ′. Let (u,w) be an edge in M ′ ∩ δ(u) with w 6= v. Then,
w is contained in both H and H ′. Since |M ′ ∩ δ(w)| = t, all edges in M ′ ∩ δ(w) are
contained in both H and H ′. By the definition of complete partite graphs, both V (H)
and V (H ′) are the set of all end vertices of M ′∩ (δ(u)∪ δ(w)), which contradicts that
H ′ 6= H.

Define M ′′ = (M ∪ {(u, v)}) \ {(v, w1)}. Since H is the unique H-subgraph in
M∪{(u, v)} by Claim 3.5, M ′′ contains noH-subgraph, which implies that (M ′′, w1) ∈
P . Then, (M ′′, w1) is a desired pair in Lemma 3.2, because |M ′′ ∪ N | ≤ |M ∪ N |,
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3.2 Necessity 8

dM∩N(u) = t−1, and dM ′′∩N(w1) ≤ |(M ′′∩δ(w1))\{(w1, w2)}| = t−2. This completes
the proof of Lemma 3.2.

3.2 Necessity

We prove the necessity (“only if” part) in Theorem 1.1.

Proposition 3.6. Let H be a set of t-regular graphs such that any proper subgraph
of a member of H is not in H. If the degree sequences of all H-free t-matchings in G
form a jump system for any graph G = (V, E), then every member of H is a complete
partite graph.

Instead of proving Proposition 3.6, we show the following stronger theorem.

Theorem 3.7. Let t be a positive integer and H be a set of graphs such that any
proper subgraph of a member of H is not in H, and every member of H has no
isolated vertices and has maximum degree at most t. If the degree sequences of all
H-free t-matchings in G form a jump system for any graph G, then every member of
H is a complete partite graph.

Proof. Assume to the contrary that H ∈ H is not a complete partite graph. We
prove that the degree sequences of all H-free t-matchings in H = (V, E) itself do not
form a jump system. The complete partite graphs are exactly those graphs in which
non-adjacency is a transitive relation, and hence H has three vertices v1, v2, v3 ∈ V
such that (v1, v2), (v1, v3) 6∈ E and (v2, v3) ∈ E. Since H has no isolated vertices,
there exists a vertex u ∈ V adjacent to v1. Let M = E \ {(v1, u)}, and

N = {e ∈ E | e is incident to some vertex in the neighborhood of v1},
where the neighborhood of v1 is the set of vertices adjacent to v1. Since N does not
contain (v2, v3), N is an H-free t-matchings, and so is M . Let x = dM , y = dN , and
s1 = χu. Then, x and y are degree sequences and s1 is an (x, y)-increment. However,
there exists no (x + s1, y)-increment s2 such that x + s1 + s2 is a degree sequence of
an H-free t-matching. This is because,

• for a vertex v in the neighborhood of v1, (x + s1)(v) = y(v),

• for a vertex v not in the neighborhood of v1, x + s1− χv = dH − χv1 − χv is not
a degree sequence of a subgraph of H since (v1, v) 6∈ E, and

• for a vertex v not in the neighborhood of v1, x + s1 + χv is a degree sequence of
a subgraph of H only if v = v1, but in this case it is a degree sequence of E(H),
which is not H-free.

It follows that Ck itself is an example for which the degree sequences of k-restricted
2-matchings do not form a jump system for k ≥ 5. This counterexample is somewhat
simpler than that of Cunningham [7]. It also follows that the degree sequences of
Ck-free 2-matchings do not always form a jump system for k ≥ 5.
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3.3 Degree sequences of H-free subgraphs 9

3.3 Degree sequences of H-free subgraphs

In this subsection, we investigate when the degree sequences of all H-free subgraphs
form a jump system for a graph H.

Theorem 3.8. Let H be a graph. The degree sequences of all H-free subgraphs form
a jump system in any graph if and only if H is a star.

Proof. By Theorem 3.7, if H is not a complete partite graph then the degree sequences
of H-free subgraphs of H itself do not form a jump system.

Suppose that H is a complete p-partite graph for p ≥ 3, and denote the color classes
by V1, . . . , Vp, where |V1| ≤ · · · ≤ |Vp|. Construct a new p-partite graph G by adding
a new element r to Vp, that is, V (G) = V (H) ∪ {r} and E(G) = E(H) ∪ {(v, r) |
v ∈ V \ Vp}. Let u ∈ V1, v ∈ V2, z1, z2 ∈ Vp ∪ {r}, M = E(G) \ {(u, v)}, and
N = E(G) \ {(u, z1), (u, z2)}. Observe that M and N are H-free subgraphs and
s1 = χv is a (dM , dN)-increment. We have the following possibilities for (dM +s1, dN)-
increments: −χu and −χzi

for i = 1, 2. For the first case, there is no subgraph
whose degree sequence is dM + χv − χu = dE(G) − 2χu. For the second case, the only
subgraph whose degree sequence is dM +χv−χzi

is E(G)\{(u, zi)}, which contains an
H-subgraph G−zi. Thus, there is no (dM +s1, dN)-increment s2 such that dM +s1+s2

is a degree sequence of an H-free subgraph.
Suppose that H is a complete bipartite graph Ka,b with a, b > 1. Let G = (V, E)

be the graph defined by

V = U1 ∪ U2 ∪ V1 ∪ V2 ∪ {u} ∪ {v},
E = {(u′, v′) | u′ ∈ U1 ∪ {u}, v′ ∈ V1 ∪ {v}} ∪ {(u′, v′) | u′ ∈ U2 ∪ {u}, v′ ∈ V2 ∪ {v}},

where U1, U2, V1, V2, {u} and {v} are disjoint vertex set, |U1| = |U2| = a − 1, and
|V1| = |V2| = b− 1. Let M = E \ {(u, v)} and N = δ(u) ∪ δ(v). Then, M and N are
clearly H-free subgraphs and s1 = χu is a (dM , dN)-increment. We have the following
possibilities for (dM + s1, dN)-increments: χv and −χz for z ∈ U1 ∪ U2. For the first
case, dM + χu + χv is the degree sequence of G, which contains a Ka,b-subgraph. For
the second case, dM +χu−χz is the degree sequence of G− (v, z), in which the vertex
set U1 ∪ V1 ∪ {u, v} or U2 ∪ V2 ∪ {u, v} induces a Ka,b-subgraph.

If H is a star with k+1 vertices, then the H-free subgraphs are exactly the subgraphs
with degree at most k − 1. The degree sequences of these form a jump system in an
arbitrary graph G as we described in Section 2.

4 Weighted t-matchings and M-concave functions

4.1 A main result on the weighted problem

In this section, we give a proof of Theorem 1.5, which shows the relationship be-
tween the weighted Kt,t-free t-matching problem in bipartite graphs and M-concave
functions.
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An M-concave (M-convex) function on a constant-parity jump system is a quantita-
tive extension of a jump system, which is a generalization of valuated matroids [11, 13],
valuated delta-matroids [12], and M-concave (M-convex) functions on base polyhe-
dra [28, 29].

Definition 4.1 (M-concave function on a constant-parity jump system [30]). For
J ⊆ ZV , we call f : J → R an M-concave function on a constant-parity jump system
if it satisfies the following exchange axiom:

Axiom 2. For any x, y ∈ J and for any (x, y)-increment s1, there exists an (x+s1, y)-
increment s2 such that x + s1 + s2 ∈ J , y − s1 − s2 ∈ J , and f(x) + f(y) ≤
f(x + s1 + s2) + f(y − s1 − s2).

It follows from Axiom 2 that J is a constant-parity jump system (see [30]). We
call a function f : J → R an M-convex function if −f is an M-concave function on a
constant-parity jump system. M-concave functions on constant-parity jump systems
appear in many combinatorial optimization problems such as the weighted matching
problem [30], the minsquare factor problem [1], and the weighted even factor problem
in odd-cycle-symmetric digraphs [7, 8, 25]. Some properties of M-concave functions
are investigated in [23, 24], and efficient algorithms for maximizing an M-concave
function on a constant-parity jump system are given in [31, 36].

Recall that, for a weighted bipartite graph (G,w), Jt,t(G) is the set of degree se-
quences of all Kt,t-free t-matching in G and a function ft,t on Jt,t(G) is defined by

ft,t(x) = max

{∑
e∈M

w(e)

∣∣∣∣ M is a Kt,t-free t-matching, dM = x

}
.

We restate Theorem 1.5 here.

Theorem 1.5. For a weighted bipartite graph (G,w) and an integer t ≥ 2, ft,t is
an M-concave function on the constant-parity jump system Jt,t(G) if and only if w is
vertex-induced on every Kt,t in G.

Our proof of Theorem 1.5 consists of three parts: the necessity for t ≥ 2 (Propo-
sition 4.2), the sufficiency for t ≥ 3 (Proposition 4.3), and the sufficiency for t = 2
(Proposition 4.14).

4.2 Necessity

This subsection is devoted to proving the necessity in Theorem 1.5.

Proposition 4.2. For a weighted bipartite graph (G,w) and for an integer t ≥ 2, if
ft,t is an M-concave function on the constant-parity jump system Jt,t(G), then w is
vertex-induced on every Kt,t in G.
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Proof. Let H be a Kt,t-subgraph in G such that V (H) = {u1, . . . , ut, v1, . . . , vt}
and E(H) = {(ui, vj) | i, j = 1, . . . , t}. Denote dE(H)\{(u1,v1)} ∈ Jt,t(G) by x, and
dE(H)\{(ui,vj)} ∈ Jt,t(G) by y for some i, j ∈ {2, . . . , t}. Then, M = E(H) \ {(u1, v1)}
and N = E(H) \ {(ui, vj)} are the unique edge sets such that dM = x and dN = y,
and hence ft,t(x) = w(M) and ft,t(y) = w(N).

For an (x, y)-increment s1 = χu1 , one can see that s2 = −χui
is the only (x+ s1, y)-

increment such that x + s1 + s2 ∈ Jt,t(G) and y − s1 − s2 ∈ Jt,t(G). Since M ′ =
E(H) \ {(ui, v1)} and N ′ = E(H) \ {(u1, vj)} are the unique edge sets such that
achieve the degree sequences x + s1 + s2 and y − s1 − s2, respectively, we have that
ft,t(x+s1 +s2) = w(M ′) and ft,t(y−s1−s2) = w(N ′). If ft,t is an M-concave function
on Jt,t(G), by Axiom 2, we have w(M) + w(N) ≤ w(M ′) + w(N ′), which means that

w(u1, v1) + w(ui, vj) ≥ w(ui, v1) + w(u1, vj). (1)

A similar argument shows that

w(ui, v1) + w(u1, vj) ≥ w(u1, v1) + w(ui, vj). (2)

By (1) and (2), we have

w(u1, v1) + w(ui, vj) = w(ui, v1) + w(u1, vj). (3)

Note that this equality is obvious when i = 1 or j = 1.
Define a function p : V (H) → R by

p(ui) = w(ui, v1), p(vj) = w(u1, vj)− w(u1, v1)

for i, j = 1, . . . , t. Then, w(ui, vj) = p(ui) + p(vj) holds for any i, j ∈ {1, . . . , t} by
(3), which shows that w is induced by p on H.

4.3 Sufficiency for the case of t ≥ 3

In this subsection, we show the sufficiency for the case of t ≥ 3 in Theorem 1.5.

Proposition 4.3. Let t ≥ 3 be an integer and G = (V1, V2; E) be a weighted bipartite
graph with a weight function w. If w is vertex-induced on every Kt,t in G, then ft,t is
an M-concave function on the constant-parity jump system Jt,t(G).

We prove Proposition 4.3 by presenting an algorithm for finding an (x + s1, y)-
increment s2 satisfying Axiom 2 for given x, y ∈ Jt,t(G) and (x, y)-increment s1. In
what follows, we consider the case where s1 = −χv with v ∈ V1. The other cases can
be dealt with in a similar way.

4.3.1 Properties of triples

Our algorithm to find an (x + s1, y)-increment keeps a triple (M, N, u) of M, N ⊆ E
and u ∈ V1 ∪ V2 satisfying a certain condition. The purpose of this subsection is
to define this condition and to show some properties of the triples. Note that the
definitions in this subsection make sense only for the case where s1 = −χv with
v ∈ V1.
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Definition 4.4. For two edge sets M, N ⊆ E and for a vertex u ∈ V1 ∪ V2, the
semi-degree of (M, N, u) is a pair (x′, y′) of vectors in ZV1∪V2 such that

• x′ = dM − χu and y′ = dN + χu if u ∈ V1,

• x′ = dM + χu and y′ = dN − χu if u ∈ V2.

For an integer t and vectors x′, y′ ∈ {0, 1, . . . , t}V1∪V2 , we define

Tt(x
′, y′) = {(M, N, u) | M, N ⊆ E, u ∈ V1 ∪ V2, M and N are Kt,t-free,

the semi-degree of (M,N, u) is (x′, y′)}.

Definition 4.5. For (M1, N1, u1), (M2, N2, u2) ∈ Tt(x
′, y′), we say that (M1, N1, u1) is

adjacent to (M2, N2, u2) if they satisfy one of the following conditions:

• u1 ∈ V1, (u1, u2) ∈ M1 \N1, M2 = M1 \ {(u1, u2)}, and N2 = N1 ∪ {(u1, u2)}.
• u1 ∈ V2, (u1, u2) ∈ N1 \M1, M2 = M1 ∪ {(u1, u2)}, and N2 = N1 \ {(u1, u2)}.

It is obvious that if (M1, N1, u1) is adjacent to (M2, N2, u2), then (M2, N2, u2) is
adjacent to (M1, N1, u1).

We say that (M, N, u) ∈ Tt(x
′, y′) is active, if u ∈ V1 and dM(u) > dN(u), or u ∈ V2

and dM(u) < dN(u). A triple (M, N, u) ∈ Tt(x
′, y′) is stable if u ∈ V1 and dM(u) ≤

dN(u) + 1, or u ∈ V2 and dN(u) ≤ dM(u) + 1. Note that if (M, N, u) ∈ Tt(x
′, y′) is

stable, then M and N are t-matchings. We also note that if (M, N, u) ∈ Tt(x, y) is
not stable, then it is active. The definition of stable triples means that χu or −χu, say
s2, is an (x′, y′)-increment such that dM = x′ + s2 and dN = y′ − s2 (see Claim 4.13).
Hence, our algorithm stops when we find a stable triple.

We now show some properties of the triples, which will be used in our algorithm.

Lemma 4.6. Let (M, N, u1) be a triple in Tt(x
′, y′), u1 ∈ V1, and e = (u1, u2) ∈ M\N .

If N ∪ {e} is Kt,t-free, then (M \ {e}, N ∪ {e}, u2) is in Tt(x
′, y′) and adjacent to

(M,N, u1).

Proof. The semi-degree of (M \ {e}, N ∪ {e}, u2) is

(dM\{e} + χu2 , dN∪{e} − χu2) = (dM − χu1 , dN + χu1) = (x′, y′),

which means (M \{e}, N∪{e}, u2) ∈ Tt(x
′, y′). It is obvious that (M \{e}, N∪{e}, u2)

and (M, N, u1) are adjacent by the definition.

Lemma 4.7. Let (M, N, u) be a triple in Tt(x
′, y′), u ∈ V1, and dM(u)− dN(u) ≥ 2.

Then, one of the following conditions holds:

• (M,N, u) is adjacent to at least two triples in Tt(x
′, y′).

• (M,N, u) is adjacent to exactly one triple in Tt(x
′, y′) and there exists a Kt,t-

subgraph H containing u in G such that δ(u)∩E(H) ⊆ M and E(H)\{(u, v)} ⊆
N for some v ∈ V (H).
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Proof. Suppose that (M, N, u) is adjacent to at most one triple in Tt(x
′, y′). Since

|(M∩δ(u))\N | ≥ dM(u)−dN(u) ≥ 2, by Lemma 4.6, we have that |(M∩δ(u))\N | = 2
and N ∪{e} has a Kt,t for one edge e ∈ (M ∩δ(u))\N . Note that, since dN(u) ≤ t−1,
there exists at most one edge e ∈ δ(u) such that N ∪ {e} contains a Kt,t.

Therefore, there exists a Kt,t-subgraph H containing u such that E(H)\{(u, v)} ⊆
N for some v ∈ V (H). To the end, since dM(u)− dN(u) = |(M ∩ δ(u)) \N | = 2, we
have that δ(u) ∩N ⊆ M , and hence δ(u) ∩ E(H) = (δ(u) ∩N) ∪ {e} ⊆ M .

The following lemma can be proved similarly.

Lemma 4.8. Suppose that (M,N, u) is a triple in Tt(x
′, y′), u ∈ V1, and dM(u) −

dN(u) ≥ 1. Then, one of the following conditions holds:

• (M,N, u) is adjacent to at least one triple in Tt(x
′, y′).

• (M,N, u) is adjacent to no triple in Tt(x
′, y′) and there exists a Kt,t-subgraph

H containing u in G such that δ(u) ∩ E(H) ⊆ M and E(H) \ {(u, v)} ⊆ N for
some v ∈ V (H).

4.3.2 Updating a triple

In this subsection, we consider a procedure of updating a given triple, which is a
subroutine of our main algorithm. Roughly speaking, when a triple (M, N, u) is
given as the input, this procedure increases w(M) + w(N) and decreases |M ∪ N |,
maintaining its semi-degree. The procedure is described as follows.

Procedure A
Input. An integer t ≥ 3, a bipartite graph G = (V1, V2; E) with a weight function

w that is vertex-induced on every Kt,t, vectors x′, y′ ∈ {0, 1, . . . , t}V1∪V2 , and an active
triple (M,N, u) ∈ T := Tt(x

′, y′).
Output. A triple (M∗, N∗, u∗) ∈ T satisfying one of the following:

1. w(M∗) + w(N∗) > w(M) + w(N).

2. w(M∗) + w(N∗) = w(M) + w(N) and |M∗ ∪N∗| < |M ∪N |.
3. w(M∗) + w(N∗) = w(M) + w(N), |M∗ ∪ N∗| = |M ∪ N |, and (M∗, N∗, u∗) is

stable.

Step 0. Set τ := 0, M (0) := M , N (0) := N , and u(0) := u. Then, go to Step 1.

Step 1. If (M (τ), N (τ), u(τ)) has an adjacent triple (M ′, N ′, u′) ∈ T which is
different from (M (τ−1), N (τ−1), u(τ−1)) (we ignore this condition if τ = 0), then set
(M (τ+1), N (τ+1), u(τ+1)) := (M ′, N ′, u′) and τ := τ + 1, and go to Step 2. Otherwise,
go to Step 4.

Step 2. If u(τ) = u(τ ′) for some τ ′ < τ , then execute one of the following:
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: edges in M (τ).

: edges in N (τ).

u(τ−1)

v3

v1

v2

: edges in M (τ+1).

: edges in N (τ+1).

v2 = u(τ+1)

u(τ) u(τ−1)

v3

v1u(τ)

Figure 1: Definitions of M (τ+1), N (τ+1), and u(τ+1).

• If w(M (τ ′)) > w(M (τ)), then output (M (τ ′), N (τ), u(τ)) ∈ T and stop the proce-
dure.

• If w(M (τ ′)) < w(M (τ)), then output (M (τ), N (τ ′), u(τ)) ∈ T and stop the proce-
dure.

• If w(M (τ ′)) = w(M (τ)), then either |M (τ ′) ∪ N (τ)| < |M (τ ′) ∪ N (τ ′)| or |M (τ) ∪
N (τ ′)| < |M (τ ′) ∪ N (τ ′)| holds (see Claim 4.10). In the former case, output
(M (τ ′), N (τ), u(τ)) ∈ T and stop the procedure. In the latter case, output
(M (τ), N (τ ′), u(τ)) ∈ T and stop the procedure.

Otherwise, go to Step 3.

Step 3. If (M (τ), N (τ), u(τ)) is a stable triple, then output (M (τ), N (τ), u(τ)) ∈ T
and stop the procedure. Otherwise, go to Step 1.

Step 4. If u(τ) ∈ V1, then execute Step 4-1. Otherwise, execute Step 4-2.
Step 4-1. If τ ≥ 1, then dM(τ)(u(τ))− dN(τ)(u(τ)) ≥ 2, because (M (τ), N (τ), u(τ)) is

not stable by Step 3. If τ = 0, then dM(τ)(u(τ)) − dN(τ)(u(τ)) ≥ 1 by the activeness
of the input. Therefore, by Lemmas 4.7 and 4.8, there exists a Kt,t-subgraph H
containing u(τ) in G such that δ(u(τ)) ∩ E(H) ⊆ M (τ) and E(H) \ {(u(τ), v1)} ⊆ N (τ)

for some v1 ∈ V (H).
Then, there exists an edge (v2, v3) ∈ E(H)\M (τ) such that v2 ∈ V1, v3 ∈ V2 (possibly

v3 = v1), and (M (τ) \ {(u(τ), v3)}) ∪ {(v2, v3)} contains no Kt,t (see Claim 4.11). As
shown in Figure 1, we define

M (τ+1) := (M (τ) \ {(u(τ), v3)}) ∪ {(v2, v3)},
N (τ+1) := (N (τ) \ {(v1, v2)}) ∪ {(u(τ), v1)},
u(τ+1) := v2.

Then, (M (τ+1), N (τ+1), u(τ+1)) ∈ T (see Claim 4.12). Set τ := τ +1, and go to Step 2.
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Step 4-2. Execute a similar procedure to Step 4-1 by switching M (τ) and N (τ).

If u(τ1) = u(τ2) for distinct τ1 and τ2, then Procedure A stops in Step 2, which assures
that each step is executed at most |V1|+ |V2| times. We now show the correctness of
the procedure. First, we can easily show the following claim.

Claim 4.9. In Steps 1 and 4, w(M (τ+1)) + w(N (τ+1)) = w(M (τ)) + w(N (τ)) and
M (τ+1) ∪N (τ+1) ⊆ M (τ) ∪N (τ).

Proof. Since w is vertex-induced on every Kt,t,

w(u(τ), v3) + w(v1, v2) = w(v2, v3) + w(u(τ), v1)

in Step 4, which shows that w(M (τ)) + w(N (τ)) = w(M (τ+1)) + w(N (τ+1)) holds in
Step 4. The other parts are obvious.

By this claim, if Procedure A outputs a stable triple (M∗, N∗, u∗) ∈ T in Step 3,
then w(M∗) + w(N∗) = w(M) + w(N) and |M∗ ∪N∗| ≤ |M ∪N |, which shows that
(M∗, N∗, u∗) is a desired output. Similarly, we can see that the output in Step 2 is
also a desired triple.

The correctness of Steps 2 and 4 of Procedure A is guaranteed by the following
claims.

Claim 4.10. If u(τ1) = u(τ2) for some τ2 < τ1 and u(τ2), u(τ2+1), . . . , u(τ1−1) are distinct,
then either |M (τ2) ∪N (τ1)| < |M (τ1) ∪N (τ1)| or |M (τ1) ∪N (τ2)| < |M (τ1) ∪N (τ1)| holds.

Proof. Suppose we update a triple in Step 1 when τ = τ3, and let e3 = (u(τ3), u(τ3+1)).
Since we update a triple in Step 1 at least twice while τ2 ≤ τ ≤ τ1−1, we may assume
that u(τ3) 6= u(τ1) and u(τ3+1) 6= u(τ1) by choosing appropriate τ3.

Now we observe that, for an edge e, if we update {e} ∩ M (τ) or {e} ∩ N (τ) in
Step 4, i.e., {e} ∩ M (τ) 6= {e} ∩ M (τ+1) or {e} ∩ N (τ) 6= {e} ∩ N (τ+1), then u(τ)

or u(τ+1) is an end vertex of e. Since u(τ2), u(τ2+1), . . . , u(τ1−1) are distinct, by the
above observation, {e3} ∩ M (τ) is updated only when τ = τ3. Thus, either e3 ∈
(M (τ1) \N (τ1)) ∩ (N (τ2) \M (τ2)) or e3 ∈ (N (τ1) \M (τ1)) ∩ (M (τ2) \N (τ2)).

In the former case, e3 6∈ M (τ2)∪N (τ1) and M (τ2)∪N (τ1) ⊆ M (τ1)∪N (τ1), which implies
|M (τ2) ∪ N (τ1)| < |M (τ1) ∪ N (τ1)|. Similarly, we have |M (τ1) ∪ N (τ2)| < |M (τ1) ∪ N (τ1)|
in the latter case. This completes the proof.

Claim 4.11. In Step 4-1, there exists an edge (v2, v3) ∈ E(H)\M (τ) such that v2 ∈ V1,
v3 ∈ V2 (possibly v3 = v1), and (M (τ) \ {(u(τ), v3)}) ∪ {(v2, v3)} contains no Kt,t.

Proof. Since M (τ) does not contain H, one of the following holds:

Case 1. There exists a vertex v2 ∈ V1 \ {u(τ)} such that |δ(v2)∩ (E(H) \M (τ))| ≥ 2.

Case 2. There exists a vertex v2 ∈ V1 \ {u(τ)} such that |δ(v2)∩ (E(H) \M (τ))| = 1.
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We consider these cases separately.

Case 1. Let e1 = (v2, z1), e2 = (v2, z2) be edges in δ(v2)∩ (E(H) \M (τ)). We show
that at least one of e1 and e2 satisfies the condition. To the contrary, we assume that
M (τ)∪{ei} contains a Kt,t-subgraph Hi for i = 1, 2. Since |δ(v2)∩ (M (τ)∪{e1, e2})| ≤
t + 2 and t ≥ 3, there exists a vertex z ∈ V2 \ {z1, z2} contained in both H1 and
H2. Then, all the t edges in δ(z)∩M (τ) are contained in both H1 and H2, and hence
V (H1) ∩ V1 = V (H2) ∩ V1. This means that there exists a vertex z′ ∈ V1 \ {u(τ), v2}
contained in both H1 and H2. Since all the t edges in δ(z′) ∩M (τ) are contained in
both H1 and H2, we have V (H1) ∩ V2 = V (H2) ∩ V2, which is a contradiction.

Case 2. Let e1 = (v2, z1) be the edge in δ(v2) ∩ (E(H) \M (τ)). In order to show
that e1 satisfies the condition, we assume that (M (τ) \ {(u(τ), z1)}) ∪ {e1} contains a
Kt,t-subgraph H1 to derive a contradiction. Since |(δ(v2) ∩M (τ)) \ E(H)| = |δ(v2) ∩
M (τ)| − (t− 1) ≤ 1 and t ≥ 3, there exists a vertex z ∈ (V (H) ∩ V2) \ {z1} contained
in H1. Then, all the t edges in δ(z) ∩M (τ) are contained in H1, which implies that
(u(τ), z) is contained in H1. On the other hand, since M (τ) contains no Kt,t, H1

contains e1 = (v2, z1). This contradicts that H1 does not contain (u(τ), z1).

Claim 4.12. In Step 4-1, (M (τ+1), N (τ+1), u(τ+1)) ∈ T .

Proof. By the definition, M (τ+1) contains no Kt,t. Since N (τ) is Kt,t-free, H is an
unique Kt,t contained in N (τ) ∪ {(u(τ), v1)}, and hence N (τ+1) = (N (τ) \ {(v1, v2)}) ∪
{(u(τ), v1)} contains no Kt,t. It is obvious that (M (τ+1), N (τ+1), u(τ+1)) satisfies the
degree constraints, which completes the proof.

Note that we can show the correctness of Step 4-2 in the same way. The above
claims show the correctness of Procedure A.

4.3.3 A main algorithm

In this subsection, we give an algorithm for finding an (x + s1, y − s1)-increment s2

using Procedure A. The algorithm is described as follows.

Algorithm FIND-INCREMENT
Input. An integer t ≥ 3, a bipartite graph G = (V1, V2; E) with a weight function

w that is vertex-induced on every Kt,t, Kt,t-free t-matchings M and N in G with
dM = x and dN = y, and an (x, y)-increment s1 = −χu with u ∈ V1.

Output. An (x + s1, y − s1)-increment s2 and Kt,t-free t-matchings M ′ and N ′ in
G such that dM ′ = x+s1 +s2, dN ′ = y−s1−s2, and w(M ′)+w(N ′) ≥ w(M)+w(N).

Step 1. Execute Procedure A for (M,N, u) ∈ Tt(x + s, y − s) to obtain a triple
(M∗, N∗, u∗) ∈ Tt(x + s, y − s) satisfying one of the following:

1. w(M∗) + w(N∗) > w(M) + w(N).

2. w(M∗) + w(N∗) = w(M) + w(N) and |M∗ ∪N∗| < |M ∪N |.
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3. w(M∗) + w(N∗) = w(M) + w(N), |M∗ ∪ N∗| = |M ∪ N |, and (M∗, N∗, u∗) is
stable.

Then, go to Step 2.

Step 2. If (M∗, N∗, u∗) is stable, then output s2 := dM∗ − x− s1, M ′ := M∗, and
N ′ := N∗, and stop the algorithm. Otherwise, update M , N , and u as M := M∗,
N := N∗, and u := u∗, and go to Step 1.

In the algorithm, (w(M) + w(N))` − |M ∪ N | increases monotonically, where ` is
a sufficiently large number, and this shows that FIND-INCREMENT terminates in
finite steps. The correctness of FIND-INCREMENT is guaranteed by the following
claim.

Claim 4.13. If we obtain s2 in Step 2 of FIND-INCREMENT, then s2 = dM∗−x−s1

is an (x + s1, y − s1)-increment.

Proof. Suppose that u∗ ∈ V1. Then, dM∗ − x − s1 = −dN∗ + y − s1 = χu∗ by the
definition of Tt(x + s1, y − s1). Since dM∗(u∗) − dN∗(u∗) ≤ 1 by the definition of a
stable triple, (y − s1)(u

∗)− (x + s1)(u
∗) = (dN∗(u∗) + 1)− (dM∗(u∗)− 1) ≥ 1, which

means that s2 = χu∗ is an (x + s1, y − s1)-increment. We can deal with the case when
u∗ ∈ V2 in the same way.

Now we show how we obtain an (x + s1, y)-increment s2, and prove Proposition 4.3.

Proof for Proposition 4.3. For x, y ∈ Jt,t(G) and an (x, y)-increment s1, we choose
Kt,t-free t-matchings M and N in G such that dM = x, dN = y, w(M) = ft,t(x), and
w(N) = ft,t(y). Furthermore, we choose M and N minimizing |M ∪N |.

By executing FIND-INCREMENT, we find Kt,t-free t-matchings M ′ and N ′ and
an (x + s1, y − s1)-increment s2 that satisfy dM ′ = x + s1 + s2, dN ′ = y − s1 − s2,
and w(M ′) + w(N ′) ≥ w(M) + w(N). We now prove that the output s2 of FIND-
INCREMENT is an (x + s1, y)-increment, that is, dM ′ 6= x, dN ′ 6= y, when we assume
the minimality of |M ∪N |.

If Procedure A outputs (M∗, N∗, u∗) ∈ Tt(x + s, y − s) with w(M∗) + w(N∗) >
w(M)+w(N) or |M∗∪N∗| < |M ∪N | at least once in Step 1 of FIND-INCREMENT,
then the output (M ′, N ′) of Algorithm FIND-INCREMENT satisfies that either

• w(M ′) + w(N ′) > w(M) + w(N) or

• w(M ′) + w(N ′) = w(M) + w(N) and |M ′ ∪N ′| < |M ∪N |,
which implies dM ′ 6= dM and dN ′ 6= dN by the minimality of |M ∪N |.

Otherwise, when we execute Procedure A for the first time, it outputs a stable
triple (M∗, N∗, u∗) ∈ Tt(x + s1, y − s1) with w(M∗) + w(N∗) = w(M) + w(N) and
|M∗∪N∗| = |M ∪N |. Therefore, (M∗, N∗, u∗) is not outputted in Step 2 of Procedure
A, and hence u∗ 6= u, which means s2 6= −s1.
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By the above arguments, we obtain new Kt,t-free t-matchings M ′ and N ′ and an
(x + s1, y)-increment s2 that satisfy dM ′ = x + s1 + s2, dN ′ = y − s1 − s2, and
w(M) + w(N) ≤ w(M ′) + w(N ′). Then, we have

ft,t(x) + ft,t(y) = w(M) + w(N)

≤ w(M ′) + w(N ′)

≤ ft,t(x + s1 + s2) + ft,t(y − s1 − s2).

Hence ft,t is an M-concave function on Jt,t(G). ¤

4.4 Sufficiency for the case of t = 2

Next, we show the sufficiency for the case of t = 2 in Theorem 1.5.

Proposition 4.14. For a bipartite graph G = (V1, V2; E) with a weight function w,
if w is vertex-induced on every C4 in G, then f2,2 is an M-concave function on the
constant-parity jump system J2,2(G).

In the same way as Proposition 4.3, we prove Proposition 4.14 by presenting an
algorithm for finding an (x + s1, y)-increment s2 satisfying Axiom 2 for given x, y ∈
J2,2(G) and (x, y)-increment s1. In what follows, we consider the case where s1 = −χu

with u ∈ V1.

4.4.1 S-squares

We call a C4 in a bipartite graph as a square. Let S = {S1, S2, . . . , Sp} be a set of
vertex-disjoint squares in G. We say that a square S is an S-square if S ∈ S or S is
vertex-disjoint from every member of S. We say that an edge set is S-square-free if it
contains no S-square.

In the same way as Tt(x
′, y′) in Section 4.3.1, we define Tsq(S, x′, y′) as follows.

For a bipartite graph G = (V1, V2; E), vectors x′, y′ ∈ {0, 1, 2}V1∪V2 , and a set S of
vertex-disjoint squares, we define

Tsq(S, x′, y′) = {(M, N, u) | M,N ⊆ E, u ∈ V1 ∪ V2, M and N are S-square-free,

the semi-degree of (M, N, u) is (x′, y′)}.
We define stable triples, active triples, adjacency of triples in Tsq(S, x′, y′) in the

same way as those in Tt(x
′, y′). Then, Lemmas 4.6, 4.7, and 4.8 can be modified to

lemmas for Tsq(S, x′, y′) by replacing Kt,t’s with S-squares.

4.4.2 Updating a triple

In this subsection, we consider a procedure of updating a given triple in G, which
modifies the procedure in Section 4.3.2. Note that we need a modification because
Claim 4.11 does not hold when t = 2. In the procedure, we use edge sets M, N and a
maximal set S of vertex-disjoint squares such that E(S) ⊆ M ∪N and |E(S)∩M | =
|E(S) ∩ N | = 3 for each S ∈ S. In other words, M,N and S satisfy the following
assumption.

EGRES Technical Report No. 2010-04



4.4 Sufficiency for the case of t = 2 19

Assumption 4.15. For an S-square S, it holds that S ∈ S if and only if E(S) ⊆
M ∪N and |E(S) ∩M | = |E(S) ∩N | = 3.

The modified procedure is described as follows.

Procedure B
Input. A bipartite graph G = (V1, V2; E) with a weight function w that is vertex-

induced on every square, vectors x′, y′ ∈ {0, 1, 2}V1∪V2 , a set S of vertex-disjoint
squares, and an active triple (M, N, u) ∈ T := Tsq(S, x′, y′) satisfying Assump-
tion 4.15.

Output. A triple (M∗, N∗, u∗) ∈ T such that E(S) ⊆ M ∪ N and |E(S) ∩M | =
|E(S) ∩N | = 3 for any S ∈ S, and one of the following holds:

1. w(M∗) + w(N∗) > w(M) + w(N).

2. w(M∗) + w(N∗) = w(M) + w(N) and |M∗ ∪N∗| < |M ∪N |.
3. w(M∗) + w(N∗) = w(M) + w(N), |M∗ ∪ N∗| = |M ∪ N |, and (M∗, N∗, u∗) is

stable.

Step 0. Set τ := 0, M (0) := M , N (0) := N , and u(0) := u. Then, go to Step 1.

Step 1. If (M (τ), N (τ), u(τ)) has an adjacent triple (M ′, N ′, u′) ∈ T which is
different from (M (τ−1), N (τ−1), u(τ−1)) (we ignore this condition if τ = 0), then set
(M (τ+1), N (τ+1), u(τ+1)) := (M ′, N ′, u′) and τ := τ + 1, and go to Step 2. Otherwise,
go to Step 4.

Step 2. If u(τ) = u(τ ′) for some τ ′ < τ , then execute one of the following:

• If w(M (τ ′)) ≥ w(M (τ)), then output (M (τ ′), N (τ), u(τ)) ∈ T and stop the proce-
dure.

• If w(M (τ ′)) < w(M (τ)), then output (M (τ), N (τ ′), u(τ)) ∈ T and stop the proce-
dure.

Otherwise, go to Step 3.

Step 3. If (M (τ), N (τ), u(τ)) is a stable triple, then output (M (τ), N (τ), u(τ)) ∈ T
and stop the procedure. Otherwise, go to Step 1.

Step 4. If u(τ) ∈ V1, then go to Step 5. Otherwise, execute a similar procedure to
Step 5 by switching M (τ) and N (τ).

Step 5. If τ ≥ 1, then dM(τ)(u(τ)) − dN(τ)(u(τ)) ≥ 2, because (M (τ), N (τ), u(τ)) is
not stable by Step 3. On the other hand, if τ = 0, then dM(τ)(u(τ)) − dN(τ)(u(τ)) ≥ 1
by the activeness of the input. By the modifications of Lemmas 4.7 and 4.8, there
exists an S-square S = (u(τ), v1, v2, v3) in G such that {(u(τ), v1), (u

(τ), v3)} ⊆ M (τ)

and {(u(τ), v1), (v1, v2), (v2, v3)} ⊆ N (τ).
If S ∈ S, then go to Step 5-1. Otherwise, go to Step 5-2.
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: edges in M (τ).

: edges in N (τ).

u(τ) v3

v2v1

u(τ−1)

: edges in M (τ+1).

: edges in N (τ+1).

u(τ) v3

v2 = u(τ+1)v1

u(τ−1)

Figure 2: Definitions of M (τ+1), N (τ+1), and u(τ+1).

Step 5-1. By Assumption 4.15, we have that E(S) ∩ N (τ) = E(S) \ {(u(τ), v3)}
and E(S) ∩M (τ) = E(S) \ {(v2, z)}, where z is either v1 or v3.

Define M (τ+1), N (τ+1), and u(τ+1) by

M (τ+1) := (M (τ) \ {(u(τ), z)}) ∪ {(v2, z)},
N (τ+1) := (N (τ) \ {(v2, v3)}) ∪ {(u(τ), v3)},
u(τ+1) := v2,

and then go to Step 2.
Step 5-2. By Assumption 4.15, we have that E(S) ∩M (τ) = {(u(τ), v1), (u

(τ), v3)}
and E(S) ∩N (τ) = {(u(τ), v1), (v1, v2), (v2, v3)}.

As shown in Figure 2, define M (τ+1), N (τ+1), and u(τ+1) by

M (τ+1) := (M (τ) \ {(u(τ), v1)}) ∪ {(v2, v1)},
N (τ+1) := (N (τ) \ {(v2, v3)}) ∪ {(u(τ), v3)},
u(τ+1) := v2.

If M (τ+1) is S-square-free, then output a triple (M (τ+1), N (τ+1), u(τ+1)) ∈ T , which
satisfies that |M (τ+1)∪N (τ+1)| = |M∪N |−1 (see Claim 4.18), and stop the procedure.
Otherwise, there exists an S-square S ′ = (v2, v1, v4, v5) in M (τ+1), where {u(τ), v3} ∩
{v4, v5} = ∅ (see Figure 3). Then define

M (τ+2) := M (τ+1) \ {(v2, v5)},
N (τ+2) := N (τ+1) ∪ {(v2, v5)},
u(τ+2) := v5.

Output a triple (M (τ+2), N (τ+2), u(τ+2)) ∈ T , which satisfies that |M (τ+2) ∪N (τ+2)| =
|M ∪N | − 1 (see Claim 4.19), and stop the procedure.

If u(τ1) = u(τ2) for distinct τ1 and τ2, then Procedure B stops in Step 2, which assures
that each step is executed at most |V1|+ |V2| times. We now show the correctness of
the procedure.
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: edges in M (τ+1).

: edges in N (τ+1).

u(τ) v3

v2 = u(τ+1)

v1

u(τ−1)

v4 v5

: edges in M (τ+2).

: edges in N (τ+2).

u(τ) v3

v2 = u(τ+1)

v1

u(τ−1)

v4 v5 = u(τ+2)

Figure 3: Definitions of M (τ+2), N (τ+2), and u(τ+2).

First, since w is vertex-induced on every square, we can see the following in the
same way as Claim 4.9.

Claim 4.16. In Steps 1 and 5-1, w(M (τ+1)) + w(N (τ+1)) = w(M (τ)) + w(N (τ)) and
M (τ+1) ∪N (τ+1) = M (τ) ∪N (τ).

By this claim, if Procedure B outputs a stable triple (M∗, N∗, u∗) ∈ T in Step 3,
then w(M∗) + w(N∗) = w(M) + w(N) and |M∗ ∪N∗| = |M ∪N |, which shows that
(M∗, N∗, u∗) is a desired output. To show that the output in Step 2 is also a desired
triple, we prove the following claim.

Claim 4.17. In Step 2, (M (τ ′), N (τ), u(τ)) and (M (τ), N (τ ′), u(τ)) are both in T and
|M (τ ′) ∪N (τ)| < |M ∪N |.
Proof. As both (M (τ), N (τ), u(τ)) and (M (τ ′), N (τ ′), u(τ ′)) are in T , both (M (τ ′), N (τ), u(τ))
and (M (τ), N (τ ′), u(τ)) are in T .

Since we update a triple in Step 1 at least once when u(τ) ∈ V1, (M (τ) \ N (τ)) ∩
(N (τ ′) \M (τ ′)) 6= ∅. Thus, we have

|M (τ ′) ∪N (τ)| = |M (τ) ∪N (τ)| − |(M (τ) \M (τ ′)) \N (τ)|+ |(M (τ ′) \M (τ)) \N (τ)|
= |M (τ) ∪N (τ)| − |(M (τ) \M (τ ′)) \N (τ)|
< |M (τ) ∪N (τ)|
= |M ∪N |.

Next, in order to show the correctness of Step 5-2, we prove the following claims.

Claim 4.18. In Step 5-2, N (τ+1) is S-square-free and |M (τ+1)∪N (τ+1)| = |M∪N |−1.
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Proof. First, (u(τ), v1) is the unique edge in N (τ) ∩ δ(u(τ)) and N (τ) ∩ δ(v1) =
{(u(τ), v1), (v1, v2)}. Thus, N (τ+1) does not have an S-square containing (u(τ), v3), and
hence N (τ+1) is S-square-free because N (τ) does not have an S-square. Furthermore,
by Claim 4.16, |M (τ+1) ∪N (τ+1)| = |M (τ) ∪N (τ)| − 1 = |M ∪N | − 1.

Claim 4.19. In Step 5-2, (M (τ+2), N (τ+2), u(τ+2)) ∈ T and |M (τ+2) ∪N (τ+2)| = |M ∪
N | − 1.

Proof. Since C = (v2, v1, v4, v5) is the unique S-square in M (τ+1), M (τ+2) is S-
square-free. On the other hand, since N (τ+2) ∩ δ(v2) = {(v1, v2), (v2, v5)}, N (τ+2) ∩
δ(v1) = {(u(τ), v1), (v1, v2)}, and (u(τ), v5) 6∈ N (τ+2), N (τ+2) does not have an S-
square containing (v2, v5). Thus, by Claim 4.18, N (τ+2) is S-square-free, and hence
(M (τ+2), N (τ+2), u(τ+2)) ∈ T . Claim 4.18 also implies that |M (τ+2) ∪ N (τ+2)| =
|M (τ+1) ∪N (τ+1)| = |M ∪N | − 1.

The above claims show the correctness of Procedure B.

4.4.3 A main algorithm

In this subsection, we give an algorithm for finding an (x + s1, y − s1)-increment s2

using Procedure B. We modify Algorithm FIND-INCREMENT by using a set S of
squares.

Algorithm FIND-INCREMENT II
Input. A bipartite graph G = (V1, V2; E) with a weight function w that is vertex-

induced on every square, square-free 2-matchings M and N in G with dM = x and
dN = y, and an (x, y)-increment s1 = −χu with u ∈ V1.

Output. An (x + s1, y − s1)-increment s2 and square-free 2-matchings M ′ and N ′

in G such that dM ′ = x+s1+s2, dN ′ = y−s1−s2, and w(M ′)+w(N ′) ≥ w(M)+w(N).

Step 1. Let S1, S2, . . . , Sp be vertex-disjoint squares in G such that E(Si) ⊆ M∪N
and |E(Si) ∩ M | = |E(Si) ∩ N | = 3 for i = 1, 2, . . . , p. We take such S1, S2, . . . , Sp

maximally and define S = {S1, S2, . . . , Sp}.
Step 2. Execute Procedure B for (M,N, u) ∈ Tsq(S, x + s, y− s) to obtain a triple

(M∗, N∗, u∗) ∈ Tsq(S, x + s, y − s) satisfying one of the following:

1. w(M∗) + w(N∗) > w(M) + w(N).

2. w(M∗) + w(N∗) = w(M) + w(N) and |M∗ ∪N∗| < |M ∪N |.
3. w(M∗) + w(N∗) = w(M) + w(N), |M∗ ∪ N∗| = |M ∪ N |, and (M∗, N∗, u∗) is

stable.

Then, go to Step 3.

Step 3. If (M∗, N∗, u∗) is stable, then output s2 := dM∗ − x− s1, M ′ := M∗, and
N ′ := N∗, and stop the algorithm. Otherwise, update M , N , and u as M := M∗,
N := N∗, and u := u∗. While there exists an S-square S such that S 6∈ S, E(S) ⊆
M ∪N , and |E(S) ∩M | = |E(C) ∩N | = 3, add S to S. Then, go to Step 2.
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The correctness of FIND-INCREMENT II can be shown in the same way as FIND-
INCREMENT. By using FIND-INCREMENT II, we can prove Proposition 4.14 in
the same way as Proposition 4.3, and so we omit the proof. We only mention here
that if a 2-matching L is S-square-free and |E(S) ∩ L| = 3 for any S ∈ S, then L is
a square-free 2-matching.

5 Discussion

Major open problems on k-restricted 2-matchings are the 4-restricted 2-matching
problem and the weighted 3-restricted 2-matching problem. In this paper, we have
proved that the set of the degree sequences of all 4-restricted 2-matchings is a jump
system. So, as Cunningham [7] conjectured, we anticipate that the 4-restricted 2-
matching problem can be solved in polynomial time.

Related results reported recently are due to Bérczi and Kobayashi [2], Bérczi and
Végh [3], Hartvigsen and Li [19], and Kobayashi [22]. Bérczi and Végh [3] presented
a min-max formula and a polynomial algorithm for the Kt,t-free t-matching problem,
the Kt+1-free t-matching problem and the {Kt,t, Kt+1}-free t-matching problem in
graphs all of whose vertices are incident to at most t + 1 edges. In particular, the
4-restricted 2-matching problem is solved in polynomial time in subcubic graphs, in
which each vertex is incident to at most three edges.

Bérczi and Kobayashi [2] extended Corollary 1.3 to a weighted version for a special
case where t = 2 and the graph is subcubic. That is, they proved that the weighted
2-matchings without C4 in a subcubic graph induce an M-concave function on a
constant-parity jump system if the weight function is vertex induced on every C4.
Moreover, based on a general framework of maximizing an M-concave function on a
constant-parity jump system [30, 31, 36], they gave a polynomial algorithm for the
problem of finding a maximum-weight 2-matching without C4 in subcubic graphs if
the weight function is vertex induced on every C4.

Hartvigsen and Li [19] and Kobayashi [22] presented polynomial algorithms for the
weighted 3-restricted 2-matching problem in subcubic graphs. Hartvigsen and Li [19]
devised a primal-dual algorithm for the weighted 3-restricted 2-matching problem in
subcubic graphs by a polyhedral approach. Kobayashi [22] solved the same problem
from the viewpoint of discrete convex analysis. By Corollary 1.2, we know that the
degree sequences of the 3-restricted 2-matchings form a jump system. Kobayashi
extended this result to a weighted version in subcubic graphs, that is, he proved that
the weighted 3-restricted 2-matchings induce an M-concave function on a constant-
parity jump system if the graph is subcubic. He then presented an algorithm for
the weighted 3-restricted 2-matching problem in subcubic graphs, which is based on
the general framework of maximizing M-concave functions on a constant-parity jump
system.

All of these resent developments are established in certain classes of graphs (in
subcubic graphs, mainly). It would be interesting to consider whether these results
can be extended to general graphs.
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