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Abstract

A 2-dimensional framework (G, p) is a graph G = (V,E) together with a
map p : V → R2. We view (G, p) as a straight line realization of G in R2.
We shall only consider generic frameworks, in which the co-ordinates of all the
vertices of G are algebraically independent. Two realizations of G are equivalent
if the corresponding edges in the two frameworks have the same length. A
pair of vertices {u, v} is globally linked in G if the distance between the points
corresponding to u and v is the same in all pairs of equivalent generic realizations
of G. We extend the characterization of globally linked pairs of vertices given
by Jackson, Jordán and the author [7] by characterizing globally linked pairs in
minimally rigid graphs. In minimally rigid graphs, only those pairs of vertices
are globally linked that are connected by an edge.

1 Introduction

We shall consider finite graphs without loops, multiple edges or isolated vertices. A
d-dimensional framework is a pair (G, p), where G = (V,E) is a graph and p is a map
from V to Rd. We consider the framework to be a straight line realization of G in Rd.

The edge function of a graph G = (V,E) is a map from the set of all realizations,
R|V |d to R|E|, given by

fG(p) = (. . . , ||p(u)− p(v)||, . . . ),

where ||.|| denotes the Euclidean norm in Rd. Two frameworks (G, p) and (G, q)
are equivalent, if fG(p) = fG(q), in other words, if ||p(u) − p(v)|| = ||q(u) − q(v)||
holds for all pairs u, v with uv ∈ E. Frameworks (G, p), (G, q) are congruent if
||p(u)− p(v)|| = ||q(u)− q(v)|| holds for all pairs u, v with u, v ∈ V . This is the same
as saying that (G, q) can be obtained from (G, p) by an isometry of Rd.

A pair of vertices {u, v} in a framework (G, p) is globally linked in (G, p) if, in all
equivalent frameworks (G, q), we have ||p(u) − p(v)|| = ||q(u) − q(v)||. A framework
(G, p) is globally rigid, if all pairs of vertices in (G, p) are globally linked.

The framework (G, p) is rigid if there exists an ε > 0 such that if (G, q) is equivalent
to (G, p) and ||p(u) − q(u)|| < ε for all v ∈ V then (G, q) is congruent to (G, p).
Intuitively, this means that if we think of a d-dimensional framework (G, p) as a
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Section 1. Introduction 2

collection of bars and joints where points correspond to joints and each edge to a
rigid bar joining its end-points, then the framework is rigid if it has no non-trivial
continuous deformations. A flexing of the framework (G, p) is a function π : (−1, 1)×
V → Rd, where π(0) = p and the frameworks (G, p) and (G, π(t)) are equivalent for
all t ∈ (−1, 1). The flexing π is trivial if the frameworks (G, p) and (G, π(t)) are
congruent for all t ∈ (−1, 1). A framework is said to be flexible if it has a non-trivial
continuous flexing. It is known [3, 1] that rigidity, flexibility and the existence of a
non-trivial smooth flexing are all equivalent.

The first-order version of a flexing of the framework (G, p) is called an infinitesimal
motion, which is an assignment of infinitesimal velocities to the vertices, q : V → Rd

satisfying
(p(u)− p(v))(q(u)− q(v)) = 0 (1)

for all pairs u, v with uv ∈ E. If π is a smooth flexing of (G, p), then π̇ is an
infinitesimal motion of (G, p), where π̇(v) is defined as d

dt
π(t, v)|t=0. Let S be a d× d

antisymmetric matrix and t ∈ Rd. A trivial infinitesimal motion of (G, p) has the form
q(v) = Sp(v) + t, for all v ∈ V . It is easy to see that these are indeed infinitesimal
motions. A framework (G, p) is said to be infinitesimally flexible if it has a non-trivial
infinitesimal motion, otherwise it is called infinitesimally rigid.

The set of infinitesimal motions of a framework (G, p) is a linear subspace of R|V |d,
given by the |E| linear equations of the form (1). The matrix of this system of linear
equations is the rigidity matrix of (G, p) and it is denoted by R(G, p). This is a matrix
of size |E| × |V |d, where, for each edge uv ∈ E, in the row corresponding to uv, the
entries in the d columns corresponding to vertices u and v contain the d coordinates of
(p(u)−p(v)) and (p(v)−p(u)), respectively, and the remaining entries are zeros. Note
that the Jacobian of the edge function of G at a point p ∈ R|V |d is dfG|p = 2R(G, p).

Gluck [3] has shown that if a framework (G, p) is infinitesimally rigid, then it is
rigid. The converse of this is not true, however, if we exclude certain ’degenerate’
configurations, rigidity and infinitesimal rigidity becomes equivalent. In order to
establish this, let us recall some notions from differential topology. Given two smooth
manifolds, M and N and a smooth map f : M → N , we denote the derivative of f
at some point p ∈ M by df |p, which is a linear map from TpM – the tangent space
of M at p – to Tf(p)N . Let k be the maximum rank of df |q over all q ∈ M . A point
p ∈ M is said to be a regular point of f , if rank df |p = k, and a critical point, if
rank df |p < k. We say that a framework (G, p) is regular, if p is a regular point of fG.
Using the inverse function theorem, it can be shown (see e.g. [1, Proposition 2]) that
if (G, p) is a regular framework, then there is an Up neighbourhood of p, such that
f−1
G (fG(p))∩Up is a manifold, whose tangent space at p is the kernel of dfp. This has
the following corollary.

Theorem 1.1. [1] Let (G, p) be a regular framework. If (G, p) is infinitesimally
flexible, then it is flexible. Furthermore, if q is a non-trivial infinitesimal motion of
(G, p), then there is a non-trivial smooth flexing π of (G, p) such that π̇ = q.

Since the rank of the rigidity matrix for a given graph G is constant on the set of
regular points of fG and infinitesimal rigidity of a framework (G, p) depends only on
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Section 1. Introduction 3

Figure 1: Two regular realizations of a graph G. The first one is globally rigid, but
the second is not, since it can fold around the diagonal.

the rank of R(G, p) it follows that if a regular framework (G, p) is infinitesimally rigid,
then all other regular frameworks (G, q) are infinitesimally rigid as well. Let k be the
maximum rank of the rigidity matrix R(G, p) over all configurations. Then the set of
critical points of fG can be described by a polynomial equation, namely, if Q denotes
the sum of the squares of the determinants of the k × k submatrices of R(G, p) in
terms of the coordinates of p, then p ∈ R|V |d is a critical point if and only if Q(p) = 0.
This means that the set of regular points of fG is an open dense subset of R|V |d,
and for almost all configurations p ∈ R|V |d (with respect to the |V |d-dimensional
Lebesgue-measure), the framework (G, p) is regular. So infinitesimal rigidity and
rigidity are ’generic’ properties in the sense that the infinitesimal rigidity or rigidity
of a framework (G, p) depends only on the graph G for almost all configurations.
Therefore we say that the graph G is rigid in Rd, if every (or equivalently, if some)
regular d-dimensional framework (G, p) is rigid (or equivalently, infinitesimally rigid).

The same is not true for global rigidity. Figure 1 shows two examples of regular
frameworks for the same graph, where one of them is globally rigid, but the other is
not. However, if we exclude a broader set of ’degenerate’ realizations, those where
the coordinates of the vertices satisfy a polynomial equation, then a similar situation
holds. A framework (G, p) is said to be generic if the set containing the coordinates
of all its points is algebraically independent over the rationals. Gortler, Healy and
Thurston [4] showed that global rigidity is also a generic property of a graph G in
the sense that if a generic framework (G, p) is globally rigid, then every other generic
framework (G, q) is globally rigid as well. A graph G is globally rigid in Rd if every
(or equivalently, if some) generic realization of G in Rd is globally rigid.

Unlike rigidity and global rigidity, however, ‘global linkedness’ is not a generic
property in R2 . Figures 2 and 3 give an example of a pair of vertices in a rigid graph
G which is globally linked in one generic realization, but not in another. Note that
if d = 1 then global linkedness is a generic property: {u, v} is globally linked in G if
and only if G has two openly disjoint uv-paths. We say that the pair {u, v} is globally
linked in G in Rd if it is globally linked in all d-dimensional generic frameworks (G, p).

In the rest of the paper we shall assume that d = 2, unless specified otherwise.
In [6], the characterization of globally linked pairs of vertices were solved for M -
connected graphs, an important family of rigid graphs. In this paper, we extend that
characterization for minimally rigid graphs. A graph G = (V,E) is minimally rigid,
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Figure 2: A realization (G, p) of a rigid graph G in R2. The pair {u, v} is globally
linked in (G, p).
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Figure 3: Two equivalent realizations of the rigid graph G of Figure 2, which show
that the pair {u, v} is not globally linked in G in R2.

if it is rigid, and G− e is not rigid for all e ∈ E. As the main result of the paper, we
shall prove that a pair of vertices {u, v} is globally linked in a minimally rigid graph
G = (V,E) if and only if uv ∈ E. This result verifies [7, Conjecture 5.9] for minimally
rigid graphs.

The rest of the paper is structured as follows. In Section 2 we review some prelimi-
nary results on minimally rigid graphs and globally linked pairs of vertices. In Section
3 we prove a key lemma about extending a pair of equivalent generic frameworks with
a vertex of degree three without destroying the genericity of one of the frameworks.
In Section 4 we show that the non-globally-linked relation of a pair of vertices is pre-
served by the Henneberg 1-extension operation if we apply it on a bridge, an edge
whose removal destroys rigidity. In Section 5 we prove our main result about globally
linked pairs of vertices in minimally rigid graphs.

2 Preliminary results

The characterization of minimally rigid graphs was first solved by Laman [8]. For a
graph G = (V,E) and X ⊆ V , let EG(X) denote the set, and iG(X) the number of
edges in G[X], that is, in the subgraph induced by X in G.
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Section 3. Extending equivalent generic frameworks 5

Theorem 2.1. [8] A graph G = (V,E) is minimally rigid if and only if |E| = 2|V |−3,
and iG(X) ≤ 2|X| − 3, for all X ⊆ V with |X| ≥ 2.

An efficient combinatorial algorithm for testing this condition was given by Lovász
and Yemini [9]. Laman’s original proof of Theorem 2.1 used the following two simple
graph operations that can construct minimally rigid graphs from an edge.

Given a graph G = (V,E) and two distinct vertices u,w ∈ V , the Henneberg 0-
extension operation [5] adds a new vertex v and new edges vu and vw to G. The
basic result about 0-extensions is the following.

Lemma 2.2. [10] Let G be a graph and let H be obtained from G by a 0-extension.
Then H is minimally rigid if and only if G is minimally rigid.

The Henneberg 1-extension operation [5] (on edge xy and vertex w) deletes an edge
xy from a graph G and adds a new vertex z and new edges zx, zy, zw for some vertex
w ∈ V (G) − {x, y}. It is known that the 1-extension operation preserves rigidity
[10]. We shall need the following lemma about the inverse operation of 1-extension
on minimally rigid graphs.

Lemma 2.3. [10] Let G = (V,E) be a minimally rigid graph and let v ∈ V be a
vertex with d(v) = 3. Then there are u,w ∈ NG(v), uw /∈ E such that the graph
H = G− v + uw is minimally rigid.

By observing that a minimally rigid graph has a vertex of degree two or three, it
follows that a graph is minimally rigid if and only if it can be constructed from an
edge by a sequence of 0-extensions and 1-extensions.

Let H = (V,E) be a graph and x, y ∈ V . We shall use κH(x, y) to denote the
maximum number of pairwise openly disjoint xy-paths in H. If xy /∈ E then, by
Menger’s theorem, κH(x, y) is equal to the size of a smallest set S ⊆ V (H) − {x, y}
for which there is no xy-path in H − S. A simple necessary condition for a pair of
vertices to be globally linked in a graph is the following.

Lemma 2.4. [7] Let (G, p) be a generic framework, x, y ∈ V (G), xy /∈ E(G), and
suppose that κG(x, y) ≤ 2. Then {x, y} is not globally linked in (G, p).

We shall also need the following lemma about 0-extensions and non-globally-linked
pairs. In Section 4 we shall extend this result to 1-extensions.

Lemma 2.5. [7] Let H = (V,E) be a graph and u, v ∈ V . Suppose that {u, v} is
not globally linked in H and that G is a 0-extension of H. Then {u, v} is not globally
linked in G.

3 Extending equivalent generic frameworks

Let K ⊆ R be a field. We call a point p = (p1, . . . , pn) ∈ Rn generic over K, if the set
{p1, . . . , pn} is algebraically independent over K. To prove the framework extension
result of this section, we need the following lemma about polynomials where all roots
are non-generic over a field. For a polynomial f ∈ R[x1, . . . , xn], we denote the set of
points where f vanishes by V (f).
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Lemma 3.1. Let K be a countable subfield of R and let f ∈ R[x1, x2] be an irreducible
polynomial. If the cardinality of V (f) is continuum, and all roots of f are non-generic
over K, then there is λ 6= 0, such that λf ∈ K[x1, x2].

Proof: For all p ∈ R2, which is a root of f , p is also the root of a non-zero irreducible
polynomial in K[x1, x2]. Since the cardinality of K[x1, x2] is countable, there is a non-
zero irreducible polynomial g ∈ K[x1, x2], such that the cardinality of V (f) ∩ V (g) is
continuum. From this it follows1 that f and g have a common factor, but since both
f and g are irreducible, there is a λ 6= 0, such that λf = g. •

Lemma 3.2. Let G = (V,E) be a graph and v ∈ V with NG(v) = {u,w, z}. Suppose
that (G − v, p) and (G − v, q) are equivalent frameworks, where p is generic, q(u),
q(w) and q(z) are not collinear, and ||q(u)− q(w)|| /∈ Q(p). Then there are equivalent
frameworks (G, p∗) and (G, q∗) where p∗ is generic, p∗|V−v = p and q∗|V−v = q.

Proof: Let K = Q(p). The extension of the generic configuration p with a point
pv ∈ R2 is generic, if and only if pv is a generic point over K. Let T : R2 → R2 be
an isometry that takes p(u) to the origin and p(w) to a point on the first coordinate
axis. This isometry has the form Tz = Az+ b, where A ∈ K2×2 and b ∈ K2. With an
argument similar to that in [7, Lemma 3.1], it can be shown that pv is generic over K
if and only if T (pv) is generic over K.

Let p′ be a configuration that is congruent to p and p′(u) = (0, 0), p′(w) = (p3, 0)
and p′(z) = (p4, p5). Similarly, let q′ be a configuration that is congruent to q and
q′(u) = (0, 0), q′(w) = (q3, 0) and q′(z) = (q4, q5). Since q(u), q(w) and q(z) are not
collinear, we have that q5 6= 0. Moreover q3 = ||q(u) − q(w)|| /∈ K. By reflecting the
configuration q′ on the first coordinate axis, if necessary, we may assume that q5 6= p5.

We call a point (p1, p2) ∈ R2 feasible, if there exists a point (q1, q2) ∈ R2, such that
the extended frameworks (G, p′) and (G, q′) are equivalent, where p′(v) = (p1, p2) and
q′(v) = (q1, q2). To prove the lemma, we have to show that there exists a feasible
point that is generic over K.

The set of feasible points can be described by the following equations:

q21 + q22 = p21 + p22 (2)

(q1 − q3)
2 + q22 = (p1 − p3)

2 + p22 (3)

(q1 − q4)
2 + (q2 − q5)

2 = (p1 − p4)
2 + (p2 − p5)

2 (4)

From equation (2) and (3) we get that

q1 =
q23 − p23 + 2p1p3

2q3
,

and using equation (4) we get that

q2 =
q24 + q25 − p24 − p25 + 2p1p4 + 2p2p5 − q4(

q23−p23+2p1p3
q3

)

2q5
1See e.g. [2, Section 1.6, Proposition 2], which states that if f, g are polynomials in R[x, y] with

no common factors, then V (f) ∩ V (g) is finite.
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And this (q1, q2) is a solution to the above equation system, if and only if equation
(2) also holds, that is

4q23q
2
5(q

2
1 + q22 − p21 − p22) = a11p

2
1 + a22p

2
2 + a12p1p2 + a1p1 + a2p2 + a0 = 0.

This means, that there is an

f = a11x
2
1 + a22x

2
2 + a12x1x2 + a1x1 + a2x2 + a0 ∈ R[x1, x2]

polynomial, such that (p1, p2) is feasible if and only if f(p1, p2) = 0. In other words,
the feasible points are on a second-degree algebraic plane curve.

Let r = q24 − p24, and s = q25 − p25. The coefficients of f are the following:

a11 = 4q25(p
2
3 − q23) + 4(q3p4 − p3q4)

2

a22 = 4q23(p
2
5 − q25)

a12 = 8p5q3(q3p4 − p3q4)

a1 = 4(q3p4 − p3q4)(q3(r + s)− q4(q
2
3 − p23)) + 4p3q

2
5(q

2
3 − p23)

a2 = 4p5q3(q3(r + s)− q4(q
2
3 − p23))

a0 = (q3(r + s)− q4(q
2
3 − p23))

2 + q25(q
2
3 − p23)

2

Since q23 6= p23 and q5 6= 0 it follows that a0 > 0.

Claim 3.3. The algebraic plane curve defined by f(x1, x2) = 0 is not empty and it is
not a single point.

Proof: If q25 6= p25, then the following two points A,B ∈ R2 are both on the curve.

A =

(
p3 + q3

2
,
r + s− (p3 + q3)(p4 − q4)

2(p5 − q5)

)

B =

(
p3 − q3

2
,
r + s− (p3 − q3)(p4 + q4)

2(p5 + q5)

)

Since A 6= B, in this case the proof is complete, so we may suppose that q25 = p25.
Since q5 6= p5, the point A belongs to the curve, so the curve is not empty, and since
a22 = 0, it can not be a single point either. •

Let us suppose indirectly, that there is no point on the f = 0 curve that is generic
over K. Since this curve is not empty, and is not a single point, it can be either an
ellipse, a parabola, a hyperbola or the union of two lines. In either case the cardinality
of the root-set of each irreducible component of f is continuum. Applying Lemma 3.1
to the irreducible components of f we get that there is λ 6= 0, such that λf ∈ K[x1, x2].

Claim 3.4. q25 = p25.
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Proof: Consider the following two polynomials:

F (x) = a212(p
2
3a

2
12 − 4a22)x

3+

8p25a22
[
p23a11a

2
12 + 2a22(a22 − a11)− 2a212a0

]
x2+

16p45a
2
22

[
4(a22 − a11)a0 + p23a

2
11 + a22

]
x+

64p65a
3
22a0,

G(x) =
[
4p25q

2
5a

2
22 − 4sp25a11a22 − s2a212

]
x− 4p23p

2
5q

2
5a

2
22.

If a22 6= 0 then the constant term of both F and G are non-zero and substituting
all coefficients with their appropriate expressions we get that F (q25 − p25) = 0 and
G(q23) = 0. Since λf ∈ K[x1, x2] it follows that λ

4F ∈ K[x], q5 ∈ K, λ2G ∈ K[x] and
finally q3 ∈ K, which is a contradiction. This means that a22 must be zero, and thus
q25 = p25. •

Claim 3.5. a12 6= 0.

Proof: Consider the polynomial

F (x) = p4(p3 − p4)a11x− p23p5a2.

If q3p4 − p3p4 = 0, then a11 = 4p25(p
2
3 − q23) 6= 0 and F (q23) = 0. Since λF ∈ K[x]

and F 6= 0 we get that q3 ∈ K, which is a contradiction, so q3p4 − p3q4 6= 0 and thus
a12 6= 0. •

Claim 3.6. Either q4 ∈ K or there is µ ∈ K such that q4 = µq3.

Proof: Since

[2p5(a1 + p3a11)− p4(2a2 + p3a12)] q3 + p3(2a2 + p3a12)q4 = 0,

if 2a2 + p3a12 6= 0, then there is µ ∈ K such that q4 = µq3. If, on the other hand

2a2 + p3a23 = 8p5q3(q
2
4 − q3q4 − p24 + p3p4) = 0,

then q24 − q3q4 = p24 − p3p4. In this case q24 is the root of the following polynomial:

F (x) =
[
((p3 − p4)

2 − p25)a12 + 2p5(p3 − p4)a11
]
x2+[

(p4(p3 − p4)(p
2
4 − p25 − 2p3p4) + p23p

2
5)a12 + 2p4p5(p3 − p4)

2a11
]
x+

p24(p3 − p4)
2((p24 − p25)a12 − 2p4p5a11).

Since λF ∈ K, in order to show that q4 ∈ K, we have to prove that F 6= 0. Let us
suppose indirectly, that F = 0. In this case

((p3 − p4)
2 − p25)a12 + 2p5(p3 − p4)a11 = 0,

(p24 − p25)a12 − 2p4p5a11 = 0.
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Section 4. 1-extensions and globally linked pairs 9

But since a12 6= 0, the determinant of this linear equation, which is a non-zero poly-
nomial of p, is zero, which is a contradiction. •

Now consider the following polynomial:

F (x, y) =
[
(p24 − p25)a12 − 2p4p5a11

]
x2 + 2p3(p5a11 − p4a12)xy + p23a12y

2 + p33p
2
5a12.

Since F (q3, q4) = 0, if q4 ∈ K, then q3 is the root of λF (x, q4) ∈ K[x], and the con-
stant term of this polynomial is p23a12(q

2
4 + p25) 6= 0. And if q3 = µq4 for some µ ∈ K,

then q3 is the root of λF (x, µx) ∈ K[x], where the constant term is now p23p
2
5a12 6= 0.

Either way we get that q3 ∈ K, which is a contradiction that completes the proof. •

4 1-extensions and globally linked pairs

We can use the framework extension result of the previous section to prove the converse
of [7, Lemma 4.1].

Theorem 4.1. Let H = (V,E) be a rigid graph and let G be a 1-extension of H on
some edge uw ∈ E. Suppose the H − uw is not rigid. Then {u,w} is not globally
linked in G.

Proof: Let (H, p) be a generic framework. Since (H, p) is infinitesimally rigid, but
(H−uw, p) is not infinitesimally rigid, there is an infinitesimal motion q of (H−uw, p),
such that

(p(u)− p(w))(q(u)− q(w)) 6= 0.

By Theorem 1.1 there is a smooth flexing π : [−1, 1] × V → R2 of the framework
(H − uw, p), such that π̇ = q.

Suppose that G is the 1-extension of H with a new vertex v such that NG(v) =
{u,w, z}. Since p is generic, p(u), p(w) and p(z) are not collinear, and since π is
continuous, π(t, u), π(t, w) and π(t, z) are not collinear for all 0 < t < ε, where ε is
sufficiently small. Let

d(t) = ||π(t, u)− π(t, w)||2.
Since d′(0) 6= 0, there is 0 < µ < ε such that d(µ) /∈ Q(p). Particulary,

||π(µ, u)− π(µ,w)|| 6= ||p(u)− p(w)||.
Applying Lemma 3.2 to (G−v, p) and (G−v, π(µ)) we can find equivalent frameworks
(G, p∗) and (G, q∗) such that p∗ is generic, p∗|V−v = p and q∗|V−v = π(µ). From this
we get that

||q∗(u)− q∗(w)|| = ||π(µ, u)− π(µ,w)|| 6= ||p(u)− p(w)|| = ||p∗(u)− p∗(w)||.
This means that {u,w} is not globally linked in G. •

We shall also need the following generalization of Lemma 2.5 to 1-extensions.
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Section 5. Main result 10

Theorem 4.2. Let H = (V,E) be a rigid graph and let G be a 1-extension of H on
some edge uw ∈ E. Suppose that H − uw is not rigid and that {x, y} is not globally
linked in H for some x, y ∈ V . Then {x, y} is not globally linked in G.

Proof: Since {x, y} is not globally linked in H, there are equivalent frameworks
(H, p1) and (H, p2) such that p1 is generic and

||p1(x)− p1(y)|| 6= ||p2(x)− p2(y)||.

From [7, Corollary 3.7] we get that the framework (H, p2) is quasi-generic and therefore
regular. Since (H, p2) is infinitesimally rigid, but (H − uw, p2) is not infinitesimally
rigid, there is an infinitesimal motion q of (H − uw, p2), such that

(p2(u)− p2(w))(q(u)− q(w)) 6= 0.

By Theorem 1.1 there is a smooth flexing π : [−1, 1] × V → R2 of the framework
(H − uw, p2), such that π̇ = q.

Suppose that G is the 1-extension of H with a new vertex v such that NG(v) =
{u,w, z}. Since p2 is quasi-generic, p2(u), p2(w) and p2(z) are not collinear, and since
π is continuous, π(t, u), π(t, w) and π(t, z) are not collinear for all 0 < t < ε, where ε
is sufficiently small. Also, there is ν < ε such that

||π(t, x)− π(t, y)|| 6= ||p1(x)− p1(y)||

for all 0 < t < ν. Let
d(t) = ||π(t, u)− π(t, w)||2.

Since d′(0) 6= 0, there is 0 < µ < ν such that d(µ) /∈ Q(p1). Applying Lemma 3.2 to
(G − v, p1) and (G − v, π(µ)) we can find equivalent frameworks (G, p∗) and (G, q∗)
such that p∗ is generic, p∗|V−v = p1 and q∗|V−v = π(µ). Therefore

||q∗(x)− q∗(y)|| = ||π(µ, x)− π(µ, y)|| 6= ||p1(x)− p1(y)|| = ||p∗(x)− p∗(y)||.

This means that {x, y} is not globally linked in G. •

5 Main result

Theorem 5.1. Let G = (V,E) be a minimally rigid graph and suppose that xy /∈ E.
Then {x, y} is not globally linked.

Proof: The proof is by induction on |V |. The theorem is trivially true for |V | ≤ 3,
so we may assume that |V | ≥ 4 and that the theorem holds for all minimally rigid
graphs with at most |V | − 1 vertices. From Theorem 2.1 it follows that G has either
a vertex of degree two, or it has at least six vertices of degree three.

First suppose that G has a vertex v of degree two. If v ∈ {x, y} then κG(x, y) = 2
and hence {x, y} is not globally linked by Lemma 2.4. So suppose v 6= x, y and
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consider H = G − v. By Lemma 2.2 H is also minimally rigid and xy /∈ E(H). By
induction this implies that {x, y} is not globally linked in H. Since G is a 0-extension
of H, the theorem follows from Lemma 2.5.

If G has no vertex of degree two, then it has a vertex v of degree three, such that
v 6= x, y. By Lemma 2.3 there are u,w ∈ NG(v), uw /∈ E, such that H = G− v + uw
is also minimally rigid. If xy /∈ E(H), then we get by induction that {x, y} is not
globally linked in H. Since H is minimally rigid, H−uw is not rigid and the theorem
follows from Theorem 4.2. If xy ∈ E(H), then xy = uw and G is a 1-extension of H
on xy. Since H − xy is not rigid, the theorem follows from Theorem 4.1. •

Corollary 5.2. Let G be a minimally rigid graph. Then {u, v} is globally linked in
G if and only if uv ∈ E(G).

References

[1] L. Asimow and B. Roth. The rigidity of graphs. Trans. Amer. Math. Soc.,
245:279–289, 1978.

[2] W. Fulton. Algebraic Curves. 2008. http://www.math.lsa.umich.edu/

~wfulton/CurveBook.pdf.

[3] H. Gluck. Almost all simply connected closed surfaces are rigid. In Geometric
Topology, volume 438 of Lecture Notes in Mathematics, pages 225–239. Springer-
Verlag, 1975.

[4] S. J. Gortler, A. D. Healy, and D. P. Thurston. Characterizing generic global
rigidity. 2007. arXiv:0710.0926v4.

[5] L. Henneberg. Die graphische Statik der starren Systeme. Leipzig, 1911.

[6] B. Jackson and T. Jordán. Connected rigidity matroids and unique realizations
of graphs. J. Combinatorial Theory Ser B, 94:1–29, 2005.

[7] B. Jackson, T. Jordán, and Z. Szabadka. Globally linked pairs of vertices in equiv-
alent realizations of graphs. Discrete and Computational Geometry, 35(3):493–
512, 2006.

[8] G. Laman. On graphs and rigidity of plane skeletal structures. J. Engineering
Math., 4(4):331–340, 1970.

[9] L. Lovász and Y. Yemini. On generic rigidity in the plane. SIAM J. Algebraic
Discrete Methods, 3:91–98, 1982.

[10] T. S. Tay andW.Whiteley. Generating isostatic frameworks. Structural Topology,
11:21–69, 1985.

EGRES Technical Report No. 2010-02

http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf
http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf

	Introduction
	Preliminary results
	Extending equivalent generic frameworks
	1-extensions and globally linked pairs
	Main result

