
EGRES Technical Report No. 2010-01 1

Balanced list edge-colourings of bipartite graphs

Tamás Fleiner? and András Frank??

Abstract

Galvin solved the Dinitz conjecture by proving that bipartite graphs are
∆-edge-choosable. We employ Galvin’s method to show some further list edge-
colouring properties of bipartite graphs. In particular, there exist balanced list
edge-colourings for bipartite graphs. In the light of our result, it is a natu-
ral question whether a certain generalization of the well-known list colouring
conjecture is true.
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1 Introduction

A proper edge-colouring of graph G is the assignment of colours to the edges of G
such that no two edges incident with the same vertex have the same colour. Graph
G is said to be k-edge-choosable if no matter how we assign lists L(e) of k possible
colours to each edge e of G, there always exists a proper edge-colouring of G such
that each edge e of G is coloured from L(e). The list chromatic index χ′l(G) of G is
the least integer k such that G is k-edge-choosable. As we may assign the same list to
each edge, the chromatic index is always a lower bound on the list chromatic index:
χ′(G) ≤ χ′l(G). Dinitz conjectured (in terms of Latin squares) that complete bipartite
graph Kn,n has list chromatic index χ′l(Kn,n) = n (see [1]). This is a special case of the
famous list colouring conjecture stating that for any finite loopless graph G, we have
χ′(G) = χ′l(G). Galvin’s celebrated method shows that the list colouring conjecture is
true for any finite bipartite graph and this immediately implies the Dinitz conjecture
[2].

In this work, we employ Galvin’s result and extend it to not necessarily proper
edge-colourings. For this reason, we define a partial order on edge-colourings such
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??Department of Operations Research, Eötvös Loránd University and MTA-ELTE Egerváry Re-
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Section 2. Main result 2

that proper edge-colourings and 1-edge-colourings are at the best and worse elements,
respectively. We deduce that for any k-edge-colouring of bipartite graph G, there
exists a better list edge-colouring provided each edge has at least k possible colours.
This result can be formulated such that a generalization of the list colouring conjecture
to not necessarily proper edge-colourings holds for bipartite graphs. It is a natural
question to ask the same question for nonbipartite graphs, as well.

In Section 2, we define a partial order on number theoretic partions and formulate
our main result and prove the existence of balanced list k-edge-colourings of bipartite
graphs that is the main motivation of this present work. It is well-known that for
any bipartite graph G and for any positive integer k, there exists an edge-colouring

of G with k colours such that no vertex v is incident with more than
⌈
d(v)
k

⌉
edges

of the same colour. We show that if each edge list contains at least k colours then
there exists a list edge-colouring with the same property. We prove our main result
in Section 3 and conclude in Section 4 with two open questions.

2 Main result

To define a partial order on edge-colourings, we start from a little afar. For a non-
negative integer n, a (number theoretic) partition of n is a way to decompose n as
a sum of positive integers where the order of the terms is indifferent. That is, if
two such sums only differ in the order of the terms then those determine the same
partition. For a number theoretic partition π let π(i) denote the ith greatest term
in π, where we count each addend with its multiplicity. That is, if π is partition
2 + 3 + 2 + 5 + 1 + 1 of 14 then π(3) = 2, π(5) = 1 and (slightly abusing notation)
π(8) = 0. We say that partition π of n is better than partition π′ of n′ (denoted by
π � π′) if

∑k
i=1 π(i) ≤

∑k
i=1 π

′(i) holds for all positive integers k. It follows immedi-
ately from the definition that among partitions of n, n = 1 + 1 + . . . + 1 is the best
one and the one-term partition n = n is the worst one.

Let us turn to edge-colourings now. By a k-edge-colouring of graph G we mean a
function c : E(G) → {1, 2, . . . , k}, and c(e) is called the colour of edge e of G. Each
k-edge-colouring c and each vertex v of G induce a partition π(c, v) of degree d(v)
of v into (at most k) terms that describe how many edges of each colour of c are
incident with v. In particular, edge-colouring c is a proper one if and only if π(c, v)
is the best partition of d(v) for each vertex v of G. An edge-colouring of graph G is
a k-edge-colouring of G for some k.

If c and c′ are two edge-colourings of G then edge-colouring c is better than c′ if
π(c, v) � π(c′, v) holds for each vertex v of G, that is, if c induces a better partition
on each degree than c′ does. This definition yields in particular that the best edge-
colourings are the proper ones. Now we can claim our main theorem.

Theorem 2.1. Let G = (V,E) be a finite bipartite graph and πv be a partition of d(v)
into at most k terms. If L(e) is a list of at least k possible colours for each edge e of
G then we can pick a colour c(e) of L(e) for each edge e of G such that the partition
c induces at v is better than πv at each vertex v of G.
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An immediate corollary of Theorem 2.1 is the following.

Corollary 2.2. If c′ is a k-edge-colouring of bipartite graph G and |L(e)| ≥ k for
each edge e of G then there exists a list edge colouring c of G such that c � c′.

From Kőnig’s theorem we know that χ′(G) = ∆(G) holds for bipartite graphs, so
the fact that proper edge-colourings are the best ones shows that Galvin’s theorem
follows from Corollary 2.2.

Theorem 2.3 (Galvin [2]). Each bipartite graph G is ∆(G)-edge-choosable.

Actually, Theorem 2.3 is a main ingredient in the proof of our main result. However,
there is another consequence of Theorem 2.1 that has to do with balanced k-edge-
colourings.

Corollary 2.4. Assume that G is a bipartite graph and for each edge e of G, list L(e)
contains at least k colours. Then it is possible to pick a colour c(e) ∈ L(e) for each

edge e of G such that no vertex v is incident with more than
⌈
d(v)
k

⌉
edges of the same

colour.

Proof. Appling Theorem 2.1 to G where πv denotes the partition of d(v) into k

terms each of which is either
⌈
d(v)
k

⌉
or

⌊
d(v)
k

⌋
gives a list edge-colouring c such that

π(c, v)(1) ≤ πv(1) =
⌈
d(v)
k

⌉
for all vertices v of G. This is exactly what Corollary 2.4

requires.

3 Proof of the main result

Before justifying our main theorem, we recall some definitions. If G is a graph and S
is a set of vertices of G then by merging the vertices of S we mean the operation that
we delete S from G, introduce a new vertex (say vS) and in each edge e of G incident
with some vertex of S we replace vertices of S by vS. Note that we may create parallel
edges and loops by merging. Clearly, if G′ is obtained from G by merging the vertices
of S then G and G′ has the same number of edges and the degree of vS in G′ is the
sum of the degrees of the vertices of S in G. If S contains k vertices then we say that
we can get graph G from G′ by detaching vS into k parts. Note that merging vertices
is a unique operation unlike detaching a vertex into k parts that can be done several
ways.

We need some basics also on partitions. We say that partition π of n is the conjugate
of partition σ of n if π(i) = max{j : σ(j) ≥ i}. It is well-known that turning the
Ferrers diagram of a partition by 90 degrees (and taking mirror image) we get the
Ferrers diagram of the conjugate partition hence if σ is the conjugate of π then π is
the conjugate of σ, as well.

Proof of Theorem 2.1. Construct graph G′ by detaching each vertex v of G into ver-
tices v1, v2, . . . , vπv(1) in such a way that dG′(v1)+dG′(v2)+. . .+dG′(vk) is the conjugate
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partition of πv. Clearly k ≥ dG′(v1) ≥ dG′(v2) ≥ dG′(v3) ≥ . . . holds by our choice,
so ∆(G′) ≤ k. For each edge e′ of G′ define L(e′) := L(e) where e′ corresponds to
edge e′ of G. By Theorem 2.3 of Galvin, there exists a list edge-colouring of G′, that
is we can pick a colour c′(e) ∈ L′(e) for each edge e′ of G such that c′ is a proper
edge-colouring of G′. For each edge e of G define c(e) := c′(e′) where e′ corresponds
to e in G′. By definition, c(e) ∈ L(e) holds.

The only thing left is to show that π(c, v) � πv for each vertex v of G. To this
end, it is enough to prove that for any positive integer i and any set C of i colours,
no more than πv(1) + πv(2) + . . .+ πv(i) edges incident with v have been coloured to
a colour of C. So fix set C of i colours and let E(C, v) := {e ∈ E(v) : c(e) ∈ C} be
the set of edges incident with v with a colour of C. (Here E(v) stands for the set of
edges incident with v.) Let E ′(C, v) be the set of edges of G′ that correspond to edges
E(C, v). Clearly, each vertex vj of G′ is incident with at most min(dG′(vj), i) edges of
E ′(C, v). This means that

|E(C, v)| = |E ′(C, v)| ≤
πv(1)∑
j=1

min(dG′(vj), i) = πv(1) + πv(2) + . . .+ πv(i) ,

where the last equality follows from the fact that partitions πv(1) +πv(2) + . . .+πv(i)
and min(dG′(v1), i) + min(dG′(v2), i) + . . . + min(dG′(vπv(1)), i) are conjugates of one
another.

We got that for each vertex v of G there cannot be more edges incident with v
coloured with at most i colours than the sum of the i greatest term of prescribed
vertex-partition πv. This means that list edge-colouring c induces a better partition
on d(v) than πv, and this is exactly what we wanted to prove.

4 Conclusion

The list colouring conjecture can be interpreted such that if k colours are enough to
properly colour the edges of a graph then from arbitrarily given edge lists of size k
it is possible to pick a colour for each edge to form a proper edge-colouring. The list
colouring conjecture is known to be true for bipartite graphs due to [2] by Galvin.
Corollary 2.2 shows that for bipartite graphs, an even stronger statement is true: if we
fix some k-edge-colouring of G, it never hurts if we assign different lists of k colours
to the edges in the sense that we can always find a better edge-colouring from the lists
than our initial colouring. It is a natural question whether the following generalized
form of the list colouring conjecture is true.

Generalized list colouring conjecture. Is it true that any graph
G and for any k-edge-colouring c of G, no matter how sets L(e) of
size k are assigned to each edge e of G, there always exist elements
c′(e) of L(e) such that c′ is a better edge-colouring of G than c is?

The motivation of this work is the study of the existence of balanced list edge-
colourings. We proved in Corollary 2.4 that for any assignment of k-lists to the edges,
there exists a “balanced” list edge-colouring in which no edge is incident with “too
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many” edges of the same colour. Instead of Theorem 2.1, Corollary 2.4 can also
be deduced from Corollary 2.2 and the well-known fact that for any bipartite graph
there exists a “balanced” k-edge-colouring c′ such that the number of edges of the

same c′-colour incident with v is either
⌈
d(v)
k

⌉
or

⌊
d(v)
k

⌋
for each vertex v of G. But it

is also well-known that we can require some additional properties of balanced k-edge-
colouring c′. Namely, if we fix a nested family on the vertices of each colour class then

we can require that
⌊
|E(X)|
k

⌋
≤ |c−1(i)∩E(X)| ≤

⌈
|E(X)|
k

⌉
holds for each member X of

the nested families, where E(X) denotes the set of edges of G incident with X. This
stronger balanced property means that for each member X more or less exactly the
kth fraction of the edges incident with X receive the same colour. So it is a natural
question whether Corollary 2.4 can be generalized the following way.

Let G be bipartite, k > 0, let A and B be nested set-systems on
colour classes A and B of G and let |L(e)| ≥ k for each edge e of G.
Does there always exist list edge-colouring c from L in such a way

that no more than
⌈
|E(X)|
k

⌉
edges o E(X) has the same colour for

any member X of A ∪ B ∪ V ?

We leave this open question to the reader.
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