
Egerv́ary Research Group
on Combinatorial Optimization

Technical reportS

TR-2009-13. Published by the Egerváry Research Group, Pázmány P. sétány 1/C,
H–1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587–4451.

Generic Global Rigidity of
Body-Bar Frameworks

R. Connelly, T. Jordán, and W.J. Whiteley

December 2009



EGRES Technical Report No. 2009-13 1

Generic Global Rigidity of Body-Bar Frameworks

R. Connelly ?, T. Jordán ??, and W.J. Whiteley? ? ?

Abstract

A basic geometric question is to determine when a given framework G(p)
is globally rigid in Euclidean space Rd, where G is a finite graph and p is a
configuration of points corresponding to the vertices of G. G(p) is globally rigid
in Rd if for any other configuration q for G such that the edge lengths of G(q)
are the same as the corresponding edge lengths of G(p), then p is congruent to
q. A framework G(p) is redundantly rigid, if it is rigid and it remains rigid after
the removal of any edge of G. Hendrickson [9] proved that redundant rigidity
is a necessary condition for generic global rigidity, as is (d + 1)-connectivity.

Recent results in [2] and [10] have shown that when the configuration p is
generic and d = 2, redundant rigidity and 3-connectivity are also sufficient - a
good combinatorial characterization that only depends on G and can be checked
in polynomial time. It appears that a similar result for d = 3 is beyond the
scope of present techniques and there are counterexamples to the sufficiency of
Hendrickson’s conditions.

However, there is a special class of generic frameworks that have polyno-
mial time algorithms for their generic rigidity (and redundant rigidity) in Rd

for any d ≥ 1, as shown in [19], namely generic body-and-bar frameworks. Such
frameworks are constructed from a finite number of rigid bodies that are con-
nected by bars generically placed with respect to each body. We show that a
body-and-bar framework is generically globally rigid in Rd, for any d ≥ 1, if it
is redundantly rigid. As a consequence there is a deterministic polynomial time
combinatorial algorithm on the graph to determine the generic global rigidity
of body-and-bar frameworks in any dimension.

1 Introduction

Two frameworks G(p) and G(q) are equivalent in Rd if corresponding edge lengths
are the same, where p and q are configurations in Rd corresponding to the vertices
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Section 1. Introduction 2

of a finite graph G. We say that G(p) is globally rigid in Rd if when G(q) in Rd is
equivalent to G(p), q is congruent to p. The configurations p and q are congruent if
there is a rigid congruence of Rd that takes p to q.

A framework G(p) is rigid in Rd if there is a neighborhood Up in the space of
configurations in Rd such that if G(q) is equivalent to G(p) and q ∈ Up, then q is
congruent to p.

If one is given a particular configuration p, by [17], determining global rigidity
for any d ≥ 1 is infeasible, and even for rigidity for d ≥ 2 it seems unrealistic. A
natural way to address this difficulty is to consider the case when the configuration p
is generic, which means that all the coordinates of all the points of the configuration
p are algebraically independent over the rational numbers. In other words, the only
polynomial with integer coefficients that is satisfied by these coordinates is the 0
polynomial. This is something of an overkill, especially in the case of rigidity, since
a reasonable finite set of polynomial equations, given by certain determinants, can
be used in many instances. In the case of global rigidity, the equations that would
determine the “bad” cases for global rigidity are much harder to determine.

With the concept of generic in mind, we define a graph G to be generically rigid
in Rd if G(p) is rigid at all generic configurations p, and generically globally rigid in
Rd if G(p) is globally rigid at all generic configurations p [3, 4]. It is not obvious
that global rigidity is a generic property, but recent results in [4, 8] prove that indeed
global rigidity is a generic property for graphs in each dimension.

Two natural necessary conditions, observed by Hendrickson [9], for generic global
rigidity in Rd are that the graph G be vertex (d + 1)-connected, and that, for a
generic configuration p, G(p) be redundantly rigid, which means that G(p) is rigid
and remains rigid after the removal of any edge (Theorem 2.1 below).

For d = 2, Berg and Jordán [2] and Jackson and Jordán [10] confirm, using [4],
that Hendrickson’s necessary conditions are sufficient for generic global rigidity. For
d = 3, Connelly [3] showed that the complete bipartite graph K5,5 is generically
redundantly rigid and vertex 5-connected, but not generically globally rigid, showing
that Hendrickson’s necessary conditions are not sufficient. Similar examples exist for
all d ≥ 3.

So it is natural to search for classes of graphs where generic global rigidity can be
determined combinatorially in line with Hendrickson’s necessary conditions, without
recourse to matrix calculations for each graph, as in [4]. At a workshop at BIRS in
2008, two of the authors and Meera Sitharam conjectured that generic body-and-bar
frameworks would be one such class. These consist of disjoint collections of vertices,
grouped as bodies, where each body is joined to some of the other bodies by disjoint
bars. Each body is assumed to be globally rigid in its own right, by insisting that each
body have enough internal bars to ensure its own global rigidity. For a generic body-
and-bar framework, all of the vertices of all of the bodies are generic. The connections
between the bodies are recorded in a single multigraph H (without loops, but with
multiple edges allowed), where each body is represented as a vertex in the multigraph.
(During our inductions, we will allow H to have loops, but they will not be left when
the induction is completed.) When we collect all the individual vertices of each body
and their individual internal and external bars, we denote that graph by GH . Note
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Section 2. Prior Results on Global Rigidity and Infinitesimal Rigidity 3

that any two bars joining a pair of bodies have disjoint vertices, making this a graph.
In [19, 20] it is shown that generic rigidity (and hence generic redundant rigidity)

of body-and-bar frameworks in Rd, for all d ≥ 1, can be determined efficiently. The
following is our main result. Theorem 5.2 is the same, but stated more in terms of
the body-and-bar graph.

Theorem 1.1. A body-and-bar framework is generically globally rigid in Rd if and
only if it is generically redundantly rigid in Rd.

For the proofs of previous results [2, 10], and for our main theorem here, we rely
on several key techniques. In [4], a sufficient condition is given in terms of the rank of
a stress matrix (to be defined later), that combines with (infinitesimal) rigidity at a
generic point to imply generic global rigidity in any specific dimension (see also [5]). To
apply this result, certain key inductive constructions have been shown to preserve both
the maximal rank of the corresponding stress matrix, and the infinitesimal rigidity. It
is also necessary that these inductive constructions generate all members of the class
from a generically globally rigid seed (a minimal complete graph).

These results have significant theoretical interest as steps towards a full theory of
generic global rigidity of arbitrary frameworks. There are also a wide range of appli-
cations for the algorithms that detect global rigidity, such as localization in wireless
sensor networks [1, 12], molecular conformation [27], and stability of molecules. We
return to possible applications of our main theorem in §6.

We also note that by the results in [5], graphs GH which are generically globally
rigid in Rd are also generically globally rigid in spherical and hyperbolic d-space. Rd

is the classical sample of a general class of metrics over which rigidity and generic
global rigidity results are invariant.

2 Prior Results on Global Rigidity and Infinitesi-

mal Rigidity

Hendrickson [9] proved two key necessary conditions for the global rigidity of a bar-
and-joint framework at a generic configuration. This was conjectured by Whiteley in
[24].

Theorem 2.1 (Hendrickson [9]). Let G(p) be a globally rigid generic bar-and-joint
framework in Rd. Then either G is a complete graph on at most d + 1 vertices or

(i) the graph G is (d + 1)-connected in a vertex sense;

(ii) the framework G(p) is redundantly rigid in Rd, in the sense that removing any
one edge leaves a graph which is infinitesimally rigid.

Note that redundant rigidity is a generic property. Thus the conditions of Theorem
2.1 are necessary for generic global rigidity.
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Section 2. Prior Results on Global Rigidity and Infinitesimal Rigidity 4

One critical technique used for proving global rigidity of frameworks uses stress
matrices. This technique is at the core of the proof that global rigidity is a generic
property, as well as some specific inductive techniques (below).

This stress matrix approach builds on the fact that any globally rigid generic frame-
work is dependent (redundant), with an equilibrium stress ω which is non-zero on all
edges. Let G(p) be a framework with G = (V, E). Recall that an equilibrium stress
on G(p) is an assignment of scalars ωij to the edges such that for each i ∈ V∑

j|ij∈E

ωij(pi − pj) = 0

This can also be visualized as a linear dependence of the rows of the rigidity matrix
[25].

Given a stress, there is an associated |V | × |V | symmetric matrix Ω, the stress
matrix such that for i 6= j, the i, j entry of Ω is −ωi,j, and the diagonal entries for
i, i are

∑
j 6=i ωi,j. Note that all row and column sums are now zero. Connelly has

developed a number of properties of these stress matrices [3, 4].

Theorem 2.2 (Connelly [4, 5]). Let G(p) be a framework in Rd, where p is a generic
configuration. If G(p) has an equilibrium stress where the rank of the associated stress
matrix Ω is |V | − d − 1 and G(p) is infinitesimally rigid, then G(p) is globally rigid
in Rd.

Since the rank of Ω is determined by the non-vanishing of a polynomial in the
entries of the configuration, the rank at one generic point is the rank at all generic
points. Therefore, one generic configuration p making the framework G(p) globally
rigid makes G(q) globally rigid whenever q is generic.

In order to understand this result and use it, it helps to interpret the rank condition
on Ω. The kernel of Ω, K(Ω), always has the vector of all one’s in it. Each additional
vector in a basis for K(Ω) corresponds to an additional coordinate for a configuration
in equilibrium. So the maximum dimension of the affine span d of a configuration
p that is in equilibrium with respect to the stress ω, together with the vector of all
one’s, corresponds to a basis of K(Ω). Such a configuration is called universal with
respect to the stress ω, and the rank of Ω is |V | − (d + 1). When the emphasis is on
a fixed configuration rather than a fixed equilibrium stress, we say Ω is of full rank if
its rank is is |V | − (d + 1).

A subdivision of a bar {i, j} in a framework G(p) is another framework, where the
bar {i, j} is removed and is replaced with two other bars {i, k} and {k, j}, and the
new vertex pk is placed on the line through pi and pj 6= pi, but not at pi and pj

(Figure 1b). If there is an equilibrium stress on G(p), it is easy to check that ωij

can be replaced by ωik = ±ωij|pj − pi|/|pk − pi| and ωjk = ±ωij|pi − pj|/|pk −
pj|, where the sign is chosen depending on whether pk is between pi and pj or on
one side, then the equilibrium condition will be preserved. Call the stress for the
subdivided framework ω∗. When a subdivision is done on a bar {i, j} with ωij 6= 0 for
a universal configuration for a given equilibrium stress ω, the resulting configuration
is still universal with respect to ω∗, since the new vertex pk has degree two and in
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(a) (b) (c)

Figure 1: An edge with an equilibrium stress (a) can be subdivided with a modified
stress on the parts (b) and d − 1 edges added (c). The result is an edge split which
preserves infinitesimal rigidity and the universality of the configuration.

order for any configuration to be in equilibrium the two new bars must be collinear,
and the subdivision process can be reversed. This shows the following.

Proposition 2.3 (Connelly [4]). Let G(p) be a framework, whose vertices have affine
span all of Rd, and which is universal with respect to an equilibrium stress ω. If some
of its bars with non-zero stress are subdivided, then the resulting framework is also
universal with respect to ω∗.

Note that for d ≥ 2 a subdivided framework in Rd is never infinitesimally rigid. Af-
ter subdivision it is necessary to add some additional bars to rigidify it infinitesimally
(Figure 1c).

Recall that, given a graph G with edge e = {i, j}, and d − 1 additional vertices
1, . . . , d− 1, the edge split on e in Rd is the addition of a new vertex k, the removal
of e, and the insertion of d + 1 new edges {k, i}, {k, j}, {k, 1}, . . . {k, d− 1}. The
corresponding geometric operation on G(p) subdivides the edge e and inserts d − 1
new bars from the new vertex pk. Thus we can extend a stress ω on p to the edge
split framework G∗(p∗) by using ω∗ on the subdivided edge e, and making the stresses
0 on the edges {k, 1}, . . . , {k, d − 1}. We say that the edge split on e = {i, j} is a
general position edge split on e if the vectors pk−pi, pk−pj, pk−p1, . . . , pk−pd span
Rd (Figure 1c). If p is generic, then the spanning condition will hold automatically.
Even though some of the new edges have 0 stress, the following is true.

Proposition 2.4 (Tay and Whiteley [22]). Let G(p) be an infinitesimally rigid frame-
work in Rd and let e be an edge of G. Then a general position edge split on e generates
a new graph G∗ and an extended configuration G∗(p∗) which is infinitesimally rigid
in Rd.

We shall also use the well-known fact that if the edge split operation is applied to
a graph G which is generically redundantly rigid in Rd, then the resulting graph will
also be redundantly rigid in Rd.
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Section 3. An Inductive Construction of Redundantly Rigid Body-Bar Graphs 6

Note also that since the new vertex pk lies on the line between pi and pj, the
configuration p∗ is not generic, even if p is. There is an elementary way to connect
the rank calculations for particular configurations to the property of global rigidity of
a framework G(p) at a generic configuration p. This is implicit in [4] and explicit in
[5].

Proposition 2.5. Suppose that G(p) is an infinitesimally rigid framework in Rd and
ω is an equilibrium stress on G(p) with a stress matrix Ω(p) of full rank |V |− (d+1).
Then there is a neighborhood Up in the space of configurations in Rd such that if
q ∈ Up, then G(q) is infinitesimally rigid in Rd and has an equilibrium stress ω′

with a stress matrix Ω(q) of full rank |V | − (d + 1). Furthermore, if G is generically
redundantly rigid and q ∈ Up is a generic configuration then ω′ can be chosen so that
w′ij 6= 0 on all edges ij of G.

Putting all these propositions together we get the following, which was the original
method to imply generic global rigidity for bar frameworks [4]: suppose that G(p) is an
infinitesimally rigid framework in Rd, which is universal with respect to an equilibrium
stress ω, and let e be an edge with non-zero stress. Then a general position edge
split on e in Rd generates a new framework G∗(p∗) which is infinitesimally rigid and
universal with respect to ω∗. After moving to a nearby generic point we may conclude
that G∗ is generically globally rigid in Rd. (See Subsection 6.4 for an extension of this
argument.)

We note that for the plane Jackson, Jordán and Szabadka have an alternative
proof that edge-splitting preserves global rigidity [14]. This proof has recently been
generalized to all dimensions.

3 An Inductive Construction of Redundantly Rigid

Body-Bar Graphs

Let H = (V, E) be a multigraph with minimum degree at least one. The body-bar
graph induced by H, denoted by GH , is the graph obtained from H by replacing each
vertex v ∈ V by a complete graph Bv (a ‘body’) on dH(v) vertices and replacing each
edge uv by an edge (a ‘bar’) between Bu and Bv in such a way that the bars are
pairwise disjoint. (We use dH(v) to denote the degree of vertex v in H. A loop on v
contributes to dH(v) by two.)

We shall prove our main result by an inductive argument which relies on a combi-
natorial result of Frank and Szegő in [6]. Their result, stated as Theorem 3.1 below,
provides an inductive construction for the multigraphs H that induce redundantly
rigid body-bar graphs GH in Rd. By using the operations of the previous section we
shall show how to construct an infinitesimally rigid framework GH(p̂) with a full rank
stress matrix, following the inductive construction of the underlying graph H. This
will imply that GH is generically globally rigid by Proposition 2.5 and Theorem 2.2.

Let H = (V, E) be a multigraph. For a partition P of V let EH(P) denote the set,
and let eH(P) be the number of edges of H connecting distinct members of P . We
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(a) (b) (c) (d)

Figure 2: A combinatorial 6-split on 4 edges (a) with the pinch (b,c) and the addition
of 2 edges (d).

say that H is highly m-tree-connected if

eH(P) ≥ m(t− 1) + 1, (1)

for all partitions P = {X1, X2, ..., Xt} of V with t ≥ 2. Note that a theorem of Nash-
Williams [16] and Tutte [23] implies that H satisfies (1) if and only if H − e contains
m edge-disjoint spanning trees for all e ∈ E.

The operation pinching k edges (with vertex z) subdivides k designated edges and
then contracts the k subdividing vertices into a new vertex z.

Theorem 3.1 (Frank and Szegő [6]). A multigraph H is highly m-tree-connected if
and only if H can be obtained from a vertex by the following operations:

(i) adding an edge (possibly a loop),

(ii) pinching k edges (1 ≤ k ≤ m − 1) with a new vertex z and adding m − k new
edges connecting z with existing vertices.

We call the combined operation of (ii), consisting of pinching and edge addition, an
m-split on k edges (Figure 2). We shall prove (Lemma 4.6) that if a body-bar graph
GH induced by H is generically redundantly rigid in Rd then H is highly

(
d+1
2

)
-tree-

connected. Thus we shall need Theorem 3.1 when m =
(

d+1
2

)
for each d ≥ 1.

4 Main Lemmas

Here we assemble a series of key lemmas needed for the proof of the main theorem.
We want to show that the combinatorial operation of a

(
d+1
2

)
-split on k edges in H

gives rise to a geometric operation on the induced body-bar framework, which adds a
new body and preserves global rigidity at generic configurations. To do this, we need
steps that preserve infinitesimal rigidity and a stress matrix of full rank. We also
need to preserve the structure of a body-bar framework and make sure the new body
inserted is connected to distinct vertices in designated bodies, as prescribed by the split
operation in H. These properties will be ensured by using the edge splitting operation
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(a) (b) (c) (d)

Figure 3: Given a set of k edges to be split, we will insert a new body on k vertices
with each vertex positioned on a bar, along with additional bars attaching this body
to a set of designated vertices, preserving infinitesimal rigidity. (Illustrated for 3 edges
in d = 3, and 4 edges in d = 3.)

on stressed edges to add new vertices. We shall use several different techniques to
complete the geometric operation.

We also want to confirm that redundant rigidity implies high tree connectivity.
With this in hand, the induction on H from Theorem 3.1 can be applied to generate
the globally rigid generic realizations of GH .

4.1 Body insertion lemmas 1 ≤ k ≤ d

The techniques for 1 ≤ k ≤ d illustrate several basic principles. We present this in
two stages. See Figure 3 for a schematic of the process. The central polygon on Figure
3(b) represents a new body, constructed on the vertices splitting the k edges, which
will be infinitesimally rigidly attached to the prior framework. For these values of k
this initial insertion can be done directly by a sequence of edge splits (Figure 4). This
is our first lemma.

Lemma 4.1. Let GH(p) be a generic framework in Rd, where GH is generically
redundantly rigid in Rd. Suppose that we have a set of designated edges uivi, 1 ≤
i ≤ k, and designated vertices rj, 1 ≤ j ≤ dk −

(
k+1
2

)
in GH , where 1 ≤ k ≤ d and

these edges and vertices are pairwise disjoint. Then we can construct an extended
graph G∗H and an extended configuration p̂ by adding a complete graph on a new set
W = {w1, w2, ..., wk} of vertices and adding one new edge from W to each of the
designated vertices rj, and specifying the positions of the vertices of W , such that

(i) each wi subdivides the designated edge uivi, for 1 ≤ i ≤ k,

(ii) G∗H(p̂) is infinitesimally rigid, and

(iii) G∗H is generically redundantly rigid.
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4.1 Body insertion lemmas 1 ≤ k ≤ d 9

(a) (b) (c) (d)

Figure 4: For placing vertices on up to d edges, we do a sequence of edge splits
(illustrated for d = 3). The grey bars are forming the body, and the dark bars are
attachments to the previous framework.

Proof. We construct G∗H(p̂) by inserting p(wi) along the line through p(ui) and
p(vi), for 1 ≤ i ≤ k, as follows. For i = 1, we simply add a vertex w1 by an edge split
on u1v1 which adds d − 1 edges from w1 to the designated vertices r1, . . . , rd−1 (see
Figure 4a). Since the points p(u1), p(v1), p(r1), . . . , p(rd−1) are generic, the points
p(w1), p(u1), p(r1), . . . , p(rd−1) are in general position for all choices of p(w1) along
the line of p(u1), p(v1), distinct from p(u1). We make any such choice, distinct from
both p(u1) and p(v1). Since GH(p) is infinitesimally rigid, the extended framework
will also be infinitesimally rigid by Proposition 2.4. The edge split operation preserves
the generic redundant rigidity of the graph as well. We will choose this point p(w1)
to also be in general position relative to all points p(rj) and all p(vl), l > 1. We say
we have inserted p(w1) along the line through p(u1) and p(v1).

Given the construction for i edges, i < k, we will position a new wi+1 along the line
through p(ui+1), p(vi+1) by a related construction (see Figure 4b,c). The edge split
connects wi+1 to ui+1, vi+1 and to vertices w1, . . . , wi and the next (unused) vertices
rj+1, . . . , rj+d−i−1 (a total of d− 1 edges beyond the split edge). Again, provided that
p(wi+1) is in general position, relative to all the previous vertices as well as vertices
rj+1, . . . , rj+d−i−1, and positioned along the line of p(ui+1), p(vi+1), this maintains
the infinitesimal rigidity. For the further insertions, we choose p(wi+1) to also be in
general position relative to all of p(rj) and any p(vl), l > i + 1. This way we have
inserted p(wi+1) along the line through p(ui+1), p(vi+1).

The insertions can be completed, since we have
∑k

i=1(d−i) = dk−
(

k+1
2

)
designated

vertices rj. Also note that at each stage we have a complete graph among the new
vertices wi. Thus the extended graph and framework, after the k insertions, satisfies
conditions (i),(ii), and (iii), as required. �

At this point G∗H is not a body-bar graph: each vertex wi in the new body is
connected to at least two vertices that belong to other bodies. Since in a body-bar
graph each vertex is connected to precisely one other body, we refer to all but one of
these connections at wi as bad. The k insertions in Lemma 4.1 create

∑k
i=1(d + 1− i)

bad connections in total. The following lemma shows how to get rid of the bad
connections and also confirms that the final body-bar structure is globally rigid for
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4.1 Body insertion lemmas 1 ≤ k ≤ d 10

generic configurations.

Lemma 4.2. Let GH be a generically redundantly rigid body-bar graph in Rd and let
p be a generic configuration for which G(p) has an equilibrium stress ω with a stress
matrix of full rank. Suppose that we have a set of designated edges uivi, 1 ≤ i ≤ k,
and non-negative integers s1, s2, ..., sn assigned to the n bodies of GH , where 1 ≤ k ≤ d
and

∑n
i=1 si =

(
d+1
2

)
− k. Then we can construct an extended body-bar graph GH∗ and

an extended generic configuration p̂ with one added body b∗ on
(

d+1
2

)
+k vertices, with

si new vertices added to each existing body bi, 1 ≤ i ≤ n, and by replacing the k
designated edges by

(
d+1
2

)
+ k disjoint edges connecting b∗ to the added vertices and to

vertices ui, vi, 1 ≤ i ≤ k, such that

(i) GH∗(p̂) is infinitesimally rigid,

(ii) GH∗(p̂) has a stress matrix of full rank, and

(iii) GH∗ is generically redundantly rigid.

Proof. By Proposition 2.5 we may suppose that ω is non-zero on all edges. We start
the construction of GH∗ by extending each body bi by si new vertices. We do this by
a sequence of si edge splitting operations on stressed edges within bi. This way we
can maintain a stress matrix of full rank and, since p is generic, we can also preserve
infinitesimal rigidity. These new vertices are labeled as rj, 1 ≤ j ≤

(
d+1
2

)
− k.

Next we apply Lemma 4.1 to the resulting framework, by using the first dk−
(

k+1
2

)
(≤(

d+1
2

)
− k) vertices rj as designated vertices, to obtain an initial infinitesimally rigid

framework G∗H(p̂) with all new vertices placed on stressed edges. By Proposition 2.3
this implies that G∗H(p̂) also has an equilibrium stress with a full rank stress matrix.
Recall that the edge splitting operations preserve generic redundant rigidity. Moving
to a generic configuration preserves all of these properties, and ensures that every
edge has a non-zero stress by Proposition 2.5.

Now we can apply a sequence of edge splits on bad edges to separate the attachments
and make sure that each vertex on the new body is connected to other bodies by
precisely one bar. First we split d − k bad edges incident with w1 by new vertices
wk+j, 1 ≤ j ≤ d − k, adding as many edges to other vertices in the growing body
as possible and adding the other new edges to unused vertices rj. As before, we
perform general position edge splits on stressed bars, so by Propositions 2.3 and 2.4
infinitesimal rigidity is preserved and the resulting framework has a stress matrix of
full rank.

In this phase vertex wk+j will be connected to k + j − 1 vertices of the growing
body and d − k − j + 2 vertices in other bodies, among which d − k − j + 1 will go
to (unused) designated vertices. Furthermore, while one bad edge is eliminated by
adding wk+j, a new set of d− k − j + 1 bad edges arises. At this point we have used

dk −
(

k + 1

2

)
+

d−k∑
j=1

(d− k − j + 1) =

(
d + 1

2

)
− k
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(
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2

)
− 1 11

designated vertices and have

k∑
i=1

(d + 1− i) +
d−k∑
j=1

(d− k − j + 1)− (d− k) =

(
d + 1

2

)
− (d− k)

bad edges. Now we again move to a generic configuration to make all edges stressed.
Finally we separate the attachments and eliminate all remaining bad edges at ver-

tices in the growing body by
(

d+1
2

)
+ k− d further edge splits on stressed edges. This

step requires no new vertices rj and creates no bad edges. At the end the new body
has

(
d+1
2

)
+ k vertices. At this point we can also add any missing edges to make each

body a complete graph on its vertices. Hence the constructed graph GH∗ is a body-bar
graph which is induced by a multigraph H∗, obtained from H by a

(
d+1
2

)
-split on k

edges.
At each stage the framework is infinitesimally rigid, and has an equilibrium stress

with a stress matrix of full rank. Furthermore, the operations used (edge split and edge
addition) preserve generic redundant rigidity. We conclude that the final framework
GH∗(p̂) is infinitesimally rigid with a full rank stress matrix and GH∗ is generically
redundantly rigid, as required. �

The proofs of the previous lemmas, when restricted to the graphs of the frameworks,
imply the following combinatorial statement.

Corollary 4.3. Let H be a multigraph for which GH is generically redundantly rigid
in Rd. Suppose that H∗ is obtained from H by a

(
d+1
2

)
-split on k edges for some

1 ≤ k ≤ d. Then GH∗ can be obtained from GH by a sequence of edge splits, followed
by a sequence of edge additions.

4.2 Body insertion lemmas d < k ≤
(
d+1

2

)
− 1

For splitting d < k ≤
(

d+1
2

)
−1 edges, we need an extended process which we introduce

and verify here. In order to control the total number of edges in the final graph, we
start from the output of Lemma 4.1. As we split some of the attachments which are
not along edges previously split, we will place them onto the additional designated
edges, creating additional edge splits in a new construction.

Lemma 4.4. Let GH be a generically redundantly rigid graph in Rd and let p be a
generic configuration for which GH(p) has an equilibrium stress ω with a full rank
stress matrix. Suppose that we have a set of designated edges uivi, 1 ≤ i ≤ k, and
designated vertices rj, 1 ≤ j ≤

(
d+1
2

)
− k, in GH , where d < k ≤

(
d+1
2

)
− 1 and

these edges and vertices are pairwise disjoint. Then we can construct an extended
graph G∗H and an extended configuration p̂ by adding a complete graph on a new set
W = {w1, w2, ..., wk} of vertices and adding one new edge from W to each of the
designated vertices rj, and specifying the positions of the vertices of W , such that

(i) each wi splits the designated edge uivi, for 1 ≤ i ≤ k, with non-zero stress on
each of these split bars,
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(ii) G∗H(p̂) is infinitesimally rigid,

(iii) G∗H(p̂) has an equilibrium stress with a full rank stress matrix, and

(iv) G∗H is generically redundantly rigid.

Proof. By Proposition 2.5 we may suppose that ω is non-zero on all edges. We follow
Lemma 4.1 to place the first d vertices of the extended graph on the first d designated
edges. We apply the lemma by choosing the required set of

(
d+1
2

)
− d designated

vertices to be equal to the union of ud+1, ..., uk and the given designated vertices rj,
1 ≤ j ≤

(
d+1
2

)
− k. After adding these d vertices the extended graph contains a

complete graph on d vertices as the current new body and one edge from the body
to each of ui, vi, 1 ≤ i ≤ d, and to each of the designated vertices. Furthermore, the
number of bad edges is

(
d+1
2

)
.

We will add the remaining k − d new vertices by edge splits, carefully placing
them on the further k − d edges, without connecting the growing body to additional
vertices in other bodies. Every subsequent edge split will be performed on a (bad)
edge connecting some of the first d vertices of the new body to some vertex in the
set ud+1, ..., uk. Note that the number

(
d+1
2

)
− d of edges connecting the new body to

designated vertices is greater than k − d, hence the number of such edges is indeed
k − d.

Consider such an edge, say w1ud+1. We perform an edge split on w1ud+1, connecting
the new vertex wd+1 to the d − 1 prior wi’s distinct from w1. This will initially
place wd+1 as p̂(wd+1) along the bar p(w1)p(ud+1) (see Figure 5a). This is now
infinitesimally rigid. Moreover, p(vd+1) is generic with respect to all of the vertices in
the configuration (coordinates algebraically independent of all the initial vertices and
the added wi). In particular, it remains independent of the vertices p(ui), p̂(wi), i ≤ d.
So we could also place wd+1 at p(vd+1) and still have an infinitesimally rigid framework
(see Figure 5b). Since infinitesimal rigidity is an open set property, we choose another
distinct point p̂(wd+1) along the line of p(ud+1)p(vd+1) which preserves infinitesimal
rigidity (see Figure 5c). Note that, at this point, there is no stress on any of the
edges at p̂(wd+1).

Next we do a ‘triangle circuit exchange’ with a stressed, collinear triangle on the
three points p(ud+1), p̂(wd+1), p(vd+1). This simple exchange cancels the stressed edge
p(ud+1)p(vd+1), and leaves two stressed edges p(ud+1)p̂(wd+1) and p̂(wd+1)p(vd+1).
The net result is also infinitesimally rigid and has a non-zero stress through p̂(wd+1)
along only those two edges. By Proposition 2.3 this process also increases the rank
of the corresponding stress matrix by 1. It is not difficult to show, by using the
symmetry of our graphs (in particular, the fact that the endvertices ui, vi of the
designated edges can be interchanged) that this triangle exchange operation preserves
the generic redundant rigidity of the underlying graph.

We do essentially the same step to add wi, for d + 1 ≤ i ≤ k, and position it on the
next bar uivi, preserving infinitesimal rigidity. As before, we split an edge whui with
wi and, using the genericity of vi relative to all other vertices used to this point, we
can position p̂(wi) at some places along p(ui)p(vi), so that the extended framework
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(a) (b) (c)

Figure 5: For placing vertices on more than d edges, we do an edge split on a prior
attachment (a), then reposition the new vertex on the desired additional bar (b),
using the genericity of all the points. The grey bars are lumped as a body (c).

remains infinitesimally rigid. Again, an exchange with a collinear triangle completes
a split of the bar p(ui)p(vi), with a non-zero stress through p̂(wi) only on these two
bars, and the rank of the stress matrix has been increased by 1. Finally we can add
edges among the wi’s to make the body a complete graph.

By using Propositions 2.3, 2.4, and Lemma 4.1 we can deduce that when we are
finished for d < k ≤

(
d+1
2

)
− 1, we have, as required: (i) each wi splits the designated

edge uivi, for 1 ≤ i ≤ k, with non-zero stress on each of these split bars, (ii) G∗H(p̂) is
infinitesimally rigid, and (iii) G∗H(p̂) has an equilibrium stress with a full rank stress
matrix. We can also deduce that (iv) G∗H is generically redundantly rigid. �

It remains to show how to continue the geometric operation to obtain a body-bar
structure with the required properties.

Lemma 4.5. Let GH be a generically redundantly rigid body-bar graph in Rd and
let p be a generic configuration for which G(p) has an equilibrium stress ω with a
stress matrix of full rank. Suppose that we have a set of designated edges uivi, 1 ≤
i ≤ k, and non-negative integers s1, s2, ..., sn assigned to the n bodies of GH , where
d < k ≤

(
d+1
2

)
− 1 and

∑n
i=1 si =

(
d+1
2

)
− k. Then we can construct an extended

body-bar graph GH∗ and an extended generic configuration p̂ with one added body b∗

on
(

d+1
2

)
+ k vertices, with si new vertices added to each existing body bi, 1 ≤ i ≤ n,

and by replacing the k designated edges by
(

d+1
2

)
+ k disjoint edges connecting b∗ to

the added vertices and to vertices ui, vi, 1 ≤ i ≤ k, such that

(i) GH∗(p̂) is infinitesimally rigid,

(ii) GH∗(p̂) has a stress matrix of full rank, and

(iii) GH∗ is generically redundantly rigid.
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Proof. By Proposition 2.5 we may suppose that ω is non-zero on all edges. We start
the construction of GH∗ by extending each body bi by si new vertices. We do this by
a sequence of si edge splitting operations on stressed edges within bi. This way we
can maintain a stress matrix of full rank and, since p is generic, we can also preserve
infinitesimal rigidity. These new vertices are labeled as rj, 1 ≤ j ≤

(
d+1
2

)
− k.

Next we apply Lemma 4.4 to obtain an initial infinitesimally rigid framework G∗H(p̂)
with an equilibrium stress with a full rank stress matrix, for which G∗H is generically
redundantly rigid. We may move to a generic configuration, preserving all of these
properties, and ensure that every current edge has a non-zero stress by Proposition
2.5.

As in Lemma 4.2, we can apply a sequence of edge splits to separate the current
attachments and eliminate the bad edges. Note that the first d edge splits have created(

d+1
2

)
bad edges, the next k − d edge splits eliminated k − d but also created k − d

bad edges. Thus we have
(

d+1
2

)
bad edges and a body on k vertices when we start

this phase. To eliminate all bad edges we need to add
(

d+1
2

)
additional vertices to

the new body, which gives
(

d+1
2

)
+ k in total, as required. At this point we can also

add any missing edges to make each body a complete graph on its vertices. Hence
the constructed graph GH∗ is a body-bar graph which is induced by a multigraph H∗,
obtained from H by a

(
d+1
2

)
-split on k edges.

At each stage the framework is infinitesimally rigid, and has an equilibrium stress
with a stress matrix of full rank by Propositions 2.3 and 2.4. The operations preserve
generic redundant rigidity as well. We conclude that the final framework GH∗(p̂) is
infinitesimally rigid with a full rank stress matrix, and GH∗ is generically redundantly
rigid, as required. �

Remark We could also position new vertices on
(

d+1
2

)
edges with exactly the same

methods. The inductive construction of Frank and Szegő does not require this added
case, but some other situations might make use of this extended result. This construc-
tion does not extend to the case when k >

(
d+1
2

)
edges are split, if we want to retain

the count on the attachments, and hence the condition that this extended framework
has no new dependences.

4.3 Redundantly rigid implies highly tree-connected

Lemma 4.6. Let H = (V, E) be a multigraph with |V | ≥ 2 and suppose that the
body-bar graph GH induced by H is generically redundantly rigid in Rd. Then H is
highly

(
d+1
2

)
-tree-connected.

Proof. For a contradiction suppose that eH(P) ≤
(

d+1
2

)
(t − 1) for a partition P =

{X1, X2, ..., Xt} of V with t ≥ 2. Let Yi = ∪{V (Bv) : v ∈ Xi}, for 1 ≤ i ≤ t, and let
Q = {Y1, Y2, ..., Yt} be the corresponding partition of V (GH). The redundant rigidity
of GH implies that each vertex of GH has degree at least d+1. Hence |V (Bv)| ≥ d+1
and also |Yi| ≥ d + 1 for all v ∈ V and 1 ≤ i ≤ t. Observe that eGH

(Q) = eH(P) 6= ∅.
Let S ⊆ E(GH) be a maximal set of independent edges in GH , i.e. a base in the

d-dimensional generic rigidity matroid of GH . Since GH is rigid and GH has more
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than d + 1 vertices, we have |S| = d|V (GH)| −
(

d+1
2

)
. Thus, by using the fact that

each subset Y ⊆ V (GH) with |Y | ≥ d + 1 induces at most d|Y | −
(

d+1
2

)
edges of S, we

obtain

d|V (GH)| −
(

d + 1

2

)
= |S| ≤

t∑
1

(d|Yi| −
(

d + 1

2

)
) + eGH

(Q) =

d|V (GH)| −
(

d + 1

2

)
t + eH(P) ≤ d|V (GH)| −

(
d + 1

2

)
.

Thus we have equality everywhere. In particular, for all edges e ∈ EGH
(Q) and all

bases S we must have e ∈ S. This implies that e is not redundant, and hence GH

is not redundantly rigid, a contradiction. Hence each partition of V satisfies (1) and
the lemma follows. �

4.4 Highly tree-connected implies a redundantly rigid real-
ization with a full rank stress matrix

Lemma 4.7. Let H = (V, E) be a highly
(

d+1
2

)
-tree-connected multigraph. Let GH =

Kd+2(l+1), when |V | = 1 and E is a set of l ≥ 0 loops, and otherwise let GH be the
body-bar graph induced by H. Then there exists a redundantly rigid generic realization
GH(p) of GH with an equilibrium stress ω for which the associated stress matrix Ω
has rank n− d− 1, where n = |V (GH)|.

Proof. The proof is by induction on |V | + |E|. In the base case, when |V | = 1 and
E = ∅, GH is a complete graph on d+2 vertices. This graph is generically redundantly
rigid. In this case it is easy to construct an infinitesimally rigid realization GH(p)
with an equilibrium stress ω for which the associated stress matrix has full rank. By
using Proposition 2.5 we may suppose that the realization is generic.

Now consider a highly
(

d+1
2

)
-tree-connected multigraph H = (V, E) and suppose

that the lemma holds for all highly
(

d+1
2

)
-tree-connected multigraphs H ′ with |V (H ′)|+

|E(H ′)| < |V (H ′)|+|E(H ′)|. By Theorem 3.1 H can be obtained from a smaller highly(
d+1
2

)
-tree-connected multigraph H ′ by adding an edge or by a

(
d+1
2

)
-split on k edges,

for some 1 ≤ k ≤
(

d+1
2

)
− 1. By induction, there exists a redundantly rigid generic

realization GH′(p̄) of GH′ with an equilibrium stress ω for which the associated stress
matrix Ω has rank n′ − d − 1, where n′ = |V (GH′)|. By Proposition 2.5 we may
suppose that ω is non-zero on all edges.

First suppose that H is obtained from H ′ by adding a new edge uv, possibly a
loop. Then we may construct a realization GH(p) from GH′(p̄) by performing two
edge splits within Bu and Bv, respectively, which create two new vertices of degree
d+ 1, followed by edge additions, which connect the new vertices and which make the
two enlarged bodies complete. Note that the definition of GH′ and the assumption
on H ′ implies that each body in GH′ has at least d + 1 vertices. These operations
preserve infinitesimal rigidity and the property of having a stress matrix of full rank
by Propositions 2.3 and 2.4. They also preserve generic redundant rigidity. Thus the
lemma follows by Proposition 2.5.
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Next suppose that H is obtained from H ′ by a
(

d+1
2

)
-split on k edges. We have two

cases. When 1 ≤ k ≤ d (d < k ≤
(

d+1
2

)
− 1) Lemma 4.2 (respectively, Lemma 4.5)

confirms that there is an extended framework GH(p) which is infinitesimally rigid and
has a stress matrix of full rank, and for which GH is generically redundantly rigid. As
above, the lemma now follows by Proposition 2.5. �

5 Main Theorem

We can now assemble the pieces to give a full proof of the main theorem.

Theorem 5.1. Let H = (V, E) be a multigraph with |V | ≥ 2 and let GH be the body-
bar graph induced by H. Let d ≥ 1 be an integer. Then the following are equivalent:
(a) there exists a redundantly rigid generic realization GH(p) of GH in Rd with an
equilibrium stress ω for which the associated stress matrix Ω has rank n−d−1, where
n = |V (GH)|,
(b) GH is generically redundantly rigid in Rd,
(c) H is highly

(
d+1
2

)
-tree-connected.

Proof. (a)→(b) is obvious.

(b)→(c) follows from Lemma 4.6.

(c)→(a) follows from Lemma 4.7. �

We can now apply Theorem 2.2 to obtain the characterization of globally rigid
body-bar graphs.

Theorem 5.2. Let H = (V, E) be a multigraph with |V | ≥ 2 and |E| ≥ 2 and let GH

be the body-bar graph induced by H. Let d ≥ 1 be an integer. Then GH is globally
rigid in Rd if and only if GH is redundantly rigid in Rd.

Proof. Since |V | ≥ 2 and |E| ≥ 2, it follows that GH is not a complete graph. Thus
the only if direction follows from Theorem 2.1. The if direction can be deduced from
Theorem 5.1 and Theorem 2.2. �

6 Further Remarks

6.1 Algorithmic implications

Theorems 5.1 and 5.2 give rise to a polynomial time algorithm to determine whether
a body-bar graph is generically globally rigid in Rd. This follows from the fact that,
as we noted earlier, a multigraph H is highly m-tree-connected if and only if H − e
contains m edge-disjoint spanning trees for all e ∈ E(H). Thus efficient tree-packing
algorithms can be used to test whether a given multigraph is highly m-tree-connected.
We refer the reader to [18, Chapter 51] for a complexity survey for tree packing
algorithms.
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By using similar techniques one can also compute the maximal highly m-tree-
connected subgraphs of H. The vertex sets of these subgraphs form a partition of
V (H). See [13] for more details (where these subgraphs are called the m-superbricks
of H).

6.2 Globally linked pairs

Given the characterization of globally rigid graphs in the plane, the methods have
recently been extended to characterize globally linked pairs of vertices in some classes
of graphs in R2 [14]. These are pairs of vertices whose distance is the same in all
frameworks which are equivalent to any given generic framework of the graph. One
can ask the analogous question for body-bar graphs GH in Rd. We conjecture that a
pair of vertices is globally linked in GH if and only if there is a globally rigid subgraph
of GH which contains both (or equivalently, if they are adjacent or the vertices of
H corresponding to their bodies belong to the same

(
d+1
2

)
-superbrick of H). This

conjecture is open even for d = 2, in which case it is consistent with the more general
conjecture for the plane in [14].

6.3 Connectivity

We did not directly refer to Hendrickson’s (d + 1)-connectivity condition of Theo-
rem 2.1 in our proofs. This is due to the fact that high vertex-connectivity follows for
‘free’ for body-bar graphs GH induced by highly

(
d+1
2

)
-tree-connected multigraphs.

Another related observation is that if the multigraph H is d(d + 1)-edge connected,
then the body-bar graph GH is generically redundantly rigid in Rd, see e.g. [25]. This
now implies that GH is globally rigid in Rd. There are examples showing that the
bound d(d + 1) on the edge-connectivity of H cannot be improved.

In general, it has been conjectured that d(d+ 1)-vertex-connectivity is sufficient for
generic rigidity for arbitrary bar-and-joint frameworks in Rd. We can extend this and
conjecture that d(d + 1)-vertex-connectivity is sufficient for global rigidity of general
bar-and-joint frameworks.

6.4 Body insertion in one step

In Section 2 we deduced that edge splitting preserves generic global rigidity by showing
that the corresponding geometric operation preserves infinitesimal rigidity and a stress
matrix of full rank, when applied to a suitable realization of the graph.

However, we can be more ambitious. We do not have to subdivide edges one at
a time and then add more edges to rigidify the framework infinitesimally. We can
subdivide several edges at once and even one edge more than once, and then rigidify
by adding the appropriate additional edges. This can be summarized as follows.

Corollary 6.1. Let G(p) be a framework which is infinitesimally rigid in Rd and is
universal with respect to an equilibrium stress ω. Subdivide a subset of those edges of
G(p) which have non-zero stress, getting a new equilibrium stress ω∗. Add more edges
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so that the resulting framework G∗(p∗) is infinitesimally rigid in Rd. Extend ω∗ to be
0 on these additional edges. Then since p∗ is universal with respect to ω∗ as well, G∗

is generically globally rigid in Rd.

By using Corollary 6.1 the proofs of some of our body insertion lemmas (in the case
when d < k) can be simplified. The corollary may also be useful in other problems.

6.5 Examples of non-globally rigid frameworks

As mentioned in the introduction, in dimension three and greater there are examples in
[3] of graphs that satisfy Hendrickson’s necessary conditions for generic global rigidity
in Theorem 2.1, but are not generically globally rigid. In the plane, those conditions
are sufficient by the results in [10].

When one models globally rigid bodies as in this paper, it is possible to use a d-
dimensional bar simplex as a base for each of those rigid bodies. Suppose it is true that
when a bar-and-joint framework with graph G has such a simplex, namely a complete
graph Kd+1, as a subgraph, and Hendrickson’s conditions holds, then G is generically
globally rigid. That supposed result would be much more general than our Theorem
5.2. Indeed, for the plane, in the inductive construction of Theorem 4 in [2], if such
a simplex, a triangle, is present and there is a minimum number of bars (2n − 2,
where n is the number of vertices of the graph), then the edge splitting can avoid
splitting any edge of the triangle. This allows the construction of configurations in
the plane that are are explicitly infinitesimally rigid and globally rigid without passing
to generic configurations. If such a construction were true in higher dimensions, it
might provide the more general statement mentioned above.

However, such constructions are not always possible for higher dimensions. In [7]
Frank and Jiang show, for d ≥ 5, that there are graphs G containing a simplex
Kd+1 as a subgraph that are not generically globally rigid in Rd, and yet they satisfy
Hendrickson’s necessary conditions in Theorem 2.1 as well.

6.6 Body-hinge and molecular frameworks

The results for body-bar frameworks have been generalized to body-hinge frame-
works [19]. This suggests the following generalization of Theorem 5.2. For a graph G
and integer k we use kG to denote the multigraph obtained from G by replacing each
edge e of G by k parallel copies of e.

Conjecture 6.2 (Body-Hinge Global Rigidity Conjecture). A graph G is generically
globally rigid in Rd as a body-hinge framework if the graph (

(
d+1
2

)
− 1)G is generically

redundantly rigid as a body-bar framework in Rd. Equivalently, a graph G is generically
globally rigid in Rd as a body-hinge framework if the multigraph (

(
d+1
2

)
− 1)G is highly(

d+1
2

)
-tree-connected.

For generic rigidity, there is a further conjecture, which in its various forms is
called the Molecular Conjecture [26]. A proof for this conjecture has recently been
announced [15], so this ’Conjecture’ may now be a Theorem.
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Conjecture 6.3 (Molecular Global Rigidity Conjecture). A graph G is generically
globally rigid in Rd as a molecular-hinge framework if and only if the multigraph
(
(

d+1
2

)
− 1)G is highly

(
d+1
2

)
-tree-connected.

In many contexts, including the study of infinitesimal rigidity, there is an equiv-
alence between the molecular hinge structure on G and an associated bar-and-joint
framework on the square G2 of G in R3. However, for small cycles (of length 3,4,5)
the shift between structures does not preserve equilibrium stresses (or redundance).
Thus it may not preserve global rigidity, as the following example from [11] shows:
consider two four-cycles with a common vertex. For this graph G we have that 5G is
highly 6-tree-connected but G2 is not even redundantly rigid in R3.

Conjecture 6.4. Suppose that G has no cycles of length ≤ 5. Then G2 is generically
globally rigid in R3 as a bar-and-joint framework if the multi-graph 5G is highly 6-
tree-connected.

6.7 Body-bar frameworks with identifications

During the construction for the main theorem, we carefully did additional splits to
separate the end-points of all bars, to give a simple body-bar framework. However,
the framework was already globally rigid before doing these additional splits. So
some identification of end-points will still preserve global rigidity. On the other hand,
too much identification of the end points will destroy even first-order rigidity, as the
‘double banana’ can be cast as two bodies joined by six bars, where two triples of bars
share endpoints.

An identified body-bar framework is a body-bar graph, with additional data for
each body, which partitions the incident bars into classes which will share a vertex
of attachment. It may be interesting to characterize which identifications preserve
global rigidity (or even first-order rigidity) of a body-bar graph.

6.8 Isostatic frameworks for bodies.

It is not difficult to see, by rereading the proofs of the main lemmas, that if H is a
highly

(
d+1
2

)
-tree-connected multigraph on at least two vertices then it is possible to

replace each ‘body’ of the globally rigid body-bar graph GH by some isostatic graph
preserving global rigidity in Rd. This follows by observing that the edge addition
steps within the bodies are not necessary to ensure global rigidity, and that the other
operations, when restricted to the individual bodies, build up isostatic graphs by edge
splits and vertex additions.

For infinitesimal rigidity it is known that in all dimensions one can replace any
isostatic subframework with any other isostatic subframework on the same vertices
and preserve infinitesimal rigidity. However, the same general isostatic replacement
does not necessarily preserve global rigidity. This issue most clearly arises in the steps
of the insertion lemmas when we are separating the attachment points. While a careful
separation (as used in our proof) does preserve global rigidity, a general replacement
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(a) (b)

Figure 6: There are isostatic frameworks which generate a globally rigid framework
(a), but others (b) which when substituted do not generate a globally rigid framework,
due to failed connectivity.

can easily break down the simple necessary (d+ 1)-connectivity condition. See Figure
6, which, in the plane, breaks the required 3-connectivity.

We do not currently have a conjecture for which isostatic replacements for bodies
would preserve global rigidity. So there is a residual puzzle about how to detect
whether a bar and joint framework in which we have ‘identified’ bodies with isostatic
subframeworks, and distinct edges joining them, has the required structure to apply
this theorem and claim global rigidity.
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