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Restricted b-matchings in degree-bounded graphs

Kristóf Bérczi and László A. Végh ?

Abstract

We present a min-max formula and a polynomial time algorithm for a slight
generalization of the following problem: in a simple undirected graph in which
the degree of each node is at most t+1, �nd a maximum t-matching containing
no member of a list K of forbidden Kt,t and Kt+1 subgraphs. An analogous
problem for bipartite graphs without degree bounds was solved by Makai [15],
while the special case of �nding a maximum square-free 2-matching in a subcubic
graph was solved in [1].

1 Introduction

Let G = (V, E) be an undirected graph and let b : V → Z+ be an upper bound on the
nodes. An edge set F ⊆ E is called a b-matching if dF (v), the number of edges in F
incident to v is at most b(v) for each node v. (This is often called simple b-matching
in the literature.) For some integer t ≥ 2, by a t-matching we mean a b-matching
with b(v) = t for every v ∈ V . Let K be a set consisting of Kt,t's, complete bipartite
subgraphs of G on two colour classes of size t, and Kt+1's, complete subgraphs of G on
t + 1 nodes. By K-free b-matching we mean a b-matching not containing any member
of K. In this paper, we give a min-max formula on the size of K-free b-matchings
and a polynomial time algorithm for �nding one with maximum size (that is, a K-free
b-matching F ⊆ E with maximum cardinality) under the assumptions that for any
K ∈ K and any node v of K,

VK spans no parallel edges (1)

b(v) = t (2)

dG(v) ≤ t + 1. (3)

Note that this is a generalization of the problem mentioned in the abstract. The
most important special case of K-free b-matching is to �nd a maximum C3-free or
C4-free 2-matching in a graph. The motivation for these problems is twofold. On the
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one hand, a natural relaxation of the Hamiltonian cycle problem is to �nd a C≤k-free
2-factor, that is, a 2-factor containing no cycle of length at most k. Cornuéjols and
Pulleyblank [2] showed this problem to be NP-complete for k ≥ 5. In his Ph.D. thesis
[6], Hartvigsen proposed a solution for the case k = 3. Hence the remaining question
is to �nd a maximum C≤4-free 2-matching, and another natural question is to �nd a
maximum C4-free 2-matching (possibly containing triangles).
The other motivation comes from connectivity-augmentation, that is, when one

would like to make a graph G = (V, E) k-node-connected by the addition of a min-
imum number of new edges. It is easy to see that for k = n − 2 (n = |V |), this
problem is equivalent to �nding a maximum matching in the complement graph of G.
For k = n − 3 the problem is equivalent to �nding a maximum C4-free 2-matching.
C4-free 2-matching admits two natural generalizations. The �rst one is Kt,t-free t-
matchings considered in this paper, while the second is t-matchings containing no
complete bipartite graph Ka,b with a + b = t + 2. This latter problem is equivalent to
connectivity augmentation for k = n− t−1. The complexity of connectivity augmen-
tation for general k is yet open, while connectivity augmentation by one, that is, when
the input graph is already (k − 1)-connected was recently solved in [20] (this corre-
sponds to the case when the graph contains no Ka,b with a + b = t + 3, in particular,
d(v) ≤ t + 1).
The weighted version of these problems are also of interest. The weighted C≤k-free

2-matching problem asks for a C≤k-free 2-matching with maximum weight in point
of a weight function de�ned on the edge set. For k = 2 the problem is just to �nd
a 2-matching with maximum weight, while Király showed [11] that the problem is
NP-complete for k = 4 even in bipartite graphs with 0 − 1 weights on the edges.
However, if the weight function is �node induced� on every square then the problem
becomes polynomially solvable in bipartite graphs ([15, 19]). The case of k = 3 in
general graphs is still open. Hartvigsen and Li [9], and recently Kobayashi [12] gave
polynomial-time algorithm for the weighted C3-free 2-matching problem in subcubic
graphs with for arbitrary weight functions.
Let us now consider the special case of C4-free 2-matchings in bipartite graphs.

This problem was solved by Hartvigsen [7, 8] and Király [10]. A generalization of
the problem to maximum Kt,t-free t-matchings was given by Frank [3] who observed
that this is a special case of covering positively crossing supermodular functions on
set pairs solved by him and Jordán in [4]. Makai [15] generalized Frank's theorem for
the case when a list K of forbidden Kt,t's is given (that is, a t-matching may contain
Kt,t's not in K.) He gave a min-max formula based on a polyhedral description for
the minimum cost version for node-induced cost functions. Pap [16] gave a further
generalization of the maximum cardinality version for excluded complete bipartite
subgraphs and developed a simple, purely combinatorial algorithm. For node induced
cost functions, such an algorithm was given by Takazawa [19] for Kt,t-free t-matching.
Much less is known when the underlying graph is not assumed to be bipartite and

�nding a maximum C4-free 2-matching is still open. The special case when the graph
is subcubic was solved by the �rst author and Kobayashi [1]. In terms of connectivity
augmentation, the equivalent problem is augmenting an (n − 4)-connected graph to
(n − 3) connected. Our theorem is a generalization of this result.
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It is worth mentioning that the polynomial solvability of the above problems seems
to show a strong connection with jump systems. In [18], Szabó proved that for a list K
of forbidden Kt,t and Kt+1 subgraphs the degree sequences of K-free t-matchings form
a jump system in any graph. Concerning bipartite graphs, Kobayashi and Takazawa
showed [14] that the degree sequences of C≤k-free 2-matchings do not always form a
jump system for k ≥ 6. These results are consistent with the polynomial solvability of
the C≤k-free 2-matching problem, even when restricting it to bipartite graphs. Similar
results are known about even factors due to [13]. Hence Szabó's result suggests that
a maximum K-free t-matching should be solvable in polynomial time.
Among our assumptions, (1) and (2) may be considered as natural ones as they hold

for the maximum Kt,t-free t-matching problem in a simple graph. We exclude parallel
edges on the node sets of members of K in order to avoid having two di�erent Kt,t's
on the same two colour classes or two Kt+1's on the same ground set. However, the
degree bound (3) is a restrictive assumption and dissipates essential di�culties. Our
proof strongly relies on this and the theorem cannot be straightforwardly generalized
for the general case, as it can be shown by using the example in Chapter 6 of [20].
The proof and algorithm use the contraction technique of [11], [16] and [1]. Our

contribution on the one hand is the extension of this technique for t ≥ 3 and forbidding
Kt+1's as well, while on the other hand we give a signi�cantly simpler argument as in
[1].

Throughout the paper we use the following notation. For an undirected graph
G = (V, E), the set of edges induced by X ⊆ V is denoted by E[X]. For disjoint
subsets X, Y of V , E[X, Y ] denotes the set of edges between X and Y . The set of
nodes in V − X adjacent to X by some edge from F ⊆ E is denoted by ΓF (X). The
degree of a node v regarding to F is denoted by dF (v) in which loops are counted
twice, while dF (X, Y ) stands for the number of edges going between disjoint subsets
X and Y . For a node v ∈ V , we sometimes abbreviate the set {v} by v, e.g. dF (v, X)
is the number of edges between v and X. For a set X ⊆ V , let hF (X) =

∑
v∈X dF (v),

the sum of the number of edges incident to X and twice the number of edges spanned
by X. We use b(U) =

∑
v∈U b(v) for a function b : V → Z+ and a set X ⊆ V .

Let K be the list of forbidden Kt,t and Kt+1 subgraphs. For disjoint subsets X, Y
of V we denote by K[X] and K[X,Y ] the members of K contained in X and having
edges only between X and Y , respectively. That is, K[X, Y ] stands for forbidden
Kt,t's whose colour classes are subsets of X and Y . VK and EK denotes the node-set
and edge-set of the forbidden graph K ∈ K, respectively.

The rest of the paper is organized as follows. In Section 2 we formalize the theorem
and prove the trivial max ≤ min direction. Two shrinking operations are introduced
in Section 3, and Section 4 contains the proofs of the max ≥ min direction. Finally,
the algorithm is presented in Section 5.
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2 Main theorem

Before stating our theorem, let us recall the well-known min-max formula on the
maximum size of a b-matching (see e.g. [17, Vol A, p. 562.]).

Theorem 2.1 (Maximum size of a b-matching). Let G = (V,E) be a graph with an
upper bound b : V → Z+. The maximum size of a b-matching is equal to the minimum
value of

b(U) + |E[W ]| +
∑

T

⌊
1
2
(b(T ) + |E[T, W ]|)

⌋
(4)

where U and W are disjoint subsets of V , and T ranges over the connected components
of G − U − W .

Let us now formulate our theorem. There are minor technical di�culties in case of
t = 2 that do not occur for larger t. In order to make the formulation and the proof
simpler it is worth introducing the following de�nitions. We refer to forbidden K2,2

and K3 subgraphs as squares and triangles, respectively.

De�nition 2.2. For t = 2, we call a complete subgraph on four nodes square-full if
it contains three forbidden squares.

Note that, by assumption (3), every square-full subgraph is a connected component
of G. We denote the number of square-full components of G by S(G) for t = 2, while
S(G) = 0 for t > 2. It is easy to see that a K-free b-matching contains at most three
edges from each square-full component of G. The following de�nition will be used in
the proof of the theorem.

De�nition 2.3. For t = 2, a forbidden triangle is called square-covered if its node set
is contained in the node set of a forbidden square, otherwise uncovered.

The theorem is as follows.

Theorem 2.4. Let G = (V, E) be a graph with an upper bound b : V → Z+ and K be
a list of forbidden Kt,t and Kt+1 subgraphs of G so that (1), (2) and (3) hold. Then
the maximum size of a K-free b-matching is equal to the minimum value of

τ(U,W,P , K̇) = b(U)+|E[W ]|−|K̇[W ]|+
∑
T∈P

⌊
1
2
(b(T ) + |E[T,W ]| − |K̇[T, W ]|)

⌋
−S(G)

(5)
where U and W are disjoint subsets of V , P is a partition of the connected components
of G − U − W and K̇ ⊆ K is a collection of node-disjoint forbidden subgraphs.

It is easy to see that the contribution of a square-full component to (5) is always
3 and a maximum K-free b-matching contains exactly 3 of its edges. Hence we may
count these components of G separately, so the following theorem immediately implies
the general one.
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Theorem 2.5. Let G = (V, E) be a graph with an upper bound b : V → Z+ and K be
a list of forbidden Kt,t and Kt+1 subgraphs of G so that (1), (2) and (3) hold. Fur-
thermore, if t = 2, assume that G has no square-full component. Then the maximum
size of a K-free b-matching is equal to the minimum value of

τ(U,W,P, K̇) = b(U)+|E[W ]|−|K̇[W ]|+
∑
T∈P

⌊
1
2
(b(T ) + |E[T, W ]| − |K̇[T, W ]|)

⌋
(6)

where U and W are disjoint subsets of V , P is a partition of the connected components
of G − U − W and K̇ ⊆ K is a collection of node-disjoint forbidden subgraphs.

Proof of max ≤ min in Theorem 2.5. Let M be a K-free b-matching. Then clearly
|M ∩ (E[U ] ∪ E[U, V − U ])| ≤ b(U) and |M ∩ E[W ]| ≤ |E[W ]| − |K̇[W ]|. Moreover,
for each T ∈ P we have

2 · |M ∩ (E[T ] ∪ E[T, W ])| = 2 · |M ∩ E[T ]| + 2 · |M ∩ E[T, W ]|
≤ 2 · |M ∩ E[T ]| + |M ∩ E[T, W ]| + |E[T,W ]| − |K̇[T, W ]|
≤ b(T ) + |E[T, W ]| − |K̇[T, W ]|.

These together prove the inequality.

3 Shrinking

In the proof of max ≥ min we use two shrinking operations to get rid of the Kt,t and
Kt+1 subgraphs in K.

De�nition 3.1 (Shrinking a Kt,t subgraph). Let K be a Kt,t subgraph of G = (V,E)
with colour classes KA and KB. Shrinking of K in G consists of the following opera-
tions:

• identify the nodes in KA, and denote the corresponding node by ka,

• identify the nodes in KB, and denote the corresponding node by kb, and

• replace the edges between KA and KB with t− 1 parallel edges between ka and
kb (we call the set of these edges a shrunk bundle between ka and kb).

When identifying the nodes in KA and KB, the edges (and also loops) spanned by
KA and KB are replaced by loops on ka and kb, respectively. Each edge e ∈ E − EK

is denoted by e again after shrinking a Kt,t subgraph and is called the image of the
original edge. By abuse of notation, for an edge set F ⊆ E − EK , the corresponding
subset of edges in the contracted graph is also denoted by F . Hence for an edge set
F ⊆ E − EK we have hF (KA) = dF (ka), hF (KB) = dF (kb).

De�nition 3.2 (Shrinking a Kt+1 subgraph). Let K be a Kt+1 subgraph of G =
(V,E). Shrinking of K in G consists of the following operations:

• identify the nodes in VK , and denote the corresponding node by k,
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KB

KA ka

kb

t − 1 edges

Figure 1: Shrinking a Kt,t subgraph

K

k

b t+1
2
c − 1 loops

Figure 2: Shrinking a Kt+1 subgraph

• replace the edges in EK by
⌊

t+1
2

⌋
− 1 loops on the new node k.

Again, for an edge set F ⊆ E − EK , the corresponding subset of edges in the
contracted graph is also denoted by F .
We usually denote the graph obtained by applying one of the shrinking operations

by G◦ = (V ◦, E◦). Throughout the section, the graph G, the function b and the list
K of forbidden subgraphs are supposed to satisfy the conditions of Theorem 2.5. It is
easy to see, by using (3), that two members of K are edge-disjoint if and only if they
are also node-disjoint, hence we simply call such pairs disjoint.
The following two lemmas give the connection between the maximum size of a K-

free b-matching in G and a b◦-matching in G◦ where b◦ is a properly de�ned upper
bound on V ◦.

Lemma 3.3. Let G◦ = (V ◦, E◦) be the graph obtained by shrinking a Kt,t subgraph K.
Let K◦ be the set of forbidden subgraphs disjoint from K and de�ne b◦ as b◦(v) = b(v)
for v ∈ V − VK and b◦(ka) = b◦(kb) = t. Then the di�erence between the maximum
size of a K-free b-matching in G and the maximum size of a K◦-free b◦-matching in
G◦ is exactly t2 − t.
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Lemma 3.4. Let G◦ = (V ◦, E◦) be the graph obtained by shrinking a Kt+1 subgraph
K ∈ K where K is uncovered if t = 2. Let K◦ be the set of forbidden subgraphs
disjoint from K and de�ne b◦ as b◦(v) = b(v) for v ∈ V − VK, b◦(k) = t if t is even
and b◦(k) = t+1 if t is odd. Then the di�erence between the maximum size of a K-free

b-matching in G and the maximum size of a K◦-free b◦-matching in G◦ is exactly
⌊

t2

2

⌋
.

The proof of Lemma 3.3 is based on the following claim.

Claim 3.5. Assume that K ∈ K is a Kt,t subgraph with colour classes KA and KB

and M ′ is a K-free b-matching of G − EK. Then M ′ can be extended to a K-free
b-matching M of G with |M | = |M ′| + t2 − max{1, hM ′(KA), hM ′(KB)}.

Proof. First we consider the case t ≥ 3. Let P be a minimum size matching of K
covering each node v ∈ VK with dM ′(v) = 1 (note that dM ′(v) ≤ 1 for v ∈ VK as
d(v) ≤ t + 1). If there is no such node, then let P consist of an arbitrary edge in EK .
We claim that M = M ′ ∪ (EK − P ) satis�es the above conditions. Indeed, M is a
b-matching and |M ∩EK | = t2 −max{1, hM ′(KA), hM ′(KB)} clearly holds, so we only
have to verify that it is also K-free.
Assume that there is a forbidden Kt,t subgraph K ′ in M with colour classes K ′

A, K ′
B.

EK′ must contain an edge uv ∈ EK ∩M with u ∈ K ′
A and v ∈ K ′

B. By symmetry, we
may assume that u ∈ KA. As b(u) = t, ΓM(u) = K ′

B and also |ΓM(u) ∩ KB| ≥ t − 1.
Hence |K ′

B ∩ KB| ≥ t − 1. Consider a node z ∈ KA. Since dM(z,KB) ≥ t − 1 and
t ≥ 3, we get dM(z, K ′

B) > 0, thus KA ⊆ ΓM(K ′
B). Because of ΓM(K ′

B) = K ′
A, this

gives KA = K ′
A. KB = K ′

B follows similarly, giving a contradiction.
If there is a forbidden Kt+1 subgraph K ′ in M , then EK′ must contain an edge

uv ∈ EK ∩ M , u ∈ KA. As above, |VK′ ∩ KB| ≥ t − 1. Using t ≥ 3 again, KA ⊆
ΓM(VK′ ∩ KB) ⊆ VK′ . But KA ⊆ VK′ is a contradiction since t + 1 = |VK′| ≥
|VK′ ∩ KA| + |VK′ ∩ KB| ≥ t + t − 1 = 2t − 1 > t + 1.
Now let t = 2 and let KA = {v1, v3}, KB = {v2, v4}. If max{hM ′(KA), hM ′(KB)} ≤

1, then we may assume by symmetry that dM ′(v1) = dM ′(v2) = 0. Now M = M ′ ∪
{v1v2, v1v4, v2v3} is clearly a K-free 2-matching. If max{hM ′(KA), hM ′(KB)} = 2, we
claim that at least one of M1 = M ′ ∪ {v1v2, v3v4} and M2 = M ′ ∪ {v1v4, v2v3} is
K-free. Assume M1 contains a forbidden square or triangle K ′; by symmetry assume
it contains the edge v1v2. If K ′ contains v3v4 as well, then K ′ is the square v1v3v4v2.
Otherwise, it consists of v1v2 and a path L of length 2 or 3 between v1 and v2, not
containing v3 and v4. In the �rst case, the only forbidden subgraph possibly contained
in M2 is the square v1v3v2v4, implying that {v1, v2, v3, v4} is a square-full component,
a contradiction. In the latter case, it is easy to see that M2 cannot contain a forbidden
subgraph.

Proof of Lemma 3.3. First we show that if M is a K-free b-matching in G then there
is a K◦-free b◦-matching M◦ in G◦ with |M◦| ≥ |M | − (t2 − t). Let M ′ = M − EK .
Clearly, |M∩EK | ≤ t2−max{1, hM ′(KA), hM ′(KB)}. In G◦, let M◦ be the union of M ′

and t−max{1, dM ′(ka), dM ′(kb)} parallel edges from the shrunk bundle between ka and
kb. Is is easy to see that M◦ is a K◦-free b◦-matching in G◦ with |M◦| ≥ |M |− (t2− t).
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The proof is completed by showing that for an arbitrary K◦-free b◦-matching M◦ in
G◦ there exists a K-free b-matching M in G with |M | ≥ |M◦|+(t2− t). Let H denote
the set of parallel edges in the shrunk bundle between ka and kb, and let M ′ = M◦−H.
Now |M◦∩H| ≤ t−max{1, dM ′(ka), dM ′(kb)} and, by Claim 3.5, M ′ may be extended
to a K-free b-matching in G with |M ∩ EK | = t2 − max{1, hM ′(KA), hM ′(KB)}, that
is

|M | = |M◦| − |M◦ ∩ H| + |M ∩ EK |
≥ |M◦| − (t − max{1, dM ′(ka), dM ′(kb)}) + (t2 − max{1, hM ′(KA), hM ′(KB)})
≥ |M◦| + (t2 − t).

Lemma 3.4 can be proved in a similar way by using the following claim.

Claim 3.6. Assume that K ∈ K is a Kt+1 subgraph and M ′ is a K-free b-matching
of G − EK. If t = 2, then assume that K is uncovered. Then there exists a K-free

b-matching M of G with |M | = |M ′| +
(

t+1
2

)
−

⌈
max{1,hM′ (VK)}

2

⌉
.

Proof. Let P be a minimum size subgraph of K covering each node v ∈ VK with
dM ′(v) = 1 (so P is a matching or a matching and one more edge in EK). If there
is no such node, then let P consist of an arbitrary edge in EK . For t = 2 and
3, we will choose P in a speci�c way, as given later in the proof. We show that
M = M ′ ∪ (EK − P ) satis�es the above conditions. Indeed, M is a b-matching and

|M ∩ EK | =
(

t+1
2

)
−

⌈
max{1,hM′ (K)}

2

⌉
clearly holds, so we only have to show that it is

also K-free.
Assume that there is a forbidden Kt+1 subgraph K ′ in M . EK′ must contain an

edge uv ∈ EK ∩ M . By the minimal choice of P at least one of |ΓM(u) ∩ VK | ≥ t − 1
and |ΓM(v) ∩ VK | ≥ t− 1 is satis�ed which implies |VK′ ∩ VK | ≥ t− 1. For t ≥ 3 this
immediately implies VK ⊆ ΓM(VK′ ∩ VK) ⊆ VK′ , a contradiction.

v1

v2

v3

v4

: edges in M
: edges in P

v1

v2

v3

v4

: edges in M
: edges in P

Figure 3: Choice of P for t = 2 in the proof of Claim 3.6

If t = 2, then |VK′ ∩VK | ≥ 1 does not imply VK ⊆ VK′ and an improper choice of P
may enable M to contain a forbidden K3. The only such case is when hM ′(VK) = 3,
VK = {v1, v2, v3}, VK′ = {v2, v3, v4}, v2v4, v3v4 ∈ M ′ and P = {v1v2, v1v3} (Figure 3).
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In this case, we may leave the edge incident to v1 from M ′ and then P = {v2v3} is a
good choice. Indeed, the only problem could be that v1v2v3v4 is a forbidden square,
contradicting K being uncovered.
Otherwise hM ′(VK) ≤ 2 implies |P | ≤ 1. Hence at least one of |ΓM(u) ∩ VK | = 2

and |ΓM(v) ∩ VK | = 2 is satis�ed meaning K ′ = K, a contradiction again.

v1 v2

v4v3 y

x

K ′
A

K ′
B

K

: edges in M ′

: edges in P
: edges in E \ (P ∪ M ′)

v1 v2

v4v3 y

x

K ′
A

K ′
B

K

Figure 4: Choice of P for t = 3 in the proof of Claim 3.6

Now assume that there is a forbidden Kt,t subgraph K ′ in M with colour classes
K ′

A, K ′
B. The same argument gives a contradiction for t ≥ 4. However, in case of

t = 3, choosing P arbitrarily may enable M to contain a forbidden K3,3 in the follow-
ing single con�guration: VK = {v1, v2, v3, v4}, K ′

A = {v1, v2, x}, K ′
B = {v3, v4, y},

xv3, xv4, yv1, yv2, xy ∈ M ′ and P = {v1v2, v3v4} (Figure 4). In this case, P =
{v1v4, v2v3} is a good choice.

v1

v3

v2

v4

v5

: edges in M
: edges in P

v1

v3

v2

v4

v5

: edges in M
: edges in P

Figure 5: Choice of P for t = 2 in the proof of Claim 3.6

Finally, for t = 2 no forbidden square appears if hM ′(K) ≤ 2 as otherwise K would
be a square-covered triangle. If hM ′(K) = 3, then such a square K ′ may appear only
if VK = {v1, v2, v3}, VK′ = {v2, v3, v4, v5}, v3v4, v4v5, v5v2 ∈ M ′, P = {v1v2, v1v3} (v1 6=
v4, v5 as K is uncovered). In this case both P = {v1v2, v2v3} and P = {v1v3, v2v3}
give a proper M (Figure 5).

Proof of Lemma 3.4. First we show that if M is a K-free b-matching in G then there

is a K◦-free b◦-matching M◦ in G◦ with |M◦| ≥ |M | −
⌊

t2

2

⌋
. Let M ′ = M − EK .
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Clearly, |M ∩ EK | ≤
(

t+1
2

)
−

⌈
max{1,hM′ (VK)}

2

⌉
. In G◦, let M◦ be the union of M ′

and
⌊

t−max{1,dM′ (k)}
2

⌋
or

⌊
t+1−max{1,dM′ (k)}

2

⌋
loops on k depending on whether t is even

or not, respectively. Is is easy to see that M◦ is a K◦-free b◦-matching in G◦ with

|M◦| ≥ |M | −
⌊

t2

2

⌋
.

The proof is completed by showing that for an arbitrary K◦-free b◦-matching M◦

in G◦ there exists a K-free b-matching M in G with |M | ≥ |M◦| +
⌊

t2

2

⌋
. Let H

denote the set of loops on k obtained when shrinking K, and let M ′ = M◦ −H. Now

|M◦∩H| ≤
⌊

t−max{1,dM′ (k)}
2

⌋
if t is even and |M◦∩H| ≤

⌊
t+1−max{1,dM′ (k)}

2

⌋
if t is odd.

By Claim 3.5, M ′ can be extended modi�ed as to get a K-free b-matching in G with

|M ∩ EK | =
(

t+1
2

)
−

⌈
max{1,hM′ (VK)}

2

⌉
, that is

|M | = |M◦| − |M◦ ∩ H| + |M ∩ EK |

≥ |M◦| −
⌊

t−max{1,dM′ (k)}
2

⌋
+

(
t+1
2

)
−

⌈
max{1,hM′ (VK)}

2

⌉
≥ |M◦| +

⌊
t2

2

⌋
if t is even and

|M | = |M◦| − |M◦ ∩ H| + |M ∩ EK |

≥ |M◦| −
⌊

t+1−max{1,dM′ (k)}
2

⌋
+

(
t+1
2

)
−

⌈
max{1,hM′ (VK)}

2

⌉
≥ |M◦| +

⌊
t2

2

⌋
if t is odd.

4 Proof of Theorem 2.5

We prove max ≥ min by induction on |K|. For K = ∅, this is simply a consequence
of Theorem 2.1.
Assume now thatK 6= ∅ and let K be a forbidden subgraph such that K is uncovered

if t = 2. Let G◦ = (V ◦, E◦) denote the graph obtained by shrinking K, let b◦ de�ned
as in Lemma 3.3 or 3.4 depending on whether K is a Kt,t or a Kt+1. We denote by
K◦ the list of forbidden subgraphs disjoint from K.
By induction, the maximum size of a K◦-free b◦-matching in G◦ is equal to the

minimum value of τ(U◦,W ◦,P◦, K̇◦). Let us choose an optimal U◦,W ◦,P◦, K̇◦ so
that |U◦| is minimal. The following claim gives a useful property of U◦.

Claim 4.1. Assume that v ∈ U is such that d(v, W ) + |Γ(v) ∩ (V − W )| ≤ b(v) + 1.
Then τ(U − v, W,P ′, K̇) ≤ τ(U,W,P, K̇) where P ′ is obtained from P by replacing its
members incident to v by their union plus v.

Proof. By removing v from U , b(U) decreases by b(v). |E[W ]| − |K̇[W ]| remains
unchanged, while the bound on d(v, W )+ |Γ(v)∩ (V −W )| implies that the increment
in the sum over the components of G − U − W is at most b(v).
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Case 1: K is a Kt,t with colour classes KA and KB.

By Lemma 3.3, the di�erence between the maximum size of a K-free b-matching in
G and the maximum size of a K◦-free b◦-matching in G◦ is exactly t2 − t. We will
de�ne U,W,P and K̇ such that

τ(U,W,P , K̇) = τ(U◦,W ◦,P◦, K̇◦) + t2 − t. (7)

The shrinking replaces KA and KB by two nodes ka and kb with t−1 parallel edges
between them. Let U,W and P denote the pre-images of U◦, W ◦,P◦ in G, respectively
and let K̇ = K̇◦ ∪ {K}. By (3), dG◦−kb

(ka), dG◦−ka(kb) ≤ t. Since b◦(ka) = b◦(kb) = t,
Claim 4.1 and the minimal choice of |U◦| implies that if ka ∈ U◦, then kb ∈ W ◦.
Hence we have the following cases (T ◦ denotes a member of P◦). In each case

we are only considering those terms in τ(U◦,W ◦,P◦, K̇◦) that change when taking
τ(U,W,P , K̇) instead.

• ka ∈ U◦, kb ∈ W ◦: b(U) = b◦(U◦) + t2 − t.

• ka, kb ∈ W ◦: |E[W ]| = |E◦[W ◦]| + t2 − t + 1 and |K̇[W ]| = |K̇◦[W ◦]| + 1.

• ka ∈ W ◦, kb ∈ T ◦: |E[T, W ]| = |E◦[T ◦,W ◦]|+ t2 − t + 1, b(T ) = b◦(T ◦) + t2 − t
and |K̇[T, W ]| = |K̇◦[T ◦,W ◦]| + 1 (Figure 6).

• ka ∈ T ◦, kb ∈ W ◦: similar to the previous case.

• ka, kb ∈ T ◦: b(T ) = b◦(T ◦) + 2t2 − 2t.

(7) is satis�ed in each of the above cases, hence we are done. Note that in the �rst
and the last case we may leave out K from K̇ as it is not counted in any term.

1 1 3

2

3 3

333

Forbidden K3,3

1 1 3

2 3

1 1 3

2 3

1 1 3

2

3 3

333 U◦ W ◦

T ◦
1T ◦

2T2 T1

WU

Shrinking

τ(U◦,W ◦,P◦, K̇◦) = 5τ(U,W,P , K̇) = 5 + 32 − 3 = 11

Figure 6: Extending M◦
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Case 2: K is a Kt+1.

By Lemma 3.4, the di�erence between the maximum size of a K-free b-matching in

G and the maximum size of a K◦-free b◦-matching in G◦ is
⌊

t2

2

⌋
. We show that for

the pre-images U,W and P of U◦,W ◦ and P◦ with K̇ = K̇◦ ∪ {K} satisfy

τ(U,W,P , K̇) = τ(U◦,W ◦,P◦, K̇◦) +
⌊

t2

2

⌋
. (8)

After shrinking K = (VK , EK) we get a new node k with
⌊

t+1
2

⌋
− 1 loops on it. (3)

implies that there are at most t + 1 non-loop edges incident to k. Since b◦(k) ≥ t,
Claim 4.1 implies k 6∈ U . Hence we have the following two cases (T ◦ denotes a member
of P◦).

• k ∈ W ◦: |E[W ]| = |E◦[W ◦]| +
(

t+1
2

)
−

⌊
t+1
2

⌋
+ 1 and |K̇[W ]| = |K̇◦[W ◦]| + 1.

• k ∈ T ◦: b(T ) = b◦(T ◦) + t2 if t is even and b(T ) = b◦(T ◦) + t2 − 1 for an odd t.

(8) is satis�ed in both cases, hence we are done. We may also leave out K from K̇
in the second case as it is not counted in any term.

5 Algorithm

In this section we show how the proof of Theorem 2.5 immediately yields an algorithm
for �nding a maximum K-free b-matching in strongly polynomial time.
In such problems, an important question from an algorithmic point of view is how

K is represented. For example, in the K-free b-matching problem for bipartite graphs
solved by Pap in [16], the set of excluded subgraphs may be exponentially large.
Therefore Pap assumes that K is given by a membership oracle, that is, a subroutine
is given for determining whether a given subgraph is a member of K. However, with
such an oracle there is no general method for determining whether K = ∅. Fortunately,
we do not have to tackle such problems: by the next claim, we may assume that K is
given explicitly, as its size is linear in n. We use n = |V |, m = |E| for the number of
nodes and edges of the graph, respectively.

Claim 5.1. If the graph G = (V,E) satis�es (1) and (3), then the total number of

Kt,t and Kt+1 subgraphs is bounded by (t+3)n
2

.

Proof. Assume that v ∈ V is contained in a forbidden subgraph. If we leave an edge
incident to v, the remaining t edges may be contained in at most one Kt+1 subgraph
hence the number of Kt+1's containing v is at most t + 1. However, these t edges
also determine one of the colour classes of those Kt,t's containing them. If we pick a
node from this colour class and leave an edge incident to it (but not to v), then the
remaining t edges, if they do so, exactly determine the other colour class of a Kt,t

subgraph. In point of v this means that the number of Kt,t subgraphs containing v
is bounded by (t + 1)t = t2 + t. Hence the total number of forbidden Kt,t and Kt+1

subgraphs is at most (t2+t)n
2t

+ (t+1)n
t+1

= (t+3)n
2

.
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Let us now turn to the algorithm. First we choose an inclusionwise maximal subset
H = {H1, . . . , Hk} of disjoint forbidden subgraphs greedily. For t = 2, let us �rst
choose squares as long as possible and then continue with triangles. This can be
done in O(t3n) time as follows. Let us maintain an array of size m that encodes
for each edge whether it is used in one of the selected forbidden subgraphs or not.
When increasing H, one only has to check whether any of the edges of the examined
forbidden subgraph is already used. This may be done in t2 or

(
t
2

)
steps, assuming

that the members of K are given by edge-lists. Together with Claim 5.1 we get the
O(t3n) bound.
Let us shrink the members of H simultaneously (this can be easily done since they

are disjoint), resulting in a graph G′ = (V ′, E ′) with a bound b′ : V ′ → Z+ and no
forbidden subgraphs since H was maximal. One can �nd a maximal b′-matching M ′

in G′ in O(|V ′||E ′| log |V ′|) = O(nm log m) time as in [5]. Using the constructions
described in Lemmas 3.3 and 3.4 for Hk, Hk−1, . . . , H1, this can be modi�ed into a
maximal K-free b-matching M . Note that, for t = 2, Hi is always uncovered in
the actual graph since we started including triangles in H only when there were
no more forbidden squares disjoint from the previously chosen members of H. A
dual optimal solution U,W,P, K̇ can be constructed simultaneously as in the proof of
Theorem 2.5. The best time bound of the shrinking and extension steps may depend
on the data structure used and the representation of the graph. In any case, one such
step may be performed in O(m) time and |H| = O(n), hence the total running time
is O(t3n + nm log m).

Acknowledgements

The authors are grateful to Zoltán Király for his helpful comments.

References

[1] K. Bérczi and Y. Kobayashi. An algorithm for (n−3)-connectivity augmentation
problem: Jump system approach. Technical Report METR 2009-12, Department
of Mathematical Engineering, University of Tokyo, April 2009.

[2] G. Cornuéjols and W. Pulleyblank. A matching problem with side conditions.
Discrete Math., 29:135�139, 1980.

[3] A. Frank. Restricted t-matchings in bipartite graphs. Discrete Appl. Math.,
131(2):337�346, 2003.

[4] A. Frank and T. Jordán. Minimal edge-coverings of pairs of sets. J. Comb.
Theory Ser. B, 65(1):73�110, 1995.

[5] H. N. Gabow. An e�cient reduction technique for degree-constrained subgraph
and bidirected network �ow problems. In STOC '83: Proceedings of the �fteenth

EGRES Technical Report No. 2009-12



References 14

annual ACM symposium on Theory of computing, pages 448�456, New York, NY,
USA, 1983. ACM.

[6] D. Hartvigsen. Extensions of matching theory. PhD thesis, Carnegie-Mellon
University, 1984.

[7] D. Hartvigsen. The square-free 2-factor problem in bipartite graphs. In Pro-
ceedings of the 7th International IPCO Conference on Integer Programming and
Combinatorial Optimization, pages 234�241, Berlin, 1999. Springer-Verlag.

[8] D. Hartvigsen. Finding maximum square-free 2-matchings in bipartite graphs.
J. Comb. Theory Ser. B, 96(5):693�705, 2006.

[9] D. Hartvigsen and Y. Li. Triangle-free simple 2-matchings in subcubic graphs
(extended abstract). In Lecture Notes in Computer Science, pages 43�52, London,
UK, 2007. Springer-Verlag.

[10] Z. Király. C4-free 2-factors in bipartite graphs. Technical Report TR-2001-13,
Egerváry Research Group, Budapest, 2001. www.cs.elte.hu/egres.

[11] Z. Király. Restricted t-matchings in bipartite graphs. Technical Report QP-2009-
04, Egerváry Research Group, Budapest, 2009. www.cs.elte.hu/egres.

[12] Y. Kobayashi. A simple algorithm for �nding a maximum triangle-free 2-matching
in subcubic graphs. Technical Report METR 2009-26, Department of Mathemat-
ical Engineering, University of Tokyo, June 2009.

[13] Y. Kobayashi and K. Takazawa. Even factors, jump systems, and discrete convex-
ity. Technical Report METR 2007-36, Department of Mathematical Engineering,
University of Tokyo, June 2007.

[14] Y. Kobayashi and K. Takazawa. Square-free 2-matchings in bipartite graphs and
jump systems. Technical Report METR 2008-40, Department of Mathematical
Engineering, University of Tokyo, October 2008.

[15] M. Makai. On maximum cost Kt,t-free t-matchings of bipartite graphs. SIAM J.
Discret. Math., 21(2):349�360, 2007.

[16] G. Pap. Alternating paths revisited II: restricted b-matchings in bipartite
graphs. Technical Report TR-2005-13, Egerváry Research Group, Budapest,
2005. www.cs.elte.hu/egres.

[17] A. Schrijver. Combinatorial Optimization - Polyhedra and E�ciency. Springer,
2003.

[18] J. Szabó. Ugrácsok és a matroid parity. Master's thesis, Eötvös Loránd University,
Budapest, 2002.

[19] K. Takazawa. A weighted Kt,t-free t-factor algorithm for bipartite graphs. Math.
Oper. Res., 34(2):351�362, 2009.

EGRES Technical Report No. 2009-12



References 15

[20] L. Végh. Augmenting undirected node-connectivity by one. Technical Report TR-
2009-10, Egerváry Research Group, Budapest, 2001. www.cs.elte.hu/egres.

EGRES Technical Report No. 2009-12


	Introduction
	Main theorem
	Shrinking
	Proof of Theorem 2.5
	Algorithm

