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On stable matchings and flows
Dedicated to András Frank on the occasion of his 60th birthday

Tamás Fleiner★

Abstract

We describe a flow model that generalizes ordinary network flows the same
way as stable matchings generalize the bipartite matching problem. We prove
that there always exists a stable flow, generalize the lattice structure of stable
marriages to stable flows and prove a flow extension of Pym’s linking theorem.

Keywords: stable marriages; stable allocations; network flows

1 Introduction

In the stable marriage problem of Gale and Shapley [6], there are n men and n women
and each person ranks the members of the opposite gender by an arbitrary strict,
individual preference order. A marriage scheme in this model is a set of marriages
between different men and women. Such a scheme is unstable if there exists a blocking
pair, that is, a man m and a woman w in such a way that m is either unmarried or
m prefers w to his wife, and at the same time, w is either unmarried or prefers m to
her partner. A marriage scheme is stable if it is not unstable, that is, not blocked by
any pair. It is a natural problem to find a stable marriage scheme if it exists at all.
Nowadays, it is already folklore that for any preference rankings of the n men and n
women, a stable marriage scheme exists. This theorem was proved first by Gale and
Shapley in [6]. They constructed a special stable marriage scheme with the help of a
finite procedure, the so-called deferred acceptance algorithm. It also turned out that
for the existence of a stable scheme it is not necessary that the number of men is the
same as the number of women or that for each person, all members of the opposite
group are acceptable: the deferred acceptance algorithm is so robust that it works
properly in these more general settings.

Several interesting properties about the structure of stable marriage schemes are
known. Donald Knuth [7] attributes to John Conway the observation that stable
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Section 2. Preliminaries 2

marriages have a lattice structure: if each man picks the better assignment out of
two stable marriage schemes then another stable marriage scheme is created in which
each women gets the worse husband out of the two.

There are further known extensions of the stable marriage problem. Bäıou and
Balinski proved in [1] that if each edge of the underlying bipartite graph has a non-
negative capacity and each vertex has a nonnegative quota then the accordingly mod-
ified deferred acceptance algorithm shows that there always exists a so called stable
allocation. An allocation is an assignment of nonnegative values to the edges that
do not exceed the corresponding capacities such that the total allocation of no vertex
exceeds its capacity. (That is, a “marriage” can be formed with an “intensity” dif-
ferent from 0 and 1 and each participant has an individual upper bound on his/her
total “marriage intensity”.) An allocation is stable if any unsaturated edge e has a
saturated end vertex v such that no edge e′ incident with v and preferred by v less
than e has a positive value. Beyond proving the existence of stable assignments, Bäıou
and Balinski used flow-type arguments to speed up the deferred acceptance algorithm
in [1]. Later, Dean and Munshi came up with an even faster algorithm for the same
problem [4] that also has to do a with network flows.

It is fairly well-known that the bipartite matching problem can be formulated in the
more general network flow model, and the alternating path algorithm for maximum
bipartite matchings is a special case of the augmenting path algorithm of Ford and
Fulkerson for maximum flows. However, it seems that the question whether there
exists a flow generalization of the stable marriage theorem has not been addressed so
far. This very problem is in the focus of our present work. In section 2, we formulate
the stable flow problem and give an alternative fixed point proof of the result of
[1] by Bäıou and Balinski on stable allocations. Section 3 contains the stable flow
theorem, a generalization of the Gale-Shapley theorem to flows. Our reduction of
the stable flow problem to the stable allocation problem is similar to the reduction
the maximum flow problem to the maximum b-matching problem. Actually, our
construction has to do also with the one that Cechlárová and Fleiner used in [3]
to extend the stable roommates model to a multiple partner model. Section 4 is
devoted to certain structural results on stable flows, in particular we generalize the
lattice structure of stable marriages. To achieve this, we lean on the construction we
used for the reduction. The last section contains an extension of Pym’s path linking
theorem to flows that we prove with the help of our stability concept. We conclude in
the last section by describing some generalizations of stable flows that can be handled
with our method and by asking some open problems.

It seems that our work opens more questions than it answers. Perhaps the most
challenging open problem is to find theoretical or real word applications of the frame-
work that we shall describe.

2 Preliminaries

Recall that by a network we mean a quadruple (D, s, t, c), where D = (V,A) is
a digraph, s and t are different nodes of D and c : A → ℝ+ is a function that
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determines the capacity c(a) of each arc a of A. (Sometimes it is assumed that no arc
enters vertex s and no arc leaves vertex t. Though this assumption would simplify
a lot on our results, we do not require it for the reason that the result we prove is
significantly more general. Still, if the reader finds it difficult to follow the arguments,
it might be convenient to consider the source-sink case and skip the irrelevant parts.)
A flow of network (D, s, t, c) is a function f : A → ℝ such that capacity condition
0 ≤ f(a) ≤ c(a) holds for each arc a of A and each vertex v of D different from s and
t satisfies the Kirchhoff law:

∑
uv∈A f(uv) =

∑
vu∈A f(vu), that is, the amount of the

incoming flow equals the amount of the outgoing flow for v.
A network with preferences is a network (D, s, t, c) along with a preference order
≤v for each vertex v of V , such that ≤v is a linear order on the arcs that are incident
with v. For a given network with preferences, it is convenient to think that vertices
of D are “players” that trade with a certain product. An arc uv of D from player u
to player v with capacity c(uv) represents the possibility that player u can supply at
most c(uv) units of products to player v. A “trading scheme” is described by a flow
f of the network, as for any two players u and v, flow f(uv) determines the amount
of product that u sells to v. Everybody in the market would like to trade as much
as possible, that is, each player v strives to maximize the amount of flow through v.
In particular, if flow f allows player v to receive some more flow (that is, there are
products on the market that v can buy) and v can also send some more flow (i.e. some
player would be happy to by more products from v) then flow f does not correspond
to a stable market situation.

Another instability occurs when vw ≤v vu (player v prefers to sell to w rather than
to u) and flow f is such that w would be happy to buy more product from v (that is
f(vw) < c(vw) and w has some extra selling capacity), moreover f(vu) > 0 (v sells
a positive amount of products to u). In this situation, v would send flow rather to
w than to u, hence a stable market situation does not allow the above situation. A
similar instability can be described if we talk about outgointg arcs instead of entering
ones, that is, if we exchange the roles of buying and selling.

To formalize our concept of stability we need a few definitions. For a network
(D, s, t, c) and flow f we say that arc a is f -unsaturated if f(a) < c(a), that is, if
it is possible to send some extra flow thorough P . A blocking path of flow f is an
alternating sequence of incident vertices and arcs P = (v1, a1, v2, a2, . . . , ak−1, vk) such
that all the following properties hold.

arc ai points from vi to vi+1 for i = 1, 2, . . . , k − 1 and (1)

vertices v1, . . . , vk are different

with the possible exception that v1 = vk may occur and
(2)

vertices v2, v3, . . . , vk−1 are different from s and t (3)

each arc ai is f -unsaturated and (4)
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v1 = s or v1 = t or there is an arc a′ = v1u such that

f(a′) > 0 and a1 <v1 a
′ and

(5)

vk = s or vk = t or there is an arc a′′ = wvk such that

f(a′′) > 0 and ak−1 <vk a′′ .
(6)

(Note that (2) allows that a blocking path can in fact be a cycle.) So directed path
(or cycle) P is blocking if each player that corresponds to an inner vertex of P is
happy and capable to increase the flow along P , moreover v1 can send extra flow
either because v1 = s or v1 = t is the “source” or “target” node or because v1 may
decrease the flow toward some vertex u that v1 prefers less than v2, and at last, vk can
receive some extra flow either because either vk ∈ {s, t} or vk can refuse flow from w
whom vk ranks below vk−1. (In a network, there is no difference between the roles of
s and t: as none of them have to obey the Kirchhoff law, both of them can send or
receive flow. If the reader is uncomfortable with the idea that the target node sends
flow to the source then consider the case where no arc enters s and no arc leaves t.
This assumption simplifies some of the proofs.) We say that an f -unsaturated path
P = (v1, v2, . . . , vk) is f -dominated at v1 if (5) does not hold, and P is f -dominated
at vk if (6) does not hold.

A flow f of a network with preferences is stable if no blocking path exists for f . In
the stable flow problem we have given a network with preferences and our task is to
find a stable flow if such exists.

A special case of the stable flow problem is the stable allocation problem of Bäıou
and Balinski [1]. The stable allocation problem is defined by finite disjoint sets W and
F of workers and firms, a map q : W ∪F → ℝ, a subset E of W ×F along with a map
p : E → ℝ and for each worker or firm v ∈ W ∪ F a linear order <v on those pairs
of E that contain v. We shall refer to pairs of E as “edges” and hopefully it will not
cause ambiguity. Quota q(v) denotes the maximum of total assignment that worker or
firm v can accept and capacity p(wf) of edge e = wf means the maximum allocation
that worker w can be assigned to firm f along e. An allocation is a nonnegative map
g : E → ℝ such that g(e) ≤ p(e) holds for each e ∈ E and for any v ∈ W ∪F we have

g(v) :=
∑
vx∈E

g(vx) ≤ q(v) , (7)

that is the total assignment g(v) of player v cannot exceed quota q(v) of v. If (7)
holds with equality then we say that player v is g-saturated. An allocation is stable if
for any edge wf of E at least one of the following properties hold:

either g(wf) = p(wf) (the particular employment is realized with full capacity) (8)

or worker w is g-saturated and w does not prefer f to any of his employers

(we say that wf is g-dominated at w)
(9)

or firm f is g-saturated and f does not prefer w to any of its employees,

that is, edge wf is g-dominated at firm f .
(10)
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If g1 and g2 are allocations and w ∈ W is a worker then we say that allocation g1

dominates allocation g2 for worker w (in notation g1 ≤w g2) if one of the following
properties is true:

either g1(wf) = g2(wf) for each f ∈ F (11)

or∑
f ′∈F g1(wf ′) =

∑
f ′∈F g2(wf ′) = q(w), and

g1(wf) < g2(wf) and g1(wf ′) > 0 implies that wf ′ <w wf .
(12)

That is, if w can freely choose his allocation from max(g1, g2) then w would choose
g1 either because g1 and g2 are identical for w or because w is saturated in both
allocations and g1 represents w’s choice out of max(g1, g2). By exchanging the roles
of workers and firms one can define domination relation ≤f for any firm f , as well.

For a stable allocation problem one can design a network (D, s, t, c) such that
V (D) = {s, t} ∪W ∪ F , A(D) = {sw : w ∈ W} ∪ {ft : f ∈ F} ∪ {wf : wf ∈ E}
and c(sw) = q(w), c(ft) = q(f) and c(wf) = p(wf) for any worker w and firm f .
That is, we consider the underlying bipartite graph, orient its edges from W to F ,
add new vertices s and t, with an arc from s to each worker-node and an arc from
each firm-node to t, and capacities are given by the original edge-capacities and the
corresponding quotas. It is straightforward to see from the definitions that g is a
stable allocation if and only if there exists a stable flow f such that g(e) = f(e⃗)
holds for each edge e ∈ E, where e⃗ is the arc that corresponds to edge e. The stable
allocation problem was introduced by Bäıou and Balinski as a certain “continuous”
version of the stable marriage problem in [1]. It turned out that a natural extension of
the deferred acceptance algorithm of Gale and Shapley [6] works for stable allocation
problem and the structure of stable allocations is similar to that of stable marriages.
Beyond stating the existence of stable allocations, the theorem below describes some
structural properties of them.

Theorem 2.1 (See Bäıou and Balinski [1]). 1. If stable allocation problem is described
by W,F,E, p and q then there always exists a stable allocation g. Moreover, if p and
q are integral, then there exists an integral stable allocation g.

2. If g1 and g2 are stable allocations and v ∈ W ∪ F then g1 ≤v g2 or g2 ≤v g1

holds.
3. Moreover, stable allocations have a natural lattice structure. Namely, if g1 and

g2 are stable allocations then g1 ∨ g2 and g1 ∧ g2 are stable allocations, where

(g1 ∨ g2)(wf) =

{
g1(wf) if g1 ≤w g2

g2(wf) if g2 ≤w g1
(13)

and

(g1 ∧ g2)(wf) =

{
g1(wf) if g1 ≤f g2

g2(wf) if g2 ≤f g1
(14)

In other words, if workers choose from two stable allocations then we get another
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stable allocation, and this is also true for the firms’ choices. Moreover, it is true that

(g1 ∨ g2)(wf) =

{
g1(wf) if g1 ≥f g2

g2(wf) if g2 ≥f g1
(15)

and

(g1 ∧ g2)(wf) =

{
g1(wf) if g1 ≥w g2

g2(wf) if g2 ≥w g1
(16)

That is, in stable allocation g1 ∨ g2 where each worker picks his better assignment,
each firm receives the worse out of the two. Similarly, in g1 ∧ g2 the choice of the
firms means the less preferred situation to the workers.

Our proof of Theorem 2.1 is based on fixed points. Actually, we prove an infinite
version where graph G may have infinitely many vertices, vertices can be incident
with infinitely many edges as far as the preference orders are well-orders. Our proof
is closely related to the one we had in [5]. There, the studied matching model was
“discrete”, thus the method described there cannot be directly applied to the “contin-
uous” problem. The reader who is familiar with the Bäıou-Balinski result and knows
Theorem 2.1 well might want to skip the rest of this section.

Our main tool for the proof is Tarski’s fixed point theorem [13] on complete lattices.
A lattice is a paritally ordered set (L,⪯) where any two elements of L (say x and y)
have a least upper bound (denoted by x ∨ y) and a greatest lower bound (denoted
by x ∧ y). A lattice (L,⪯) is complete if any subset X of P has a least upper bound
(denoted by

⋁
X) and a greatest lower bound (denoted by

⋀
X). (In paricular, any

complete lattice has a unique minimal and a unique maximal element that is not
necessarily true for a lattice like (ℝ,≤).) For a poset (P,⪯), mapping f : P → P is
monotone if for any elements x, y of P , x ⪯ y implies f(x) ⪯ f(y).

Lemma 2.2 (Tarski’s fixed point theorem [13]). If (L,⪯) is a complete lattice and
map f : L → L is monotone then there exists a fixed point x ∈ L of f , that is
f(x) = x. Moreover, fixed points of f form a complete lattice under the restricted
partial order of ⪯.

Note that each finite lattice L is complete hence it has a unique minimal element,
say 0. It is easy to see that 0 ⪯ f(0) ⪯ f (f(0)) ⪯ f (f (f(0))) . . ., hence after some
iteration we find a fixed point f (k)(0) = f(f (k)(0)). Actually, it is not difficult to see
that the iteration of monotone function f in the next proof gives a variant of the
Gale-Shapley algorithm that finds a stable allocation.

Proof of Theorem 2.1. 1. Let L be the set of nonnegative mappings l : E → ℝ
such that 0 ≤ l(e) ≤ p(e) holds for any edge e of E. Observe that L forms a
complete lattice under partial order ≤. (As usual, we say for functions l and l′ that
l ≤ l′ iff their domain is the same and l(x) ≤ l′(x) holds for any element x of the
common domain.) This is because if li : E → ℝ are elements of L for i ∈ I then⋁

i∈I l(e) := sup{li(e) : i ∈ I} and
⋀

i∈I l(e) := inf{li(e) : i ∈ I} defines other elements
of L that are the least upper bound and greatest lower bounds of the li’s, respectively.
We define two choice functions on L, one for the workers, and one for the firms. For
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any element l of L let CW denote the the choice of the workers, where each worker w
freely chooses his assigment the best possible way obeying his quota but disregarding
the quotas of the firms in such a way that l is an upper bound on the choice. (For
example, if there is one worker w with quota 8 and ei is the ith choice of w and l(ei) = i
for each edge then CW (l)(ei) = i for i = 1, 2, 3, CW (l)(e4) = 2 and CW (l)(ei) = 0 for
i > 4.) We can define choice function CF of the firms on L by switching the role of
workers and firms in the definition of CW .

For any map l ∈ L let CW (l) denote those assignments that the workers ignore,
and let CF (l) be the same for the firms. That is, CW (l)(e) := l(e) − CW (l)(e) and
CF (l)(e) := l(e)−CF (l)(e) for each edge e of E. As 0 ≤ CW (l) ≤ l and 0 ≤ CF (l) ≤ l
is true for any l ∈ L, this follows that CW (l), CF (l) ∈ L holds. Moreover it is not
difficult to see that both mappings CW and CF are monotone: if some assignment is
ignored by the workers (firms) then this very assignment is also ignored when a wider
choice is offered to the workers (firms).

Define mappings on L by C∗W (l) := p − CW (l) and C∗F (l) := p − CF (l), that is for
each edge e, C∗W (l)(e) = p(e)−CW (l)(e) and C∗F (l)(e) = p(e)−CF (l)(e). It is easy to
see that for any element l of L, we have C∗W (l), C∗F (l) ∈ L, moreover if l ≤ l′ are two
elements of L then C∗W (l) ≥ C∗W (l′) and C∗F (l) ≥ C∗F (l′) holds. (As this property is
the opposite of monotonicity in some sense, sometimes it is called “antitone”.) So if
we compose these maps, then we get monotone function f := C∗F ∘ C∗W : L→ L that
must have a fixed point by Theorem 2.2. That is, there is some function l of L such
that

p(e)− CF

(
p− CW (l)

)
(e) = l(e) (17)

holds for any edge e of E.
We shall prove that g := CW (l) is a stable allocation. To justify that g is an

allocation it is enough to show that all quotas are observed as g ∈ L ensures that no
capacity is exceeded. No worker’s quota is exceeded because g = CW (l) so we only
have to check that no firm has more allocation than its quota. Define gW := l− g and
gF := p− l, that is, p = gW + g + gF . Property (17) implies that

gF = p− l = CF (p− CW (l)) = CF (g + gF )

and this is equivalent to g = CF (g + gF ), showing that no firm quota is exceeded by
g. So g is an allocation, indeed. To prove the stability of g, let e be an arbitrary
edge of E. If g(e) = p(e) then property (8) holds. Otherwise g(e) < p(e). As
p(e) = gW (e) + g(e) + gF (e), either gW (e) > 0 or gF (e) > 0 (or both hold). In the first
case property (9) follows from g = CW (g + gW ). If gF (e) > 0 then g = CF (g + gF )
implies (10). So g is a stable allocation as the theorem claims.

The above proof also justifies the integrality property if instead of complete lattice
L we use complete lattice Lint of the integral elements of L.

2. For given stable allocations g1 and g2 construct digraph D on the vertices of G by
orienting those edges e of E where g1(e) ∕= g2(e) the following way. The arc set of D
consists of two disjoint subsets A1 and A2. If g1(e) < g2(e) then property (8) cannot
hold for e with stable allocation g1. Hence either (9) or (10) must hold for g = g1. In
the first case e⃗ = fw, in the second case we have e⃗ = wf for the oriented version of
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e that belongs to A1. That is, we orient e to that vertex where it is g1-dominated.
Similarly, if g1(e) > g2(e) then g2(e) < p(e), so e has to be g2-dominated at f or at w.
We orient e to that vertex where it is g2-dominated and arc e⃗ belongs to A2. Observe
that arc e⃗1 of A1 and and arc e⃗2 of A2 cannot be oriented towards the same vertex,
because if an edge with positive g2-value is g1-dominated at vertex v then no edge
with positive g1 value can be g2-dominated at v.

Define capacities for the arcs of D by

c(e⃗) =

{
g2(e)− g1(e) if g1(e) < g2(e)
g1(e)− g2(e) if g1(e) > g2(e) .

Observe that if some arc e⃗ = uv of A1 is oriented to vertex v (hence edge e is g1-
dominated at v) then vertex v is g1-saturated, hence the total capacity of those arcs
of A2 that leave v is at least as much as the total capacity of those arcs of A1 that
enter v. Hence the total capacity of the A1 arcs is not more than the total capacity
of the arcs of A2. Exchanging the roles of A1 and A2 and of g1 and g2 in the above
argument we get that the total capacity of A2 cannot exceed the total capacity of A1,
showing that we have equality everywhere. In particular, if v is a non-isolated vertex
of D then all arcs entering v belong to either A1 or A2 and all arcs leaving v belong
to the other arcset. Moreover, the total capacity of incoming arcs equals the total
capacity of outgoing arcs and v is both g1-saturated and g2-saturated. This follows
that depending on the type of the arcs leaving v, either g1 ≤v g2 or g2 ≤v g1 holds. To
finish the proof of the second part of the theorem, observe that for isolated vertices v
of D the two allocations are the same on the edges incident v, so both g1 ≤v g2 and
g2 ≤v g1 are true.

3. Using the lattice property of fixed points in Lemma 2.2 is an attracting idea to
prove the third part of Theorem 2.1. To carry this over, we would need that fixed
points form a sublattice (that is, for the restricted lattice operations ∨,∧) rather than
a lattice subset for the restricted partial order. However, this is not true in general.
Moreover, we should prove that each stable allocation is coming from some fixed point.
Though this approach would achieve the goal, we choose the direct proof with the
help of digraph D defined in the proof of the second part above.

We shall prove only (13) and (15), as the proof of (14) and (16) is the same except
for the roles of workers and firms are interchanged. The proof of the second part of
Theorem 2.1 shows that if an arc e⃗ of A1 (A2) enters v then g1 ≤v g2 (g2 ≤v g1) and
if arc e⃗ of A1 (of A2) leaves v then there is an arc of A2 (of A1) that enters v hence
g2 ≤v g1 (g1 ≤v g2) holds. This means that (13) can be reformulated with the help of
our digraph D in such a way that for any edge e = wf we have

(g1 ∨ g2)(e) =

⎧⎨⎩
g1(e) if no arc of D corresponds to e,

that is, if g1(e) = g2(e)
g1(e) if e⃗ = fw ∈ A1 or e⃗ = wf ∈ A2

g2(e) if e⃗ = wf ∈ A1 or e⃗ = fw ∈ A2 .

(18)

It is straigthforward to see that the above reformulation is equivalent to (15). So (13)
and (15) define the same function g1 ∨ g2 on E. Moreover, (13) shows that g1 ∨ g2
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neither exceeds any edge capacity nor any worker-quota, while (15) proves that each
firm-quota is observed, so g1 ∨ g2 is an allocation, indeed.

To prove stability, we show that for any edge e = wf of E (8) or (9) or (10) holds.
If (8) is not true for e then (g1 ∨ g2)(e) < p(e). If g1(e) < p(e) > g2(e) then e must be
g1-dominated and g2-dominated at w or at f . If e is g1-dominated or g2-dominated
at w then e is (g1 ∨ g2)-dominated at w by (13). Otherwise e is g1-dominated and
g2-dominated at f hence e is (g1 ∨ g2)-dominated at f by (15).

The remaining case is when (g1 ∨ g2)(e) < p(e) and (say) g1(e) = p(e), hence
g2(e) < p(e) by (18). This means that there is an arc e⃗ of digraph D. If e⃗ enters
w then e is g2-dominated at w, hence e is (g1 ∨ g2)-dominated at w by (13). If e⃗
leaves w then g2 ≤f g1. Moreover, by the structure of D we described in the proof of

the second part of Theorem 2.1, there must be some other arc e⃗′ of D that enters w,
and hence g1 ≤w g2. It follows from (13) that p(e) > (g1 ∨ g2)(e) = g1(e) = p(e), a
contradiction.

3 Stable flows

Our goal here is to prove a generalization of Theorem 2.1. The difficulty is that though
the deferred acceptance algorithm works well with quota function q, somehow it has
difficulties with the Kirchhoff law.

Theorem 3.1. If network (D, s, t, c) and preference orders <v describe a stable flow
problem then there always exists a stable flow f . If capacity function c is integral then
there exists an integral stable flow.

It is possible to prove Theorem 3.1 by a mixture of the deferred acceptance algorithm
and the augmenting path algorithm. That is, starting from s, we follow “first choice
paths” until they arrive to t and augment along them with observing the capacity
constraints. If a new path collides with an earlier one then some amount of flow
is refused by the receiving vertex and we try to reroute the flow excess from the
starting point of the refused arc. We have a stable flow as soon as we cannot find an
augmenting path from s to t.

Our proof of Theorem 3.1 follows a different approach for two reasons. On one hand,
it seems that in the area of stable matchings neither the reduction of one problem
to another one nor the use of graph terminology is common. We demonstrate here
that these methods may be fruitful. On the other hand, the “deferred augmentation”
algorithm we sketched above does not give much information about the rich structure
of stable flows that follows from the lattice property of stable allocations.

With the help of the given stable flow problem we shall define a stable allocation
problem. For each vertex v of D calculate
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M(v) := min

⎛⎝ ∑
xv∈A(D)

c(xv),
∑

vx∈A(D)

c(vx)

⎞⎠ ,

that is, M(v) is the minimum of total capac-
ity of those arcs of D that enter and leave v.
So M(v) is an upper bound on the amount of
flow that can flow through vertex v. Choose
q(v) := M(v) + 1. Construct graph GD as fol-
lows. Split each vertex v of D into two distinct
vertices vin and vout, and for each arc uv of D
add edge uoutvin to GD.

v
c2

c5c1

c3

c4

c2

c5

q(v)

c1

c3

c4firstlast

lastfirst
vout

q(v)
vin

For each vertex v of D different from s and t add two parallel edges between vin

and vout: to distinguish between them we will refer them as vinvout and voutvin. Let
p(vinvout) = p(voutvin) := q(v), p(uoutvin) := c(uv) and q(vin) = q(vout) := q(v).
To finish the construction of the stable allocation problem, we need to fix a linear
preference order for each vertex of GD. For vertex vin let vinvout be the most preferred
and voutvin be the least preferred edge, and the order of the other edges incident with
vin are coming from the preference oder of v on the corresponding arcs. For vertex
vout the most preferred vertex is voutvin and the least preferred one is vinvout, and the
other preferences are coming from <v.

The proof of Theorem 3.1 is a consequence of the following Lemma that describes
a close relationship between stable flows and stable allocations.

Lemma 3.2. If network (D, s, t, c) and preference orders <v describe a stable flow
problem then f : A(D) → ℝ is a stable flow if and only if there is a stable allocation
g of GD such that f(uv) = g(uoutvin) holds for each arc uv of D.

Proof. Assume first that g is a stable allocation in GD. This means that none of the
vinvout edges is blocking, so either g(vinvout) = p(vinvout) = q(v) or vinvout must be g-
dominated at at vout, hence vout is assigned to q(vout) = q(v) amount of allocation. As
q(v) is more than the total capacity of arcs leaving v, g(vinvout) > 0 or g(voutvin) > 0
must hold. So vout must have exactly q(v) amount of allocation whenever vinvout is
present. An exchange of in and out shows that the presence of voutvin implies that
vin has exactly q(vin) = q(v) allocation. These observations directly imply that the
Kirchhoff law holds for f at each node different from s and t. The capacity condition
is also trivial for f , hence f is a flow of D. Observe that by the choice of q, neither s
nor t is g-saturated hence no edge is g-dominated at s or at t.

Assume that path P = (v1, v2, . . . , vk) blocks flow f . As P is f -unsaturated, each
edge vouti vini+1 of GD must be g-dominated at vouti or at vini+1. Path P is blocking, hence
either v1 ∈ {s, t}, and hence vout1 vin2 cannot be dominated at v1 or there is a v1u arc
with positive flow value such that v1u > v1v2. In both cases, edge vout1 vin2 has to be
g-dominated at vin2 . It means that g(vin2 vout2 ) > 0. As arc v2v3 is f -unsaturated, this
follows that edge vout2 vin3 must be g-dominated at vin3 . This yields that g(vin3 vout3 ) > 0.
Again, arc v3v4 is f -unsaturated, hence edge vout3 vin4 has to be g-dominated at vin4 ,
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and so on. At the end we get that voutk−1v
in
k is g-dominated at vink . If vk ∈ {s, t} then

it is impossible as both these vertices are g-unsaturated. Otherwise by the blocking
property of P there is an arc wvk with positive flow and vk−1vk <vk wvk, hence again,
voutk−1v

in
k cannot be g-dominated at vink . The contradiction shows that no path can

block f .
Assume now that f is a stable flow of D. We have to exhibit a stable allocation g

of GD such that f is the “restriction” of g. To determine g, our real task is to find
the g(vinvout) and g(voutvin) values, as all other values of g are determined directly
by f : g(uoutvin) = f(uv). The stable allocation we look for might not be unique. In
what follows, we shall construct the canonical representation gf of f .

Let S be the set of those vertices u of D such that there exists an f -unsaturated
directed path P = (v1, v2, . . . , vk = u) that is not f -dominated at v1. As no path
can block f , neither s, nor t belongs to S. To determine gf , for each vertex v ∕= s, t
allocate the remaining quota of v to vinvout or to voutvin depending on whether v ∈ S
or v ∕∈ S holds. More precisely, define

gf (vinvout) =

{
q(v)−

∑
x∈V (D) f(vx) if v ∈ S

0 if v ∕∈ S
and (19)

gf (voutvin) =

{
q(v)−

∑
x∈V (D) f(xv) if v ∕∈ S

0 if v ∈ S .
(20)

By the definition of q, both gf (vinvout) and gf (voutvin) are nonnegative. If v ∈ S then
the amount of total allocation of vout is q(v) = q(vout) by (19), and for v ∕∈ S the
amount of total allocation of vin is q(v) = q(vin) by (20). So if v ∕= s, t then the total
allocation of vin and vout is q(v) by the Kirchhoff law. The total allocations of sin, sout

and tin, tout is less than q(s) and q(t) respectively, by the choice of q. That is, gf is an
allocation on GD.

To justify the stability of gf , we have to show that no blocking edge exists. We have
seen earlier, that the presence of vinvout in GD means that vout g-dominates vinvout.
Similarly, each edge voutvin is gf -dominated at vin. Assume now that gf (voutuin) <
p(voutuin) = c(vu) holds.

If there is an f -unsaturated path P that is not f -dominated at its starting node and
ends with arc vu then u ∈ S by the definition of S, hence gf (uoutuin) = 0. Moreover,
if some edge woutuin with voutuin <uin woutuin would have positive allocation then
path P would block f , a contradiction. As uin has q(uin) amount of total allocation,
edge voutuin is gf -dominated at uin.

The last case is when any f -unsaturated path that ends with arc vu is f -dominated
at its starting vertex. In particular, v ∕∈ S, so gf (vinvout) = 0. Moreover, f -
unsaturated path (v, u) must be f -dominated at v, hence v ∕∈ {s, t} and voutuin is
gf -dominated at vout as vout has q(v) = q(vout) amount of allocation. The conclusion
is that g := gf is a stable allocation, just as we claimed.

We can finish the proof of the existence of a stable flow now.

Proof of Theorem 3.1. There is a stable allocation for GD by Theorem 2.1, hence
there is a stable flow for D due to the first part of Theorem 3.2. If c is integral then
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Section 4. The structure of stable flows 12

q(v) is an integer for each vertex v of D hence p is integral for GD. The integrality
property of stable allocations in the first part of Theorem 2.1 shows that there is an
integral stable allocation g of GD that describes an integral stable flow f of D.

At the end of this section let us point out a weakness of the stability concept of
flows. The motivation behind the notion is that we look for a flow that corresponds to
an equilibrium situation where the players represented by the vertices of the network
act in a selfish way. This equilibrium situation occurs if no coalition of the players
can block the underlying flow f , and this blocking is described by the definition as
a certain f -unsaturated path (or cycle through s or t) along which the players are
capable and prefer to increase the flow. However, in some sense an f -unsaturated
cycle C per se causes instability because the players of C mutually agree to send
some extra flow along C. So it is natural to define flow f of network (D, s, t, c) with
preferences to be strongly stable if f is stable and there exists no f -unsaturated cycle
in D whatsoever. If f is a stable flow then we can “augment” along f -unsaturated
cycles, and hence we can construct a flow f ′ ≥ f such that there no longer exists an
f ′-unsaturated cycle. But unfortunately flow f ′ might not be stable any more because
we might have created a blocking path by the cycle-augmentations.

In fact, there exist networks with preferences that do not have a strongly stable flow.
One example is on the figure: each arc has unit capacity, preferences are indicated
around the vertices: lower rank is preferred to the higher.
As no arc leaves subset U := {a, b, c} of the vertices, no
flow can leave U , hence no flow enters U . In particular,
arc sa has zero flow. If we assume indirectly that f is
a strongly stable flow then cycle abc cannot block, hence
there must be a unit flow along it. But now path sa is
blocking, a contradiction.

s

t

b

c

Stable flows have a blocking cycle

a

2

2

1

1 1
12

3

2

1

4 The structure of stable flows

It is well-known about the stable marriage problem that in each stable marriage
scheme, the same set of participants get married. That is, if someone does not get a
marriage partner in some stable scheme then this very person remains single in each
stable marriage scheme. A generalization of this is the rural hospital theorem of Roth
[11] (see also Theorem 5.13 in [12]). It is about the college model, where instead
of men we work with colleges, women correspond to students and each college has a
quota on the maximum number of students. In the college admission problem it is true
that if a certain college c cannot fill up its quota in a stable admission scheme then c
receives the same set of students in any stable admission scheme. (The phenomenon is
named after hospitals because the assignment problem of medical interns to hospitals
is the first well-known application of the college model.)
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It seems that the rural hospital theorem cannot be
generalized to the stable flow problem. It may happen in a
network that a certain vertex transmits different amounts
of flow in two stable flows. An example is shown in the
figure where each arc has unit capacity. There are two
stable flows: one is along path sact and the other follows
path sbct. So in one stable flow, vertex a transmits some
flow and no flow passes through a in another one.

b

a

tcs

Network for a stable flow

21
3

12

2

1

1

2

There is however a consequence of the rural hospital theorem that can be general-
ized, namely, that the size of a stable matching is always the same. We have seen that
the stable allocation problem is a special case of the stable flow problem, and from the
construction it is apparent that the size of a stable matching (more precisely the total
amount of assignments in a stable allocation) equals the value of the corresponding
flow.

Theorem 4.1. If network (D, s, t, c) and preference orders <v describe a stable flow
problem and f1 and f2 are stable flows then the value of f1 and f2 are the same. More
generally, f1(a) = f2(a) for any arc of D that is incident with s (or with t).

Proof. Lemma 3.2 implies that there exist stable allocations g1 and g2 of GD that
correspond to stable flows f1 and f2, respectively. The value of a flow is the net
amount that leaves s in D, or, in GD one can calculate it as the difference of total
allocation of sout and sin. This means that the second part of the theorem implies the
first one.

As there is no edge between sout and sin, the choice of q(s) implies that both sout

and sin are g1-unsaturated. Hence property (12) can hold neither for sin nor for sout.
But Theorem 2.1 implies that g1 and g2 are ≤sout and ≤sin-comparable. So property
(11) must be true for both flows g1 and g2 for vertices v = sout and v = sin. This
shows the second part of the Theorem for s. The argument for t is analogous to the
above one.

As we have seen in Theorem 2.1, stable allocations have a lattice structure. Based
on the connection of stable allocations and stable flows described in Lemma 3.2, we
shall prove that stable flows of a network with preferences also form a natural lattice.
So assume that f is a stable flow in network (D, s, t, c, ) with preferences and let stable
allocation gf of GD be the canonical representation of f as in the proof of Lemma 3.2.

Observe that any vertex v ∕= s, t of D, exactly one of gf (vinvout) and gf (voutvin) is
positive by the choice of q and gf . For stable flow f , we can classify the vertices of D
different from s and t: v is an f -vendor if gf (vinvout) > 0 and v is an f -customer if
gf (voutvin) > 0. If v is an f -vendor then no edge voutuin can be gf -dominated at vout

(as gf (vinvout) > 0), hence player v sends that much flow to other vertices as much
they accept. Similarly, if v is an f -customer then no edge uoutvin can be gf -dominated
at vout, that is, player v receives as much flow as the others can supply her.

To explore the promised lattice structure of stable flows, let f1 and f2 two stable
flows with canonical representations gf1 and gf2 , respectively. From Theorem 2.1
we know that stable allocations form a lattice, so gf1 ∨ gf2 and gf1 ∧ gf2 are also
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stable allocations of GD, and by Theorem 3.1, these stable allocations define stable
flows f1 ∨ f2 and f1 ∧ f2, respectively. How can we determine these latter flows
directly, without the canonical representations? To answer this, we translate the
lattice property of stable allocations on GD to stable flows of D.

Theorem 4.1 shows that stable flows cannot differ on arcs incident with s or t, so on
these arcs f1 ∨ f2 and f1 ∧ f2 are determined. However, vertices different from s and
t may have completely different situations in stable flows f1 and f2. The two colour
classes of graph GD are formed by the vin and vout type vertices, respectively. So,
by Theorem 2.1, gf1 ∨ gf2 can be determined such that (say) each vertex vout selects
the better allocation and each vertex vin receives the worse allocation out of the ones
that gf1 and gf2 provides them. Similarly, for stable allocation gf1 ∧ gf2 the “in”-type
vertices choose according their preferences and the “out”-type ones are left with the
less preferred allocations. In the language of flows this means the following. If we
want to construct f1 ∨ f2 and v is a vertex different from s and t then either all arcs
entering v will have the same flow in f1 ∨ f2 as in f1, or for all arcs a entering v we
have (f1 ∨ f2)(a) = f2(a) holds. A similar statement is true for the arcs leaving v. To
determine which of the two alternatives is the right one, the following rules apply:

∙ If v is an f1-vendor and an f2-customer then v chooses f2. If v is an f2-vendor
and an f1-customer then v chooses f1. That is, each vertex strives to be a
customer.

∙ If v is an f1-vendor and an f2-vendor and v transmits more flow in f1 than in f2

(i.e. 0 < gf1(v
invout) < gf2(v

invout)) then v chooses f1. That is, vendors prefer
to sell more.

∙ If v is an f1-customer and an f2-customer and v transmits more flow in f1 than
in f2 (i.e. 0 < gf1(v

outvin) < gf2(v
outvin)) then v chooses f2. That is, customers

prefer to buy less.

∙ Otherwise v is a customer in both f1 and f2 or v is a vendor in both flows
and v transmits the same amount in both flows (i.e. gf1(v

outvin) = gf2(v
outvin)

and gf1(v
invout) = gf2(v

invout)). In this situation, v chooses the better “selling
position” and gets the worse “buying position” out of stable flows f1 and f2.

Clearly, for the construction of f1∧f2, one always has to choose the “other” options
than the above rules describe.

The lattice structure of stable flows defines a partial order on stable flows: f1 ⪯ f2

if and only if f1 ∨ f2 = f2 holds, or equivalently, if f1 ∧ f2 = f1 is true. According
to the above rules this means that each f1-customer v is an f2-customer, such that v
buys at least as much in f1 as in f2. Each f2-vendor u is an f1-vendor and u sells at
most as much in f1 as in f2. If w plays the same role (vendor or customer) in both
flows and transmits the same amount then v prefers the selling position of f2 and the
buying position of f1.
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5 Linking of flows

In this section, we shall prove a flow-extension of the linking property of paths.
To introduce the linking property, perhaps it is best to start from the well-known
Mendelsohn-Dulmage theorem [8]. It states that if there are two matchings (M1 and
M2) in a bipartite graph G with colour classes A and B then there exists a matching
M of G that covers each vertex of A that is covered by M1 and all of the vertices of
B that are covered by M2. This result is true for infinite graphs as well, and one can
easily deduce from it the famous Cantor-Bernstein theorem stating that relation ≤ is
antisymmetric on cardinalities.

So it is possible to combine two matchings of a bipartite graph to get a third one.
One can regard the edges of a matching as one-edge paths, and it is an interesting
problem whether it is also possible to combine longer paths in a similar manner. The
affirmative answer was proved by Pym [9, 10]. Pym’s linking theorem deals with
a directed graph D such that both P and Q are node disjoint directed paths of it,
such that a path of P may share a vertex with a path of Q. (In the Mendelsohn-
Dulmage settings, we orient the edges of G from A to B and each matching becomes
a collection of node disjoint directed one-edge paths by this.) The assertion is that
in this situation there always exists a set ℛ of node disjoint directed paths of D such
that each path of ℛ starts from a starting node of a path of P ∪Q, ends in a terminal
node of P ∪ Q, moreover from each starting node of P and at each terminal node
of Q a path of ℛ starts and terminates, respectively. In addition, Pym proved the
so-called switching property: ℛ can be chosen such that each path r ofℛ starts with a
(possibly empty) initial segment of some path of P , at a vertex it switches to another
path of Q that forms the terminal segment of r. Clearly, the Mendelsohn-Dulmage
theorem is a special case of Pym’s linking theorem. For an alternative proof of Pym’s
theorem based on stable matchings see [5].

Later on, Brualdi and Pym [2] gave a variant of the linking theorem in which the
switching property does not hold in general, but each vertex and arc that is commonly
used by a path of P and Q will be used by some path of ℛ, as well. For this,
“generalized paths” have to be allowed, that is circular and (possibly doubly) infinite
directed paths can be present in ℛ. The main result in this section is an extension
of the linking property from paths to network flows. Our result generalizes neither
the switching property in the original theorem of Pym nor the covering property of
the Brualdi-Pym variant. Though we prove a fractional result, with the help of the
integral version of the stable flow theorem, the same proof justifies an integral linking
theorem for flows.

Theorem 5.1. Let D = (V,A) be a directed graph and N = (D, s, t, c) be a network.
If f1 and f2 are feasible flows of N then there is a feasible flow f of N such that

f(sv) ≥ f1(sv) and f(vs) ≤ f1(vs) moreover (21)

f(ut) ≥ f2(ut) and f(tu) ≤ f2(tu) (22)

holds for any vertices u, v of D. If flows f1 and f2 are integral then there is an integral
feasible flow f of N with properties (21) and (22).
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Proof. For each arc a of A let a′ be a parallel copy of arc a and let A′ denote the set
of these copies a′. Furthermore, define

A′1 := {a′ ∈ A′ : f1(a) > f2(a)} and A′2 := {a′ ∈ A′ : f2(a) > f1(a)}

as the sets of those parallel copies where f1 and f2, respectively is greater on the
corresponding arc of A. Let D′ = (V,A ∪A′1 ∪A′2) be the directed graph that we get
from D by adding a parallel arc for each arc a of D where the two flows f1 and f2 do
not agree. Define capacity c′ on A(D′) by

c′(x) :=

⎧⎨⎩
min(f1(a), f2(a)) if x = a ∈ A
f1(a)− f2(a) if x = a′ ∈ A′1
f2(a)− f1(a) if x = a′ ∈ A′2

This way we get network N ′ = (D′, s, t, c′). As c′(a)+c′(a′) = max(f1(a), f2(a)) ≤ c(a)
for a ∈ A, each feasible flow f ′ of N ′ corresponds to a feasible flow f ′ for N , where
f ′(a) := f ′(a) + f ′(a′) for each arc a of D.

Choose linear preference orders <v arbitrarily on the arcs incident with v such that
on the set of incoming arcs v prefers arcs of A′1 to A, and any arc of A is better than
any arc of A′2. On the outgoing arcs the order is “opposite”: outgoing arcs of A′2 form
the set of most preferred arcs (in an arbitrary order), then follow the arcs of A that
leave v and the least preferred outgoing arcs are the ones in A′1. With these linear
orders, N ′ becomes a network with preferences. Let f ′ be an arbitrary stable flow of
this network that exists by Theorem 3.1. We shall prove that the corresponding flow
f = f ′ has properties (21) and (22).

Let Sout denote the set of those vertices v of D′ such that there exists a directed
path P (s, v) of D′ on f ′-unsaturated arcs of A ∪ A1 from s to v and let Sin denote
the set of those vertices v of D′ such that there is a directed path P (v, s) of D′ on
f ′-unsaturated arcs of A∪A1 from v to s. It is easy to see that property (21) of f ′ is
equivalent to Sout = Sin = ∅. Let T in stand for the set of those vertices u of D′ such
that there exists a directed path P (u, t) of D′ on f ′-unsaturated arcs of A ∪ A′2 from
u to t. At last, T out denotes the set of those vertices v of D′ such that there exists a
directed path P (t, u) of D′ on f ′-unsaturated arcs of A ∪A′2 from t to u. Again, it is
straightforward that property (22) of f ′ is equivalent to T in = T out = ∅.

By the stability of f ′, neither s, nor t belongs to any of the sets Sout, Sin, T in and
T out. This means that each vertex of these four sets obeys the Kirchhoff law. Hence
for any of these four sets X ∈ {Sout, Sin, T in, T out}, the total amount of flow f ′ that
enters X is the same as the total amount of flow f ′ that leaves X.

Indirectly, let us assume that Sout is nonempty. By definition, if arc x = vw of
A ∪ A′1 leaves Sout then f ′(x) = c′(x), as otherwise w would also belong to Sout. So
the total amount of flow f ′ that leaves Sout is at least as much as the total amount
of flow f1 that leaves Sout. Observe that if least preferred arc x = uv of A′2 enters
Sout then f ′(x) = 0, as otherwise P (s, v) would be a blocking path to stable flow f ′.
Moreover, for any vertex v of Sout, the first arc a of P (s, v) is f ′-unsaturated, hence
the total amount of flow of f ′ that enters Sout is strictly less than that of f1. As the
total amount of f1 that enters Sout is the same as the total amount of f1 that leaves
Sout, this is a contradiction and shows that Sout = ∅, as we claimed.
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Suppose next that Sin is nonvoid. Clearly, if arc x = wv of A ∪A′1 enters Sin then
f ′(x) = c′(x), as otherwise w ∈ Sin would hold. Thus the total amount of flow f ′ that
leaves Sin is not less than the total amount of f1 leaving Sin. Moreover, if arc x = vu
of A′2 leaves Sin then f ′(x) = 0, as otherwise P (v, s) would block f ′. For any v ∈ Sin,
for the last arc of P (v, s) is f ′-unsaturated hence the total amount of flow of f ′ that
leaves Sin is strictly less than that of f1. This contradiction proves that Sin = ∅.

To finish the proof, unfortunately we have to bore the reader by repeating the two
paragraphs above with the evident changes to prove the emptiness of T in and T out.

Assume that T in is nonempty. By definition, if arc x = wv of A ∪ A′2 enters T in

then f ′(x) = c′(x), as otherwise w would also belong to Tin. So the total amount of
flow f ′ that enters T in is at least as much as the total amount of flow f2 that enters
T in. Observe that if least preferred arc x = vu of A′1 leaves T in then f ′(x) = 0, as
otherwise P (v, t) would be a blocking path to stable flow f ′. Moreover, for any vertex
v of S, the last arc a of P (v, s) is f ′-unsaturated, hence the total amount of flow of f ′

that leaves T in is strictly less than that of f2. As the total amount of f2 that enters
T in is the same as the total amount of f2 that leaves T in, this is a contradiction and
shows that T in = ∅, as we claimed.

Suppose at last that T out is nonvoid. Clearly, if arc x = vw of A ∪ A′2 leaves T out

then f ′(x) = c′(x), as otherwise w ∈ T out would hold. Thus the total amount of flow
f ′ that leaves T out is not less than the total amount of f2 leaving T out. Moreover, if
arc x = uv of A′1 enters T out then f ′(x) = 0, as otherwise P (t, v) would block f ′. If
v ∈ T out then the first arc of P (t, v) is f ′-unsaturated hence the total amount of flow
of f ′ that enters T out is strictly less than that of f1. This contradiction proves that
T out = ∅, hence flow f = f ′ satisfies (21) and (22) just as we claimed.

The integrality property in the last sentence of the theorem follows from the inte-
grality property in the first part of Theorem 3.1.

As we indicated, Theorem 5.1 does not generalize the switching property that Pym
proved. It is folklore that with the help of the stable marriage theorem of Gale and
Shapley [6], the linking theorem of path with this switching property can be proved.
To do this, we regard paths of P as men, paths of Q as women and a common vertex
of path p of P and path q of Q corresponds to an edge between man p and women q.
(Note that parallel edges are possible.) Men prefer edges that correspond to vertices
that are closer to the initial vertex of the corresponding path and women prefer those
edges that correspond to a vertex closer to the terminal vertex of the path. It is
straightforward to check that the edges of a stable matching correspond to a set of
vertices that is a valid set of “switching vertices” to get node disjoint set ℛ of paths.

Actually, the above proof can be generalized to prove a stronger form of Theorem
5.1. In the proof we need stable allocations instead of stable marriages. The sketch is
as follows. Decompose flows f1 and f2 as a positive combination of unit flows along
a directed path or along a directed cycle. Omit all cycles that do not contain s or t,
and regard the remaining cycles as “paths”. Let these paths be the vertices of our
auxiliary graph G and let us have an edge between path p1 of the decomposition of f1

and path p2 of the decomposition of f2 if they have an inner vertex in common. Paths
from f1 prefer to switch earlier, and paths of f2 prefer to switch later. Let the quota
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of each path be the linear coefficient from the decomposition, and let the capacity of
the edges be infinity. A stable allocation for G tells us how should we reroute f1 to
f2 to get flow f with a decomposition such that each path in the decomposing of f
starts with some (possibly empty) path from the decomposition of f1 and switches to
some (possibly empty) path from the decomposition of f2. The interested reader can
work out the details for herself.

It is not clear whether there is a valid generalization of the Brualdi-Pym variant of
the linking theorem to flows.

6 Conclusion

There are some well-known generalizations of network flows that are interesting from
the point of view of stability. Luckily, some of these can be handled with the help
of the construction we used to prove Theorem 3.1. If our “network” has unoriented
edges, then the usual trick helps that substitutes each edge by two oppositely oriented
arcs, each with the capacity of the corresponding edge. If some vertex v of the network
has capacity then we can handle this by reducing the capacity of both vertices vout and
vin from q(v) to c(v). The third usual generalization is where the network has more
source and more terminal nodes. Here the usual trick works again, but there is an
alternative approach. Namely, that the problem woth several sources and terminals
can be regarded as a problem where there exist more than two vertices that does not
obey the Kirchhoff law. As we have seen in the proof of Theorem 3.1, such vertices v
can be modelled in such a way that in the graph GD we do not have the edges voutvin

and vinvout. Any stable allocation of this sparser GD determines a stable flow with
more terminals. However, with this approach it is possible that we have a flow from
some source node another source node. This weirdness can actually happen in our
basic flow model as well: a stable flow might go from t to s and have a negative value.
Can we avoid this? The answer is yes (up to some extent): one has to introduce an
edge sinsout for each source node s and edge touttin for each target node t. By this, we
can make sure that each soruce node sends more (or equal amount of) flow than the
amount it receives and no target node receives less flow than the amount it sends.

Summarizing the last observations we can say that if there are both edges voutvin

and vinvout are present then vertex v obeys the Kirchoff law, if no edge is present then
no Kirchoff law is required for v. If there is exactly one of these edges belong to GD

then depending on which edge is the one, v becomes a net sender or a net receiver of
flow.

A circulation is a well-known notion closely related to flows. Rougly speaking, it is
a flow without the two special nodes s and t, that is, beyond the capacity constraint,
the Kirchhoff law has to hold for each vertex. Obviously, our approach can handle
the stable circulation problem, if we have both parallel edges between vout and vin

for each vertex v of D. However, it turns out that 0 is a stable circulation, which
is somehow disturbing. It makes more sense to look for a strongly stable circulation
that has no blocking path and no blocking cycle. But just like for flows, a strongly
stable circulation might not exist. A natural problem is to find an efficient algorithm
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for constructing a strongly stable circulation (or flow) in a network.
Another direction of possible generalizations of stable flows is that we allow more

complex preferences, e.g. ties in the preference lists. As the stable flow model is
a genuine generalization of stable allocations that generalize stable matchings, each
negative complexity result is valid for flows as well. However, it is interesting to
observe that special exchange economy of housing markets can be formulated in our
flow model with indifferences. If each vertex of D represents a player, each arc and
each vertex has unit capacity, and arc uv means that player v prefers the house of
player u to her own one, then we have preferences only on the arcs entering v and
v is indifferent on the arcs leaving v. With this settings, core allocations of the
housing market correspond bijectively to strongly stable circulations. This indicates
that the top trading cycles algorithm of Gale might be useful to handle some stable
flow problems where indifferences are present.

Acknowledgment

The author kindly acknowledges the support of the EGRES.

References
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