
Egerv́ary Research Group
on Combinatorial Optimization

Technical reportS
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Inductive Constructions in the Analysis of
Two-Dimensional Rigid Structures

Bill Jackson★ and Tibor Jordán★★

Abstract

We give an overview of how inductive constructions of certain families of
graphs can be used to characterize and analyze the generic behaviour of two-
dimensional frameworks with respect to rigidity and global rigidity.

We also give a different proof for (a slightly stronger version of) a result of
Servatius and Whiteley on the construction of minimally rigid mixed graphs.

Keywords: rigid graphs; globally rigid graphs; direction-length frameworks

1 Introduction

One of the most useful tools in the characterization of (globally) rigid graphs is an
inductive construction. Such a construction can be used to prove that a family of
graphs is (globally) rigid, provided that the operations used in the construction are
known to preserve (global) rigidity. In this paper we will describe some examples when
this proof method works and yields necessary and sufficient conditions for (global)
rigidity.

A d-dimensional bar-and-joint framework is a pair (G, p), where G is a graph and
p : V → ℝd is a map. Intuitively, we can think of (G, p) as a collection of bars and
joints where vertices correspond to joints and each edge to a rigid bar joining its end-
points. The framework is rigid in ℝd if it has no continuous deformations in ℝd that
respect the length contraints on the edges. It is globally rigid in ℝd if all frameworks
(G, q) in ℝd in which the edge lengths are the same as in (G, p) are congruent to
(G, p).
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Figure 1: The extension operations.

We shall also consider other types of frameworks. In a direction framework each
edge of G represents a direction constraint for the line containing its end-vertices. A
mixed framework is defined on a graph with two types of edge labels and the edges may
represent length as well as direction contraints, according to the labels. In a body-bar
framework on a multigraph G each vertex corresponds to a rigid body and each edge
to a rigid bar joining the bodies of its end-vertices. Rigidity and global rigidity in
ℝd can be defined analogously for each type of frameworks. It is known (with the
exception of globally rigid mixed frameworks) that if the framework is generic, which
means that there is no algebraic dependency between the coordinates of its points,
then rigidity and global rigidity depends only on the graph of the framework. Thus
we may speak about rigid or globally rigid graphs (when the framework type and the
dimension are fixed). We refer the reader to [15] for the basic concepts and definitions
of (globally) rigid graphs and frameworks.

2 Bar-and-joint frameworks

Let H be a graph. The operation 0-extension adds a new vertex v to G and two
edges vu, vw with u ∕= w. The operation 1-extension subdivides an edge uw of G by
a new vertex v and adds a new edge vt for some t ∕= u,w. An extension is either
a 0-extension or a 1-extension, see Figure 1. Extensions are also called Henneberg
operations in the literature.

Let G = (V,E) be a graph. For a set X ⊆ V let i(X) denote the number of
edges in G[X], i.e. in the subgraph of G induced by X. We say that G is (k, k + 1)-
sparse if i(X) ≤ k∣X∣ − (k + 1) for all X ⊆ V with ∣X∣ ≥ 2. If, in addition,
∣E∣ = k∣V ∣− (k+1) holds then G is said to be (k, k+1)-tight. It is not difficult to see
that if G is minimally rigid in ℝ2 then G is (2, 3)-tight. The following result provides
an inductive construction.

Theorem 2.1. [10, 14] A graph is (2, 3)-tight if and only if it can be obtained from
K2 by a sequence of extensions.

Since each of the two extension operations preserves (minimal) rigidity, Theorem
2.1 can be used to complete the characterization by showing that every (2, 3)-tight
graph is minimally rigid.

Theorem 2.2. [10] A graph G is minimally rigid in ℝ2 if and only if G is (2, 3)-tight.
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Figure 2: The plane vertex splitting operation on edge uv and vertex v.

As an immediate corollary we deduce that a graph is rigid if and only if it can be
obtained from K2 by extensions and edge additions.

There is a different inductive construction for (2, 3)-tight graphs embedded in the
plane. The construction uses (the topological version of) vertex splitting. Given a
graph G = (V,E), an edge uv ∈ E, and a bipartition F1, F2 of the edges incident to v
in G− uv, the vertex splitting operation on edge uv at vertex v replaces the vertex v
by two new vertices v1 and v2, replaces the edge uv by three new edges uv1, uv2, v1v2,
and replaces each edge wv ∈ Fi by an edge wvi for i ∈ {1, 2}, see Figure 2. When G
is a plane graph and each of the edge sets F1, F2 form an interval in the natural cyclic
ordering given by the embedding then we call the operation plane vertex splitting.
It is easy to see that vertex splitting, when applied to a (2, 3)-tight graph, yields a
(2, 3)-tight graph. On the other hand, the general version of vertex splitting may
destroy planarity.

Theorem 2.3. [3] A graph is a plane (2, 3)-tight graph if and only if it can be obtained
from an edge by plane vertex splitting operations.

Theorem 2.3 can be used to give a different algorithmic proof for the fact that
every planar minimally rigid graph can be embedded as a so-called pointed pseudo-
triangulation. The original proof, due to Haas et al., used (a topological version of)
Theorem 2.1.

We say that a graph H = (V,E) is a circuit if it is minimally non-(2, 3)-tight (or
equivalently, if E is a circuit in the “rigidity matroid”). We say that G is redundant
if it has at least one edge and each edge of G is in a circuit. A graph G is redundantly
rigid if G−e is rigid for all edges e of G. It follows that a graph G is redundantly rigid
if and only if G is rigid and redundant. It is known that circuits are redundantly rigid
graphs. See [6] for more details on the properties of circuits (which are also called
2-circuits, M-circuits, or generic cycles in the literature).

Hendrickson [5] proved that if G is a globally rigid graph in ℝ2 on at least four
vertices then G is 3-connected and redundantly rigid in ℝ2. The following result gives
an inductive construction for this family of graphs.

Theorem 2.4. [6] Let G be a 3-connected graph which is redundantly rigid in ℝ2.
Then G can be obtained from K4 by a sequence of 1-extensions and edge additions.
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Figure 3: A construction of K3,5 from K4 using 1-extensions and edge additions.

We illustrate Theorem 2.4 by constructing K3,5 from K4, see Figure 3. Connelly
[1] proved that each of the two operations in Theorem 2.4 preserves global rigidity in
ℝ2. Thus, by combining these results, we obtain a complete characterization.

Theorem 2.5. [6] A graph G on at least four vertices is globally rigid in ℝ2 if and
only if G is 3-connected and redundantly rigid in ℝ2.

No similar inductive construction is known for redundantly rigid graphs. However,
redundant graphs do have a constructive characterization, which was used in [9] to give
an efficient combinatorial algorithm for finding a cable-strut labeling for a redundantly
rigid graph for which the resulting tensegrity graph is rigid. Note that every 3-
connected redundant graph is redundantly rigid, see [6].

Suppose that G1 = (V1, E1) and G2 = (V2, E2) are two graphs on disjoint vertex
sets and uivi ∈ Ei, i = 1, 2, are designated edges. Then the 2-sum of G1 and G2 is
the graph obtained from G1 − u1v1 and G2 − u2v2 by identifying the pairs u1, u2 and
v1, v2. The merging operation (along k vertices) is also applied to two graphs G1, G2

on disjoint vertex sets. It identifies k pairs of designated vertices from the two graphs.

Theorem 2.6. [9] A graph G is redundant if and only if G can be obtained from
disjoint K4’s by recursively applying 1-extensions or edge-additions within some con-
nected component, 2-sums to two connected components, and merging components
along at most two vertices.

A recursive construction of a redundant graph can be obtained in polynomial time.
The labeling algorithm is based on the fact that a rigid cable-strut labeling of a graph
can easily be extended to a rigid labeling of a bigger graph obtained by some of the
operations in Theorem 2.6.
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Section 3. Direction frameworks 5

3 Direction frameworks

Recall that in a direction framework each edge represents a direction constraint for
the line containing its end-vertices. Whiteley [15] characterized the direction rigid
graphs in ℝd and pointed out that rigidity and global rigidity are the same for generic
direction frameworks.

Theorem 3.1. [15] A graph G is direction rigid in ℝd if and only if (d−1)G, the graph
obtained from G by replacing each edge e by d−1 copies of e, contains a (d, d+1)-tight
spanning subgraph.

Note that the characterization of 2-dimensional minimally direction rigid frame-
works given by Theorem 3.1 is identical to the characterization of 2-dimensional
minimally rigid bar-and-joint frameworks given in Theorem 2.2. In fact, in the 2-
dimensional case, there is a simple transformation which shows that a graph G is
minimally direction rigid if and only if it is minimally ‘length-rigid’.

An inductive construction for the family of minimally direction rigid graphs is due
to Frank and Szegő. The operation pinching k edges (with z) subdivides k edges by
k new vertices, adds a new vertex z, and identifies the k subdividing vertices with z.

Theorem 3.2. [4] A graph G is (k, k + 1)-tight if and only if G can be constructed
from an initial graph, consisting of two vertices and k − 1 parallel edges connecting
them, by the following operation: pinch j ≤ k− 1 edges with a new vertex z and then
add k − j new edges connecting z with existing vertices without creating k parallel
edges.

4 Mixed frameworks

A mixed graph is a graph together with a bipartition D ∪ L of its edge set. We refer
to edges in D as direction edges and edges in L as length edges.

Minimally rigid mixed graphs in ℝ2 were characterized by Servatius and Whiteley.
For G = (V ;D,L) a mixed graph and X ⊆ V , let ED(X) and EL(X) denote the
sets, and iD(X) and iL(X) the numbers, of direction and length edges, respectively,
in G[X].

Theorem 4.1. [12] A mixed graph G = (V ;D,L) is minimally rigid if and only if
∣D ∪ L∣ = 2∣V ∣ − 2 and, for all X ⊆ V with ∣X∣ ≥ 2,

i(X) ≤ 2∣X∣ − 2, (1)

and
iD(X) ≤ 2∣X∣ − 3 and iL(X) ≤ 2∣X∣ − 3. (2)

It is straightforward to use this result to obtain a characterization of rigid mixed
graphs. The proof of Theorem 4.1 is based on a Henneberg type inductive construction
for minimally rigid mixed graphs (and some lemmas which show that each of the
operations preserves rigidity). We shall give a different proof for a slight extension
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Section 4. Mixed frameworks 6

of their construction result. The number of operations in our construction is smaller,
which might be useful in possible applications (for example, some lemmas used in the
original proof of Theorem 4.1 can be omitted).

Let G be a mixed graph. The operation 0-extension adds a new vertex v and
two edges vu, vw such that no parallel edges of the same type may be created. The
operation 1-extension (on edge uw and vertex z) for a mixed graph G deletes an edge
uw and adds a new vertex v and new edges vu, vw, vz for some vertex z ∈ V (G), such
that at least one of the new edges has the same type as the deleted edge and, if z = u,
then the two edges from z to u are of different type. These operations are sufficient
to construct all minimally mixed rigid graphs G starting with a single vertex.

Theorem 4.2. [12] Let G be minimally mixed rigid. Then G can be obtained from a
vertex by 0-extensions and 1-extensions.

A mixed graph is independent if it satisfies (1) and (2). Thus an independent
mixed graph G = (V ;D,L) with ∣D ∪ L∣ = 2∣V ∣ − 2 is minimally mixed rigid. Let
G = (V ;D,L) be an independent mixed graph and X ⊆ V with ∣X∣ ≥ 2. Then X
is mixed critical if iD∪L(X) = 2∣X∣ − 2, direction critical if iD(X) = 2∣X∣ − 3 and
EL(X) = ∅, and length critical if iL(X) = 2∣X∣ − 3 and ED(X) = ∅. We say that
X is pure critical if X is either direction critical or length critical, and X is critical
if X is either mixed critical or pure critical. We use d(X, Y ) to denote the number
of edges of G joining X − Y and Y − X and put d(X) = d(X, V − X). We use
d(X, Y, Z) to denote the number of edges of G which belong to G[X ∪Y ∪Z] but not
to G[X] ∪G[Y ] ∪G[Z]. We shall need the following two lemmas on critical sets.

Lemma 4.3. [7] Let G = (V ;D,L) be an independent mixed graph.
(a) If X, Y are mixed critical sets with X ∩ Y ∕= ∅ then X ∩ Y and X ∪ Y are both
mixed-critical and d(X,Y ) = 0,
(b) If X,Y are direction (resp. length) critical sets with ∣X ∩ Y ∣ ≥ 2 then either
(i) d(X, Y ) = 0 and X ∩ Y and X ∪ Y are both direction (resp. length) critical, or
(ii) d(X, Y ) = 1, X ∪ Y is mixed critical, and iD(X ∪ Y ) = 2∣X ∪ Y ∣ − 3 (resp.
iL(X ∪ Y ) = 2∣X ∪ Y ∣ − 3) holds.
(c) If X is mixed critical and Y is pure critical with ∣X ∩Y ∣ ≥ 2 then X ∪Y is mixed
critical, X ∩ Y is pure critical and d(X, Y ) = 0.
(d) If X is length critical and Y is direction critical with ∣X ∩ Y ∣ ≥ 2 then X ∪ Y is
mixed critical, d(X, Y ) = 0, and ∣X ∩ Y ∣ = 2.

Lemma 4.4. [7] Let G = (V ;D,L) be an independent mixed graph and let X, Y, Z be
critical sets satisfying ∣X ∩ Y ∣ = ∣Y ∩ Z∣ = ∣Z ∩X∣ = 1 and X ∩ Y ∩ Z = ∅.
(a) If X is mixed critical then Y, Z are both pure critical, X ∪Y ∪Z is mixed critical,
and d(X, Y, Z) = 0.
(b) If X,Y, Z are direction (resp. length) critical then either
(i) d(X, Y, Z) = 0 and X ∪ Y ∪ Z is direction (resp. length) critical, or
(ii) d(X,Y, Z) = 1, X ∪Y ∪Z is mixed critical, and iD(X ∪Y ∪Z) = 2∣X ∪Y ∪Z∣−3
(resp. iL(X ∪ Y ∪ Z) = 2∣X ∪ Y ∪ Z∣ − 3) holds.

Let G = (V ;D,L) be a mixed graph. We call a vertex of degree three a node of
G. A node is said to be pure if the three edges it is incident with are of the same
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type. Let v ∈ V be a node. The 1-reduction operation at v, on edges vu, vw deletes
v and all edges incident with v, and adds a new edge uw. The type of the new edge
is arbitrary, unless v is a pure node, in which case the type of uw must be the same
as the type of v. The graph obtained by the operation is denoted by Guw

v . Note that
1-reduction is the inverse operation of 1-extension. The 1-reduction is inconsistent if
both vu and vw have the same type and uw has the opposite type, and otherwise it
is consistent.

Let G be a minimally rigid mixed graph and let v be a node in G. A pair of edges
uv, wv incident to v (and the corresponding 1-reduction) is said to be suitable if Guw

v

is a minimally mixed rigid graph. For X ⊆ V let N(X) denote the set of neighbours
of X (that is, N(X) := {v ∈ V −X : uv ∈ D ∪ L for some u ∈ X}).
Lemma 4.5. Let v be a vertex in a minimally rigid mixed graph G = (V ;D,L).
(a) If d(v) = 2 then G− v is a minimally rigid mixed graph.
(b) If d(v) = 3 then there is a consistent suitable 1-reduction at v.

Proof. Part (a) follows easily from the counts. To prove (b) consider a node v in G.
Suppose that v is not length pure. Then a direction 1-reduction at v on a pair vu, vw
is suitable if and only if Guw

v is independent. It follows that the 1-reduction is not
suitable if and only if there is a mixed critical set X with u,w ∈ X and v /∈ X or
there is a direction critical set Y with u,w ∈ Y and v /∈ Y .

Claim 4.6. Suppose that v is a node, which is not length (direction) pure, and let
X be a mixed critical set with v /∈ X and ∣X ∩ N(v)∣ = 2. Then there is a suitable
direction (resp. length) 1-reduction at v.

Proof. Let X ∩ N(v) = {u,w}. First observe that no mixed critical set X ′ can
contain all neighbours of v, since N(v) ⊆ X ′ would imply i(X ′ + v) ≥ 2∣X ′∣ − 2+ 3 =
2∣X ′ + v∣ − 1, contradicting the independence of G. Thus v has a neighbour t with
t /∈ X. For a contradiction suppose that the direction 1-reductions on edges vt, vu
and vt, vw are both non-suitable. By using Lemma 4.3(a,b,c) and the fact that there
is no mixed critical set X ′ with N(v) ⊆ X ′ we can deduce that there exist direction
critical sets Y, Z with u, t ∈ Y , w, t ∈ Y , and ∣X ∩ Y ∣ = ∣X ∩ Z∣ = ∣Y ∩ Z∣ = 1.
Now Lemma 4.4(a) implies that X ∪ Y ∪ Z is mixed critical, a contradiction (since
N(v) ⊆ X ∪ Y ∪ Z).

Claim 4.7. Suppose that v is a node, which is not length pure, and that there is no
mixed critical set X with v /∈ X and ∣X ∩N(v)∣ = 2. Then either there is a suitable
direction 1-reduction at v or v is a mixed node and every length 1-reduction is suitable.

Proof. Suppose that there is no suitable direction 1-reduction at v. Since there is
no mixed critical set containing two neighbours of v, it follows that each pair of
neighbours of v belongs to a direction critical set in G − v. Furthermore, Lemma
4.3(d) implies that no pair of neighbours of v belongs to a length critical set in G− v.
This proves that every length 1-reduction at v gives rise to an independent graph and
completes the proof when v is a mixed node.

So we may assume that v is a direction pure node. Then we must have ∣N(v)∣ =
3. Observe that no direction critical set Y ′ can contain all neighbours of v, since
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N(v) ⊆ Y ′ would imply iD(Y
′ + v) ≥ 2∣Y ′∣ − 3 + 3 = 2∣Y ′ + v∣ − 2, contradicting

the independence of G. Hence we can use Lemma 4.3(b) to deduce that there exist
direction critical sets X, Y, Z in G − v, containing distinct pairs of neighbours of v,
with ∣X ∩ Y ∣ = ∣X ∩ Z∣ = ∣Y ∩ Z∣ = 1 and X ∩ Y ∩ Z = ∅. Lemma 4.4(b) now
implies that X ∪ Y ∪Z is direction critical, a contradiction. This proves that there is
a suitable direction 1-reduction at v.

We can now complete the proof of the lemma. First suppose v is pure. Without
loss of generality v is direction pure. Then Claims 4.6 and 4.7 imply that there is a
suitable direction 1-reduction at v. By definition, this 1-reduction is also consistent.
Next suppose that v is a mixed node. By symmetry we may assume that v is incident
with two direction edges vu, vw and one length edge vt. It follows from Claims 4.6 and
4.7 that either there is a suitable direction 1-reduction at v (which is also consistent,
since there is only one length edge incident with v) or every length 1-reduction at v is
suitable. Thus the 1-reduction at v on the pair vu, vt is consistent and suitable.

We can now deduce the following strengthening of Theorem 4.2. The 1-extension
is consistent if no direction (resp. length) edge uw is replaced by two length (resp.
direction) edges vu, vw. Note that consistent 1-extension is the inverse of consistent
1-reduction.

Theorem 4.8. Let G be minimally mixed rigid. Then G can be obtained from a vertex
by 0-extensions and consistent 1-extensions.

Proof. The result follows by observing that G must have a vertex v of degree two or
three and then using the fact that there is a consistent suitable 1-reduction at v by
Lemma 4.5, and applying induction on the number of vertices.

The problem of characterizing when a generic mixed framework (G, p) is globally
rigid is still an open problem and it is not known whether global rigidity of mixed
frameworks is a generic property.

The following is a necessary condition for global rigidity, which is analogous to the
‘3-connectedness condition’ of Theorem 2.5. It uses the following concept. Let G be
a 2-connected mixed graph. A 2-separation of G is a pair of subgraphs G1, G2 such
that G = G1 ∪G2, ∣V (G1) ∩ V (G2)∣ = 2 and V (G1)− V (G2) ∕= ∅ ∕= V (G2)− V (G1).
The 2-separation is direction-balanced if both G1 and G2 contain a direction edge. We
say that G is direction balanced if all 2-separations of G are direction balanced. It
was shown in [7] that every globally rigid mixed graph is direction balanced. Rigidity
is also a necessary condition for global rigidity. Redundant rigidity, however, is no
longer necessary.

We say that a mixed graph G = (V ;D,L) is a mixed circuit if D ∕= ∅ ∕= L and it
is minimal with respect to violating (1) or (2) (or equivalently, if D ∪ L is a circuit
in the “mixed rigidity matroid”). The smallest mixed circuits on three vertices are
denoted by K+

3 and K−
3 . They can be obtained from each other by interchanging the

direction edges and the length edges. The first graph on Figure 4 is K+
3 . Theorem

4.1 can be used to characterize mixed circuits and, in particular, show that mixed
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Figure 4: The inductive construction of a direction balanced (and hence globally rigid)
mixed circuit. Solid (dashed) edges indicate length (resp. direction) constraints. The
graph is obtained from K+

3 by a 1-extension (adding vertex v), followed by a 2-sum
with a direction-pure K4 (on vertex set {y, z, p, q}) and then another 1-extension
which adds w.

circuits are 2-connected and redundantly rigid. We recently showed that the direction
balancedness condition is also sufficient to imply that mixed circuits are globally rigid.

We will need one further operation on mixed graphs. When Gi = (Vi;Di, Li) is a
mixed graph for each i ∈ {1, 2} and uv has the same type in both G1 and G2, their
2-sum is the mixed graph (V1 ∪ V2; (D1 ∪D2)− {uv}, (L1 ∪ L2)− {uv}).
Theorem 4.9. [7] A mixed graph is a mixed circuit if and only if it can be obtained
from K+

3 or K−
3 by a sequence of 1-extensions and 2-sums with pure K4’s.

When the mixed circuit is direction balanced, the 2-sum operation is more re-
stricted.

Theorem 4.10. [7] A mixed graph is a direction balanced mixed circuit if and only
if it can be obtained from K+

3 or K−
3 by a sequence of 1-extensions and 2-sums with

direction-pure K4’s.

The construction is illustrated by Figure 4. We also proved that each operation
in Theorem 4.10, when applied to a mixed circuit, preserves global rigidity. More
precisely, we showed in [8] that (i) if H is a globally rigid mixed graph with at least
three vertices and G is obtained from H by a 1-extension on an edge uw, and H−uw
is rigid, then G is globally rigid, and (ii) if H is a globally rigid mixed graph and G
is obtained from H by a 0-extension which adds a vertex v incident to two direction
edges, then G is globally rigid. Note that a 2-sum with a direction-pure K4 can be
obtained by a 0-extension followed by a 1-extension. By combining these results we
were able to characterize globally rigid mixed circuits.
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Section 5. Body-bar frameworks 10

Theorem 4.11. [7] Let G be a mixed circuit. Then G is globally rigid if and only if
G is direction balanced.

5 Body-bar frameworks

A graph is k-tree-connected if it contains k edge-disjoint spanning trees. For this
family of graphs Nash-Williams verified the following construction.

Theorem 5.1. [11] A graph G is k-tree-connected if and only if G can be obtained
from a vertex by edge additions and by pinching i ≤ k − 1 edges with a new vertex z
and then adding k − i new edges from z to existing vertices.

Theorem 5.1 can be used to verify the following result of Tay.

Theorem 5.2. [13] A multigraph G is body-bar rigid in ℝd if and only if G is
(
d+1
2

)
-

tree-connected.

A graph G = (V,E) is highly k-tree-connected if G − e is k-tree-connected for all
e ∈ E. The inductive construction of highly k-tree-connected graphs is due to Frank
and Szegő.

Theorem 5.3. [4] A graph G is highly k-tree-connected if and only if G can be ob-
tained from a vertex by edge additions (which may be loops) and by pinching i edges
(1 ≤ i ≤ k − 1) with a new vertex z and adding k − i new edges connecting z with
existing vertices.

It follows from Theorem 5.2 that a multigraph G is redundantly body-bar rigid
if and only if it is highly k-tree-connected. In [2] we proved that the multigraph
of a globally rigid generic body-bar framework is redundantly body-bar rigid. Fur-
thermore, most of the pinching operations of Theorem 5.3 preserves body-bar global
rigidity. Then we used Theorem 5.3, and some additional arguments, to obtain the
following result.

Theorem 5.4. [2] A multigraph G is globally body-bar rigid in ℝd if and only if G is
redundantly body-bar rigid in ℝd.
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