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Generically globally rigid zeolites in the plane

Tibor Jordán★

Abstract

A d-dimensional zeolite is a d-dimensional body-and-pin framework with a
(d+1)-regular underlying graph G. That is, each body of the zeolite is incident
with d+1 pins and each pin belongs to exactly two bodies. The corresponding
d-dimensional combinatorial zeolite is a bar-and-joint framework whose graph
is the line graph of G.

We show that a two-dimensional combinatorial zeolite is generically globally
rigid if and only if its underlying 3-regular graph G is 3-edge-connected. The
proof is based on a new rank formula for the two-dimensional rigidity matroid
of line graphs.

1 Introduction

A d-dimensional zeolite is a d-dimensional body-and-pin framework in which each
body is incident with d + 1 pins and each pin belongs to exactly two bodies. In the
underlying graph G of the zeolite vertices correspond to bodies and two vertices are
adjacent if and only if the corresponding bodies share a pin. Thus the underlying
graph of the zeolite is (d+ 1)-regular.

By replacing the bodies by complete bar frameworks one obtains a d-dimensional
combinatorial zeolite. It is a bar-and-joint framework whose graph is the line graph of
the underlying graph G of the zeolite. (The line graph L(G) of a graph G = (V,E) is
the simple graph with vertex set {ve : e ∈ E}, where two vertices ve, vf are adjacent if
and only if e, f have a common end-vertex in G.) See Figure 1 for a two-dimensional
example.

The investigation of these structures is motivated in part by the existence (and
flexibility properties) of real zeolites, which are molecules formed by corner-sharing
tetrahedra, see e.g. [3]. Planar plate frameworks (which contain planar zeolites as
a special case), in which each body is a regular polygon, have also been studied in
the combinatorial rigidity literature [2]. In this paper we shall consider the (global)
rigidity properties of planar combinatorial zeolites in generic position.

Roughly speaking, a combinatorial zeolite is globally rigid if its bar lengths uniquely
determine the whole framework, up to congruence. Brigitte Servatius and Herman
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G L(G)

Figure 1: A 3-regular graph G and its line graph L(G). The shaded triangles of the
bar-and-joint framework on L(G) correspond to the bodies in the two-dimensional
zeolite whose underlying graph is G.

Servatius [9] asked whether there is a simple necessary and sufficient condition, in
terms of its underlying graph, for the global rigidity of a planar zeolite whose vertices
are in generic position. We shall give an affirmative answer in Section 3 by showing
that a planar combinatorial zeolite is generically globally rigid if and only if its 3-
regular underlying graph is 3-edge-connected. The proof is based on a new rank
formula for the two-dimensional rigidity matroid of line graphs. This formula, along
with the necessary definitions, is given in Section 2. The last section is devoted to
some concluding remarks.

2 Rigidity of line graphs

We shall need the following basic notions of combinatorial rigidity. For a detailed
survey of the area we refer the reader to [1, 10]. A d-dimensional (bar-and-joint)
framework is a pair (G, p), where G = (V,E) is a graph and p is a map from V to
ℝd. We also say that (G, p) is a realization of G in ℝd. We can think of the edges
and vertices of G in the framework as rigid (fixed length) bars and universal joints,
respectively. Two frameworks (G, p) and (G, q) are equivalent if corresponding edges
have the same lengths, that is, if ∣∣p(u)−p(v)∣∣ = ∣∣q(u)− q(v)∣∣ holds for all pairs u, v
with uv ∈ E, where ∣∣.∣∣ denotes the Euclidean norm in ℝd. Frameworks (G, p), (G, q)
are congruent if ∣∣p(u)− p(v)∣∣ = ∣∣q(u)− q(v)∣∣ holds for all pairs u, v with u, v ∈ V .
We shall say that (G, p) is globally rigid if every framework which is equivalent to
(G, p) is congruent to (G, p).

Rigidity is a weaker property of frameworks than global rigidity. Intuitively, a
framework is rigid if it has no continuous deformations. Equivalently, and more for-
mally, a framework (G, p) is rigid if there exists an ² > 0 such that, if (G, q) is
equivalent to (G, p) and ∣∣p(u) − q(u)∣∣ < ² for all v ∈ V , then (G, q) is congruent to
(G, p).

A framework (G, p) is said to be generic if the set containing the coordinates of all
its points is algebraically independent over the rationals. It is known that rigidity as
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well as global rigidity are generic properties of d-dimensional frameworks for all d, that
is, the (global) rigidity of a generic realization of a graph G depends only on the graph
G and not the particular realization. We say that the graph G is rigid, respectively
globally rigid, in ℝd if every (or equivalently, if some) generic realization of G in ℝd is
rigid, respectively globally rigid. Many of the (global) rigidity properties of a generic
framework (G, p) are determined by an associated matroid, the d-dimensional rigidity
matroid ℛd(G), defined on the edge set of G. We denote the rank of ℛd(G) by rd(G).

In what follows we shall focus on the case d = 2. In this case rigidity and the
rank function of the rigidity matroid are well characterized. It is known that a graph
G = (V,E) is rigid in ℝ2 if and only if r2(G) = 2∣V ∣ − 3. It is also known that the
edge set of G is independent in ℛ2(G) if and only if each subset X ⊆ V with ∣X∣ ≥ 2
induces at most 2∣X∣ − 3 edges [7]. Lovász and Yemini [8] characterized rigid graphs
in ℝ2 by providing a formula for r2(G), in terms of ‘thin covers’ of G. We shall use the
following refinement of their result, which uses rigid components, see [1, Section 4.4].
We define a rigid component of a graph G = (V,E) to be a maximal rigid subgraph
of G. By the glueing lemma (see [10, Lemma 3.1.4]), which says that the union of
two rigid graphs with at least two vertices in common is rigid, it follows that any two
rigid components of G intersect in at most one vertex. Thus their vertex sets form a
special ‘thin cover’ of G.

Theorem 2.1. [1, 8] Let H = (V,E) be a graph with rigid components H1, H2, ..., Ht.
Then

r2(H) =
t∑

i=1

(2∣Ci∣ − 3),

where Ci = V (Hi), 1 ≤ i ≤ t.

Let G = (V,E) be a graph. For a family ℱ of pairwise disjoint subsets of V
let EG(ℱ) denote the set, and eG(ℱ) the number, of edges of G connecting distinct
members of ℱ . For a partition P of V let

defG(P) = 3(∣P∣ − 1)− 2eG(P)

denote the deficiency of P in G and let

def(G) = max{defG(P) : P is a partition of V }.

We say that a partition P of V is tight if defG(P) = def(G) holds. Note that def(G) ≥
0, since defG({V }) = 0. For example, the graph G on Figure 1 has def(G) = 1. The
vertex sets of the four disjoint copies of ‘K4 minus an edge’ in G form a tight partition
of G.

The following rank formula (which is implicit in [6]) shows that the ‘degree of
freedom’ of L(G) is equal to the deficiency of G.

Theorem 2.2. Let G = (V,E) be a graph with minimum degree at least two. Then

r2(L(G)) = 2∣E∣ − 3− def(G). (1)
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Proof: First we prove that the right hand side is an upper bound on r2(L(G)). Since
∣V (L(G))∣ = ∣E∣, we have r2(L(G)) ≤ 2∣E∣−3. Thus we may assume that def(G) ≥ 1.
Let Q = {Q1, Q2, ..., Qt} be a tight partition of V . Since def(G) ≥ 1, we must have
t ≥ 2.

For v ∈ V let B(v) denote the set of vertices in L(G) corresponding to the edges
incident with v in G. Since G has minimum degree at least two, we have ∣B(v)∣ ≥ 2
for all v ∈ V . Let Xi = ∪v∈Qi

B(v), for 1 ≤ i ≤ t. Since each set B(v) contains
at least two vertices, we have ∣Xi∣ ≥ 2 for 1 ≤ i ≤ t. Furthermore, ∣{Xi : ve ∈
Xi}∣ ≤ 2 for each vertex ve of L(G) with equality if and only if e ∈ EG(Q). Thus∑t

i=1 ∣Xi∣ = ∣E∣+eG(Q). Since every edge of L(G) is induced by some Xi and each set
X ⊆ V (L(G)) with ∣X∣ ≥ 2 induces at most 2∣X∣−3 independent edges in ℛ2(L(G)),
we can deduce that

r2(L(G)) ≤
t∑

i=1

(2∣Xi∣ − 3) = 2∣E∣+ 2eG(Q)− 3t

= 2∣E∣ − 3− def(G).

To prove that equality holds consider the rigid components H1, H2, ..., Ht of L(G)
and let Ci = V (Hi) for 1 ≤ i ≤ t. Since each set B(v), v ∈ V , induces a complete
(and hence rigid) subgraph in L(G), we must have B(v) ⊆ Ci for some 1 ≤ i ≤ t.
Furthermore, since ∣B(v)∣ ≥ 2 for all v ∈ V , the maximality of the Ci’s and the glueing
lemma imply that each B(v) is contained in exactly one set Ci. Let Qi = {v ∈ V :
B(v) ⊆ Ci}, 1 ≤ i ≤ t. Observe that Qi ∕= ∅ for all 1 ≤ i ≤ t, since each rigid
component Hi has at least one edge, say vevf . Hence there is a vertex x ∈ V which
is a common end-vertex of edges e, f in G. Thus ∣B(x) ∩ Ci∣ ≥ 2 and hence, by the
glueing lemma, B(x) ⊆ Ci and x ∈ Qi must hold. It follows that Q = {Q1, Q2, ..., Qt}
is a partition of V .

Claim 2.3. ve ∈ Ci ∩ Cj for some ve ∈ V (L(G)) and 1 ≤ i < j ≤ t if and only if
e ∈ EG(Qi, Qj).

Proof: First suppose ve ∈ Ci ∩ Cj. Consider an edge vevf ∈ E(Hi). As above, we
may deduce that there is a vertex x ∈ V , incident with e, f , with x ∈ Qi. Similarly,
by considering an edge vevℎ ∈ E(Hj) we obtain that there is a vertex y ∈ V , incident
with e, ℎ, with y ∈ Qj. This implies that e = xy and e ∈ EG(Qi, Qj).

Conversely, suppose that e = xy ∈ EG(Qi, Qj). Then B(x) ⊆ Ci, B(y) ⊆ Cj. Since
ve ∈ (B(x) ∩B(y)), we have ve ∈ Ci ∩ Cj, as required. ∙

By using Theorem 2.1 and Claim 2.3 we obtain

r2(L(G)) =
t∑

i=1

(2∣Ci∣ − 3) = 2∣E∣+ 2eG(Q)− 3t

= 2∣E∣ − 3− def(Q) ≥ 2∣E∣ − 3− def(G),

which completes the proof. ∙

The lower bound on the minimum degree of G in Theorem 2.2 cannot be weakened.
This follows by observing that if G is a star then L(G) is rigid but G is highly deficient.
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3 Globally rigid zeolites

Globally rigid graphs in ℝ2 have been characterized by Jackson and Jordán [5]. We
say that a graph G is redundantly rigid in ℝ2 if G− e is rigid in ℝ2 for all e ∈ E(G).

Theorem 3.1. [5] Let H be a graph. Then H is globally rigid in ℝ2 if and only if H is
a complete graph on at most three vertices or H is 3-vertex-connected and redundantly
rigid in ℝ2.

If H is a line graph of a 3-regular graph then a simpler characterization follows
from the next theorem.

Theorem 3.2. Let G = (V,E) be a 3-regular graph. Then L(G) is 3-vertex-connected
and redundantly rigid in ℝ2 if and only if G is 3-edge-connected.

Proof: First suppose that G − F has two connected components D1, D2 for some
F ⊆ E with ∣F ∣ ≤ 2. Since G is 3-regular, there must be an edge in Di for i = 1, 2.
This implies that the vertex set in L(G) corresponding to F is a separating vertex set
in L(G). Thus L(G) is not 3-vertex-connected. This proves the ‘only if’ direction.

To see the ‘if’ part, suppose that G is 3-edge-connected. This implies that L(G) is
3-vertex-connected, since each separating vertex set in L(G) gives rise to a separating
edge set of G of the same size.

Next we show that L(G) is redundantly rigid. We need the following claim.

Claim 3.3. Let H be a graph with minimum degree at least two and suppose that H
can be made 3-edge-connected by adding at most one edge. Then L(H) is rigid.

Proof: By Theorem 2.2 it suffices to show that def(H) = 0. Consider a partition P =
{X1, X2, ..., Xt} of V (H) with t ≥ 2. SinceH can be made 3-edge-connected by adding
at most one edge, all but at most two members Xi of P satisfy eH(Xi, V (H)−Xi) ≥ 3,
and all members satisfy eH(Xi, V (H)−Xi) ≥ 2. Hence

2eH(P) ≥ 3t− 2 > 3(∣P∣ − 1).

Thus def(H) = 0. ∙

Now consider and edge p = vevf of L(G). This edge corresponds to a pair of edges
e = xy, f = xz in G with a common end-vertex. Since G is 3-edge-connected, we can
apply Claim 3.3 to H = G− e to deduce that L(H) is rigid.

It is easy to check that L(G) − p can be obtained from L(H) by adding a new
vertex and connecting it to three distinct vertices of L(H). This operation is known
to preserve rigidity (in fact, connecting the new vertex to two vertices of L(H) would
already preserve rigidity, see e.g. [10, Lemma 2.1.3]). Thus L(G) − p is rigid. This
proves that L(G) is redundantly rigid, as required. ∙

By Theorems 3.1 and 3.2 we obtain:

Corollary 3.4. A two-dimensional combinatorial zeolite is globally rigid if and only
if its underlying graph is 3-edge-connected.
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4 Concluding remarks

The charaterization of global rigidity provided by Corollary 3.4 has algorithmic impli-
cations, too. Given a 3-regular graph G on n vertices, the best known running time
bound for testing whether L(G) satisfies both conditions of Theorem 3.1 is O(n2).
However, testing whether G is 3-edge-connected can be done in linear time. Since G
is 3-regular, this gives rise to an improved O(n) time bound for testing global rigidity
of two-dimensional combinatorial zeolites.

The characterization of rigid (or globally rigid) graphs in ℝd, for d ≥ 3, is not
known. Even the special case of three-dimensional combinatorial zeolites appears
to be difficult. Nevertheless, one might conjecture that for all positive integers d
a d-dimensional combinatorial zeolite is globally rigid if and only if its underlying
(d+1)-regular graph is (d+1)-edge-connected (or possibly (d+1)-vertex-connected).
This natural extension of Corollary 3.4, which is correct for d ≤ 2, fails in ℝ3: a
counterexample, due to Bill Jackson [4], is shown in Figure 2.

Figure 2: A 4-vertex-connected 4-regular graph G for which L(G) is not rigid (and
hence not globally rigid) in ℝ3. The line graph of G behaves like a body-and-hinge
framework whose underlying graph is a cycle of length 8, and hence it is easily shown
to be flexible. (Thus a cycle of length 7 would also be a counterexample.)
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