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A simple proof of a theorem of Benczúr and Frank

Attila Bernáth?

Abstract

We give a simple proof of a theorem of Benczúr and Frank concerning cov-
ering symmetric crossing supermodular set functions with graph edges.

1 Introduction
A set function p : 2V → Z is called positively crossing supermodular if it satisfies the
following inequality for every crossing pair X, Y ⊆ V with p(X), p(Y ) > 0:

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ). (∩∪)

Observe that (∩∪) trivially holds if X ⊆ Y or Y ⊆ X. If furthermore p is symmetric
(i.e. p(X) = p(V −X) for any X ⊆ V ) then it will also satisfy the following inequality
for every crossing pair X, Y ⊆ V with p(X), p(Y ) > 0:

p(X) + p(Y ) ≤ p(X − Y ) + p(Y −X). (−)

Again, (−) will always hold if X ∩ Y = ∅ or X ∪ Y = V . The argument given
here, unlike that of Benczúr and Frank, will be simpler if we do not assume that our
function is nonnegative.

A graph G = (V,E) is said to cover a set function p if dG(X) ≥ p(X) for any
X ⊆ V , where dG(X) is the number of edges of G having exactly one endpoint in X.
Assume that we are given a symmetric, positively crossing supermodular set function
p : 2V → Z over the finite ground set V with p(∅) = 0. In this paper we consider
the question of finding a graph G covering the function p. The main objective would
be to minimize the number of the edges of the graph to be found, but it is easier to
speak about the more general degree-specified version of the problem, where we
are also given a degree specification m : V → Z+ and we want to find a graph G
covering p that also satisfies this degree specification, that is dG(v) = m(v) for any
v ∈ V (note that we distinguish between dG(v) and dG({v}): the former counts the
number of loops incident to v, too, so dG(v) = dG({v}) + 2|{loop edges incident to
v}|). Since

∑
v∈X dG(v) ≥ dG(X), a necessary condition of the existence of such a
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graph is that m(X) =
∑

v∈X m(v) ≥ p(X) for any X ⊆ V : let us say that such a
degree-specification is admissible. Introduce the contrapolymatroid

C(p) = {x ∈ RV : x(Z) ≥ p(Z) ∀Z ⊆ V, x ≥ 0}.

Let m ∈ C(p) ∩ ZV (i.e. an admissible degree-specification). For a node v ∈ V we
say that v is positive if m(v) > 0, and neutral otherwise. The set of positive nodes
will be denoted by V +. Assume u, v ∈ V + are two positive nodes (possibly u = v,
but then m(u) ≥ 2 is assumed). The operation splitting-off (at u and v) is the
following: let

m′ = m− χ{u} − χ{v} and p′ = p− d(V,{(uv)}). (1)

If m′(X) ≥ p′(X) for any X ⊆ V (i.e. m′ ∈ C(p′)) then we say that the splitting off
is admissible. Clearly, splitting off at u and v is admissible if and only if there is no
dangerous set X containing both u and v (a set X is dangerous if m(X)− p(X) ≤ 1
and it is called tight if m(X) − p(X) = 0). We will also say that such a dangerous
set X blocks the splitting at u and v, or simply that X blocks u and v.

The following lemma was proved in [3] under more general circumstances: for com-
pleteness we include a proof of this special case.

Lemma 1. Let p : 2V → Z be a symmetric, positively crossing supermodular function
and m ∈ C(p) ∩ ZV . If p(X) > 1 for some X ⊆ V then there is an admissible
splitting-off.

Proof. Let Mp = max{p(X) : X ⊆ V }, which is by assumption at least 2. Let Y
be a minimal set satisfying p(Y ) = Mp. By symmetry, p(V − Y ) = Mp, too, so we
can choose a minimal set Z ⊆ V − Y satisfying p(Z) = Mp. Since Mp ≥ 1 we can
choose y ∈ Y, z ∈ Z with m(y),m(z) > 0. We claim that the splitting at y and z is
admissible. Assume not and consider a dangerous set X containing y and z. Since
m(X − Y ) ≤ m(X)−m(y) ≤ m(X)− 1 and p(Y −X) < Mp by the minimality of Y ,
X and Y cannot satisfy (−) , since that would mean m(X)−1+Mp ≤ p(X)+p(Y ) ≤
p(X − Y ) + p(Y − X) < m(X − Y ) + Mp ≤ m(X) − 1 + Mp, a contradiction. So
Y ⊆ X must hold. Similarly, Z ⊆ X holds, too. But then m(X) ≥ m(Y ) +m(Z) ≥
p(Y ) + p(Z) = 2Mp contradicting m(X) ≤ p(X) + 1 ≤Mp + 1.

A consequence of this lemma is the following: assume p : 2V → Z is a function as
in the statement of the lemma and m ∈ C(p) ∩ ZV , and suppose that there is no
admissible splitting-off. Then any pair u, v ∈ V + is in a dangerous set X: this means
that p(X) = 1 and m(X) = 2, hence m ≤ 1. We can further assume that m(V ) ≥ 4:
then a set X blocking a pair u, v ∈ V + and another set Y blocking a pair w, v ∈ V +

cross each other, meaning that p(X ∩ Y ) = 1, in other words every v ∈ V + is in a
tight set. Let T1, T2 be two tight sets containing v ∈ V +: then of course (T1∩T2 and)
T1 ∪ T2 is also a tight sets containing v ∈ V +, thus there exists a unique maximal
tight set T containing v ∈ V +. The following lemma shows an important fact about
these maximal tight sets.

Lemma 2. Let p : 2V → Z be a symmetric, positively crossing supermodular function
and m ∈ C(p) ∩ ZV . Assume that there does not exist an admissible splitting-off and
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m(V ) ≥ 4. Let V + = {v1, v2, . . . , vk} and Vi be the maximal tight set containing vi

for any i ∈ {1, 2, . . . , k}. Then

(i) the set blocking vi and vj is Vi ∪ Vj for any i, j ∈ {1, 2, . . . , k},

(ii) p(∪i∈IVi) = 1 for any nonempty I ( {1, 2, . . . , k},

(iii) the sets V1, V2, . . . , Vk form a partition of V ,

(iv) furthermore a set X ⊆ V having p(X) = 1 cannot cross any of the sets {Vi :
i = 1, 2, . . . , k}.

Proof. The sets that we consider will always have positive p value, so we can use
(∩∪) and (−) if two of them cross. Let i, j be two different indices between 1 and
k. It is straightforward that Vi and Vj have to be disjoint (otherwise p(Vi ∩ Vj) = 1
would follow from (∩∪) ). Similarly, a set X blocking vi and vj must contain Vi

(and Vj), otherwise p(Vi − X) = 1 would follow from (−) . On the other hand, if
l ∈ {1, 2, . . . , k} is different from i and j and Y is a set blocking vi and vl then (∩∪)
implies that X ∩ Y = Vi (since it is tight) and (−) implies that X − Y = Vj (since it
is tight again).

Now a simple induction on |I| shows that p(∪i∈IVi) = 1 for any nonempty I (
{1, 2, . . . , k}. The case |I| ≤ 2 is clear, so assume I = I ′ + j where i ∈ I ′ ( I (
{1, 2, . . . , k}. Let X = ∪i∈I′Vi and Y = Vi ∪ Vj. The conditions imply that X and
Y cross and p(X) and p(Y ) are both positive by the inductive hypothesis. Applying
(∩∪) for X and Y and using p(X ∩ Y ) = 1 gives (ii).

The only thing to be proved to get (iii) is that ∪k
i=1Vi = V : but if this was not the

case then the above induction would also imply that p(∪k
i=1Vi) = 1, which would give

a contradiction, since m(V − ∪k
i=1Vi) = 0 and p(V − ∪k

i=1Vi) = p(∪k
i=1Vi) = 1.

To prove the last statement, assume that X crosses V1. By possibly complementing
X we can assume that m(V1 ∩ X) = 0. But (∩∪) implies that p(V1 ∩ X) = 1, a
contradiction.

Let us introduce another necessary condition for the existence of a graph cov-
ering our function p and satisfying the degree-specification m. A partition X =
{X1, X2, . . . , Xt} of V is called p-full if p(∪i∈IXi) > 0 for any nonempty I ( {1, 2, . . . , t}.
The maximum cardinality of a p-full partition is the dimension of p and is denoted
by dim(p). It is easy to see that any graph covering p must have at least dim(p)− 1
edges. The following simple claim due to Benczúr and Frank can be checked easily.

Lemma 3. If p : 2V → Z is a symmetric, positively crossing supermodular function
and {X1, X2, . . . , Xt} is a partition of V satisfying p(X1) = 1 and p(X1 ∪Xi) > 0 for
any i = 1, 2, . . . , t, then this partition is p-full.

However we will need the following, slightly more complicated lemma.

Lemma 4. Let p : 2V → Z be a symmetric, positively crossing supermodular function
and {V1, V2, . . . , Vk} be a partition of V satisfying p(Vi) = 1 for any i = 1, 2, . . . , k
(where k ≥ 4). Let furthermore U1

i , U
2
i , . . . , U

ti
i be a partition of Vi (where ti ≥ 1
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is an integer) for any i = 1, 2, . . . , k such that p(Vi ∪ U l
j) > 0 for any possible i, j, l.

Assume furthermore that p(U1
1 ) = 1. Then the partition U = {U j

i : i = 1, 2, . . . , k and
j = 1, 2, . . . , ti} is p-full.

Proof. Let i ∈ {1, 2, . . . , k} be arbitrary and U ′ ⊆ U such that Vi ∪ (
⋃
U ′) 6= V .

First we prove by induction on |U ′| that p(Vi ∪ (
⋃
U ′)) > 0: the base case |U ′| = 0

is obvious, so let U ∈ U ′ be arbitrary and let U ′′ = U − U , X = Vi ∪ (
⋃
U ′′) and

Y = Vi ∪ U . By the inductive hypothesis, p(X) > 0, and by the assumption in the
lemma, p(Y ) > 0. We can apply (∩∪) for X and Y , and using that p(X ∩ Y ) = 1
gives that p(X ∪ Y ) = p(Vi ∪ (

⋃
U ′)) > 0, as claimed. By the symmetry of p this

implies that p(U1
1 ∪ U l

j) > 0 for any possible j, l. But then we can apply Lemma 3 in
order to finish this proof.

2 Proof of the theorem of Benczúr and Frank
In this note we want to prove the following theorem due to Benczúr and Frank [2].

Theorem 5. Let p0 : 2V → Z be a symmetric, positively crossing supermodular set
function and m0 ∈ C(p0) ∩ ZV with m0(V ) even. There exists a graph G covering p0

with dG(v) = m0(v) for any v ∈ V if and only if m0(V )/2 ≥ dim(p0)− 1.

Proof. The necessity of the conditions is clear: see details in [2]. The proof of the
other direction uses the splitting-off technique. We will give a simple algorithm that
starts with an arbitrarym0 ∈ C(p0)∩ZV (withm0(V ) even) and either finds the graph
in question or shows that the condition m0(V )/2 ≥ dim(p0) − 1 did not hold. The
algorithm goes as follows: perform an arbitrary sequence of admissible splitting-off
steps. Assume that no further admissible splitting-off is possible and let the graph of
the edges split so far be denoted by G, p = p0−dG and m(v) = m0(v)−dG(v) for any
v ∈ V . Ifm(V ) = 0 then we are done, so assume thatm(V ) ≥ 4 (one can simply check
that m(V ) = 2 cannot be the case). Lemmas 1 and 2 show us that m ≤ 1: let the
positive nodes be v1, v2, . . . , vk and V1, V2, . . . , Vk be the partition of V into maximal
tight sets with vi ∈ Vi for any i ∈ {1, 2, . . . , k} (here k = m(V ) is of course even, but
we will not really use this). One simple observation shows that G does not have edges
between two classes Vi and Vj of this partition: if it had, then choosing a third index
l ∈ {1, 2, . . . , k} and using that X = Vi ∪ Vl and Y = Vj ∪ Vl has to satisfy (∩∪) with
equality would give a contradiction (here and later on we will use that the edges of G
strenghten the inequalities (∩∪) and (−) in the following way: if X and Y are crossing
sets with p0(X), p0(Y ) > 0 then p(X)+p(Y ) ≤ p(X∩Y )+p(X∪Y )−2dG(X, Y ), and
similarly for (−) ). It is possible that the splitting-off sequence we have performed
contained some foolish steps and we could have split off more edges by taking some
extra care. Our approach is the following: we try to undo the splitting-off of a single
edge of G which allows us to split-off two edges instead, thus decreasing m(V ).
Interestingly, this step already leads us to our target. Let us give the details.

Pick an edge uv = e ∈ G. The unsplitting operation of e is simply the reverse of
the splitting-off operation: me = m+χ{u}+χ{v}, Ge = G−e and pe = p+d(V,{(uv)}) =
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p0−dGe . Of course, this is always admissible, that is me ∈ C(pe). If vr and vs are two
(distinct) positive nodes then an admissible improvement (at vr, u, v, vs) is the
following operation: m′ = m−χ{vr}−χ{vs}, G′ = G− e+uvr + vvs and p′ = p0− dG′ ,
where m′ ∈ C(p′). Observe that the admissible improvement can be considered as
the sequence of unsplitting e followed by two admissible splitting-offs (in any order)
at u, vr and v, vs.

Our aim is to find an edge uv = e of G (spanned by Vi, say) and two positive nodes
vr and vs such that an admissible improvement can be performed. Let us investigate
the obstacles of an admissible improvement. First note that r = i is not a good choice,
since p(Vi ∪ Vs) = 1; s = i is not good, either, so vr and vs are both distinct from
vi. Now since p ≤ 1 implies that pe ≤ 2, we only have to worry about sets X having
p(X) ≥ 0. Since we have seen in Lemma 2 that sets with p-value 1 are quite rare, one
can check that they will not obstruct the simple improvement, if vr and vs are both
distinct from vi (note that m(V ) ≥ 4). A set X ⊆ V having p(X) = 0 obstructs
the admissible improvement at vr, u, v, vs if and only if it is entered by the edge
uv, u, vr ∈ X or v, vs ∈ X and m(X) = 1. Let us describe such sets: assume that
0 = p(X) = m(X) − 1, vr, u ∈ X but v /∈ X: note that such a set has p0(X) > 0.
First of all, using (∩∪) for X and Vi gives that p(X ∪ Vi) = 1, i.e. X − Vi = Vr.
The next simple observation is the following: if such a set X exists then there is no
set Y having 0 = p(Y ) = m(Y ) − 1, v, vr ∈ Y but u /∈ Y . Assume indirectly that
both X and Y exist and apply (∩∪) for them: since dG(X, Y ) ≥ 1 this implies that
p(X ∪ Y ) ≥ 1, which is impossible.

Claim 1. If there is a set X such that 0 = p(X) = m(X) − 1, vr, u ∈ X but v /∈ X
(where uv ∈ E(G) is induced by Vi for some i and vr ∈ V + − vi) then there is no
admissible improvement at all at the edge uv, since p(Vj ∪ (X ∩ Vi)) = 0 for
any j 6= i.

Proof. We will use that m(V ) ≥ 4: let i, j, r be the indices of the statement and let
s be a fourth index out of 1, 2, . . . , k. Apply (∩∪) to X and Y = Vr ∪ Vj to get that
p(X ∪ Y ) ≥ 0, but since it cannot be 1 it must be 0. Now apply (−) to X ∪ Y and
Vr ∪ Vs to obtain that p(Vj ∪ (X ∩ Vi)) ≥ 0, but again it cannot be one, so the claim
is proved.

The procedure goes as follows: while there is an admissible improvement, perform
this admissible improvement and decrease m(V ) (observe that an admissible improve-
ment will not create an admissible splitting). Do this until you cannot find any more
admissible improvements: for simplicitiy let us denote the remaining degree specifi-
cation again by m, the obtained graph by G and p = p0 − dG. Again, if m(V ) ≤ 3
then we are done, so assume that m(V ) ≥ 4. We will now show how to obtain a
p0-full partition of size greater than m0(V )/2 + 1, which finishes the proof of the
theorem. Furthermore this partition will be of size m(V ) + |E(G)|, which shows that
the dimension of p0 is not greater than this, since adding a spanning tree on V + to G
covers p0 and has size m(V ) + |E(G)| − 1. To this end let us describe the structure
of the obstacles of further admissible improvements. Let again uv = e be an edge of
G (spanned by Vi): since for any j 6= i the same endpoint of this edge is contained in
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an obstacle for vj and e, this is best denoted by defining an orientation ~G of G in the
following way: if an obstacle for vj and e contains u then e is oriented from v to u. Let
vr and vs be two positive nodes and consider the sets X (Y ) obstructing e and vr (e
and vs, resp.). Applying (−) for X and Y (and p) gives that p(X−Y ) = p(Y −X) = 1
and dG(X, Y ) = 1 (it is positive by the edge e). This further implies that X−Y = Vr

and Y −X = Vs, so Xe = X ∩ Vi = Y ∩ Vi is uniquely defined (it does not depend on
the choice of r) and the obstacle X for vr and ~vu ∈ ~G is equal to Xe ∪Vr (so it is also
unique in the sense that if u, vr ∈ X, v /∈ X, p(X) = m(X)− 1 = 0 for some X ⊆ V
then X = Xe ∪ Vr). We will also use the notation X ~vu for Xe to emphasize that ~vu
enters Xe.

Another very important consequence of dG(X, Y ) = 1: G cannot contain a cycle.
So ~G consists of directed trees: next we show that these are in fact arborescences
(out-trees). This will follow from the following claim.

Claim 2. Let ~x1y1, ~x2y2 be two (distinct) arcs of ~G spanned by Vi (where any two of
this four nodes may coincide). Then Xx1y1 and Xx2y2 are either disjoint or one of
them contains the other.

Proof. Assume the contrary and consider two positive nodes vr and vs (distinct from
vi). Apply (−) for X = Vr ∪ Xx1y1 and Y = Vs ∪ Xx2y2 and in each of the cases
suggested by the position of the two arcs ~x1y1 and ~x2y2 you get a contradiction.

This claim shows that the sets {Xe : e ∈ G} form a laminar family (as suggested
by the arborescences: it is known that an arborescence naturally defines a laminar
family). For any e ∈ G we define the set Ye = Xe−∪f⊆XeXf : observe that Ye 6= ∅ since
the head of ~e is in Ye. Moreover, for any i = 1, 2, . . . , k we define Ui = Vi − ∪f⊆Vi

Xf ,
which is again not empty, since vi ∈ Ui. So the family {Ye : e ∈ G} ∪ {Ui : i =
1, 2, . . . , k} form a partition: the following claim almost implies that it is a p0-full
partition.

Claim 3. For any distinct i, j ∈ 1, 2, . . . , k and ~xy ∈ ~G induced by Vi one has p0(Vj ∪
Yxy) = 1.

Proof. The claim follows from the following induction: let i, j ∈ 1, 2, . . . , k and ~xy ∈ ~G
as in the claim and let x1y1, x2y2, . . . xlyl be some edges induced by Xxy such that
there is no p, q ∈ {1, 2, . . . , l} with xpyp ⊆ Xxqyq . Let Z = Xxy−∪l

h=1Xxhyh
: note that

dG(Z) = l+1, since all the arcs ~x1y1, ~x2y2, . . . ~xlyl leave Z and ~xy enters Z and no other
edge enters Z (note that in the interesting case the edges x1y1, x2y2, . . . xlyl are either
successors of xy or edges going out of some of the roots of the arborescences induced
by Xxy). Then we claim that p(Vj ∪ Z) = −l, i.e. p0(Vj ∪ Z) = 1. We prove this by
induction on l: the l = 0 case is obvious, so let l ≥ 1. Let Z ′ = Xxy − ∪l−1

h=1Xxhyh
.

Let vr be a positive node distinct from vi and vj and let e = xlyl. Apply (−) for
Vj ∪Z ′ and Vr ∪Xe (and p) to get that p(Vj ∪Z) ≥ p(Vj ∪Z ′) + p(Vr ∪Xe)− p(Vr) =
−(l−1)+0−1 = −l (observe that the sets in question have positive p0 value, indeed).
On the other hand, using (−) again for Vj∪Z and Vr∪Z gives the opposite inequality
(using that the choice of j was arbitrary, so we also have that p(Vr ∪ Z) ≥ −l):
p(Vj ∪ Z) + p(Vr ∪ Z) ≤ p(Vj) + p(Vr)− 2dG(Z, Vi − Z) = −2l.
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The same argument proves that p0(Vj ∪ Ui) = 1 for any distinct i, j ∈ 1, 2, . . . , k.
One can simply check that p0(Xe) = 1 for any e ∈ G (apply (∩∪) for Vi ∪ Xe and
Vj ∪ Xe and p, where i, j ∈ {1, 2, . . . , k} and e ∈ G − Vi − Vj), which implies that
p0(Ye) = 1 for some e ∈ G (if Xf = Yf ). Applying Lemma 4 shows that the family
{Ye : e ∈ G}∪{Ui : i = 1, 2, . . . , k} is a p0-full a partition of size m(V )+ |E(G)|. This
finishes the proof of the theorem.

The proof above clearly proves the following deficient form of Theorem 5 of Benczúr
and Frank.

Theorem 6. Let p0 : 2V → Z be a symmetric, positively crossing supermodular set
function and m0 ∈ C(p0) ∩ ZV with m0(V ) even. If m0(V )/2 < dim(p0) − 1 then
the longest admissible splitting sequence consists of m0(V )− dim(p0) splitting-offs. If
m0(V )/2 ≥ dim(p0)− 1 then there exists a complete admissible splitting-off.

Proof. Consider an arbitrary running of the algorithm sketched above. If it gets stuck
with remaining degree specification m and graph G, then we have seen that m(V ) +
|E(G)| = dim(p0). Since m(V ) + 2|E(G)| = m0(V ), this shows that (after arbitrary
choices in the algorithm) |E(G)| = m0(V ) − dim(p0). Since a longest admissible
splitting sequence is clearly a valid running of the algorithm (there cannot exist an
admissible improvement after a longest splitting sequence), this finishes the proof.

Using standard methods (detailed for example in [1]) one can prove the following
version of Theorem 5.

Theorem 7 (Benczúr and Frank [2]). Let p : 2V → Z be a symmetric, positively
crossing supermodular set function. The minimum number of graph edges covering p
is equal to the maximum of the following two quantities:

max{d1
2

∑
X∈X

p(X)e : X is a subpartition of V }, (2)

dim(p)− 1. (3)

We mention that the algorithm given in this paper can be implemented to run in
polynomial time only if the function p : 2V → Z (given with a function evaluation
oracle) is not only positively crossing supermodular, but it is crossing supermod-
ular. The example p(X) = 1 if X = X0 or X = V − X0 for some fixed X0 (and 0
otherwise) shows that for the class of positively crossing supermodular functions we
need exponentially many oracle calls just to decide whether a given graph (e.g. the
empty graph) covers the function or not.
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