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Stable roommates with free edges

Kataŕına Cechlárová? and Tamás Fleiner??

Abstract

In the well-known stable roommates problem we have given a graph with
preferences on the stars and we are looking for a matching that is not blocked by
a nonmatching edge. There are well-known algorithms to find such a matching
or to conclude that no such matching exists. Here we consider a relaxed problem
motivated by kidney exchanges, where not all edges of the graph can block a
matching. We show that this problem is NP-complete and apply the result to
give an alternative proof of an NP-completeness result of Ronn.

Keywords: stable marriages; stable roommates problem; NP-completeness;
polynomial reduction

1 Introduction

In the stable marriage problem of Gale and Shapley [4], there are n men and n

women and each person ranks the members of the opposite gender by an arbitrary,
strict preference order. A marriage scheme in this model is a set of marriages between
different men and women. Such a scheme is unstable if there exists a blocking pair,
that is, a man m and a woman w in such a way that m is either unmarried or m

prefers w to his wife, and at the same time, w is either unmarried or prefers m to her
partner. A marriage scheme is stable if it is not unstable, and a natural problem is
finding a stable marriage scheme if it exists at all.

Nowadays, it is already folklore that for any preference rankings of the n men and
n women, a stable marriage scheme exists. This theorem was proved first by Gale and
Shapley in [4]. They constructed a special stable marriage scheme with the help of a
finite procedure, the so-called deferred acceptance algorithm. It also turned out that
for the existence of a stable scheme it is not necessary that the number of men is the
same as the number of women or that for each person, all members of the opposite
group are acceptable.
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The notion of a stable marriage scheme relies on the two-sidedness of the “marriage
market”. But in fact there is no mathematical reason to restrict ourselves to a model
where certain agents cannot “marry” one another. The stable roommates problem
is the generalization along these lines. Let G = (V, E) be a graph and for each
vertex v of G let <v be a linear order on the set E(v) of edges incident with v. If
O := {<v: v ∈ V } denotes the set of these then (G,O) is called a preference system.
If in a preference system (G,O), e <v f holds for some edges e, f and vertex v then
we say that v prefers e to f and e dominates f . A matching of a graph G is a set of
disjoint edges of G. If (G,O) is a preference system and M is a matching of G then
M is stable if every edge of E \ M is dominated by some other edge of M . If M is a
matching and edge e 6∈ M is not dominated by M then we say that M is blocked by
e. The stable roommates problem is finding a stable matching in a given preference
system (G,O). It is easy to see that in a preference system (G,O), a stable matching
might not exist. The first efficient algorithm to solve the stable roommates problem
is due to Irving [6].

In the stable roommates problem, ordinary edges between two agents have two
different features: on one hand, an edge can dominate other edges by being present
in a matching, and on the other hand it may block a matching. A possible way to
generalize the stable roommates problem is to allow edges to have only one of these
properties. That is, we call an edge forbidden if it may block a matching, but it cannot
be present in the stable matching that we look for. So the presence of a forbidden
edge reduces the chance to find a stable matching. A free edge is the opposite: we
may use it in a stable matching, but it never blocks. Clearly, the presence of a free
edge improves our chance to find a stable matching.

It turned out that the stable roommates problem with forbidden edges is tractable
and there exists an efficient algorithm to find a stable matching in a preference system
if some edges are forbidden. The first such result is due to Dias et al. for the bipartite
case [2]. Fleiner et al. extended this result to nonbipartite preference systems, where
one may allow indifferences in the preferences [3].

Our main result concerns the presence of free edges. We shall show that the stable
roommates problem with free edges is NP-complete. We apply our result to give an
alternative proof for another NP-completeness result by Ronn [7].

The motivation of the present work is kidney exchanges, a method to boost the
number of kidney transplantations that recently became popular in some countries. In
one possible model of it, vertices of the underlying graph are the incompatible patient-
donor pairs and there is an edge between pairs A and B if the cross-transplantation
is possible. There is a natural preference on the edges: pair A prefers edge AB to AC

if the kidney of the donor of pair B is more suitable to the patient of pair A than the
kidney of the donor of pair C. A feasible kidney exchange scheme is a matching of this
graph. If we assume that everybody has full information and patients act according to
their preferences then we look for a stable matching in this exchange graph. However,
patients and donors do not have full information so in a more realistic model we assume
that the vertices of the exchange graph are partitioned along transplant centers that
have full information. So a stable kidney exchange scheme is an exchange scheme
where no edge within a transplant center is blocking, or, in other words a stable
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matching where all edges between transplant centers are free. Péter Biró [1] asked
the complexity of this problem. Rob Irving [5] proposed the “inverse” of this, where
free edges are the ones that spanned by the partition sets.

2 Main result

By the definition, if we declare an ordinary edge free then all stable matchings remain
stable and some new stable matchings may emerge, hence we have more chance to find
one. Forbidding an ordinary edge may kill some stable matchings but never creates a
new one, so it reduces our chance to find one. For the decision problem the opposite
holds: it is known that the problem with forbidden edges is tractable and we shall
show that the presence of free edges makes it hard.

Theorem 2.1. For a preference system (G,O) and subset F ⊆ E(G) of free edges
it is NP-complete to decide the existence of a stable matching. The problem is NP-
complete already in each of the following cases. (1) F consists of disjoint edges. (2)
F is the set of those edges that connect different Vi’s and (3) F is the set of those
edges that is spanned by some Vi, where V1 ∪V2 ∪ . . .∪Vk is a partition of the vertices
of G.

Sketch of the proof. We show a polynomial reduction of the 3-SAT problem to the the
stable roommates problem with free edges. For this reason, we have to construct in
polynomial time for each 3-CNF boolean formula Φ a preference system (G,O) and
set of free edges such that Φ is satisfiable if and only if there is a matching in (G,O)
that can be blocked only by free edges.

For each variable x of Φ, let us define ver-
tices ax, bx, cx, x and x̄, edges axbx, bxcx, cxax

free edges axx and axx̄. These latter edges
are first choices of x and x̄ respectively, the
preference order of ax is axx, axx̄, axbx, axcx, bx

prefers bxcx to bxax and cx prefers cxax to cxbx.
For each clause C we have vertices Ci and C

j
i

for i = 1, 2, 3, j = 1, 2 and Cl, for each literal
l in C. Construct free edges ClCi that are the
ith choices of Cl for i = 1, 2 and ClC3 is the
very last choice of Cl. For each Ci, the edges
CiCl are the first three choices in an arbitrary
order.
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C = x̄ ∨ y ∨ z

For i = 1, 2, 3, add all edges between Ci, C
1

i and C2

i such that these edges are
ordinary and preferences along these triangles are cyclic. To finish the construction
of G, for each literal l in some clause C, connect vertex l with Cl. All nonspecified
preferences are arbitrary. The figure shows the part of G corresponding to clause
C = x̄ ∨ y ∨ z and variables x, y and z. It is easy to see that if there is a truth
assigment to Φ then there is a matching in G that is not blocked by ordinary edges.
For this, we choose edges xax for each true variable and edges x̄ax for each false one,
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all edges bxcx and C1

i C2

i . It is straightforward to complete this matching it to one we
need.

If there is a matching M that is not blocked by an ordinary edge then for each
variable x, exactly one of axx and axx̄ is present in M , as otherwise M would contain
a stable matching of triangle axbxcx that does not exist. Similarly, each vertex Ci

is covered by a free edge of M as otherwise M would contain a stable matching of
triangle CiC

1

i C
2

i , which is impossible. This means that M contains no edge lCl.
If axx ∈ M then declare x true, otherwise (when axx̄ ∈ M) let x be false. We

prove that this is a truth assigment of Φ, that is, each clause has a true literal. If C

is a clause then there is an edge C3Cl of M . As lCl cannot block this means that l is
covered by a free edge, hence l is a true literal in C. This follows that Φ has a truth
assignment.

Let V (Φ) and C(Φ) denote the set of variables and clauses of Φ. Define
Va := {ax, x, x̄ : x ∈ V (Φ)}, Vb := {bx : x ∈ V (Φ)}, Vc := {cx : x ∈ V (Φ)},
V0 := {Cl, Ci : C ∈ C(Φ), i = 1, 2, 3 and l is a literal of C},
V1 := {C1

i : C ∈ C(Φ), i = 1, 2, 3} and V2 := {C2

i : C ∈ C(Φ), i = 1, 2, 3}, moreover
let

V (1) := {ax, bx, cx : x ∈ V (Φ)}, V (2) := {x, x̄, Cx, Cx̄ : x ∈ V (Φ)} and
V (3) := {C1, C

1

1
, C2

1
: C ∈ C(Φ)}.

Observe that V (G) = (Va∪V1)∪(Vb∪V0)∪(Vc∪V2) = (V (1)∪V (3))∪V (2) are two
partitions of the vertices of G into 3 and 2 parts such that set F of free edges have the
property described in (3) and (2), respectively. This proves (2) and (3). Note that
if we can partiton the vertices into 2 parts such that no free edge connect the parts
then there always exists a stable matching and the deferred acceptance algorithm of
Gale and Shapley finds it.

To show the Theorem in case (1), we construct for each
stable roommates problem with free edges an equivalent
problem one where free edges are disjoint.
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To achieve this, it is enough to substitute each free edge with a little graph shown
on the figure. That is, we delete each free edge e = uv, we add new vertices ue and
ve, edges uue, vve, and two parallel copies of ueve and an extra free edge ueve that
is first choice for both ue and ve. Preferences along u is unchanged, where edge e is
substitued by uue. The first choice of ue is the free edge, the second is a parallel copy
of ueve that will be the last choice of ve. The third choice is ueu and the last one is
the second choice of ve. After the changes we get a new preference system where all
free edges are disjoint. Moreover, there is a matching that is not blocked by ordinary
edges in (G,O) if and only if there is one after the construction.

In both the stable marriage and the stable roommates problems, strict (linear)
preferences of the participating agents play a crucial role. However, in many practical
situations, one has to deal with indifferences in the preference orders. A natural
model for this is that preference orders are partial (rather than linear) orders. One
can extend the notion of a stable matching to this model in at least three different
ways. One possibility is that a matching is weakly stable if no pair of agents a, b exists
such that they mutually strictly prefer one another to their eventual partner. Ronn
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proved that deciding the existence of a weakly stable matching is NP-complete [7].
Based on Theorem 2.1, there is an alternative proof.

Theorem 2.2 (see Ronn [7]). It is NP-complete to decide the existence of a weakly
stable matching in the stable roommates problem where each vertex has a weak linear
preference order on the incident edges with at most two edges in tie.

Sketch of the proof. Construct graph G′ the following way. Substitute each free edge
of G with a path of three edges with three parallel copies of the middle edge. Keep
the preferences of the original vertices. At the new vertices the unique first choices is
one of the parallel copies, the other ends of the first choices are last choices and the
remaining two edges are tied and second choices. (See the figure.)
It is easy to check that there there is a matching of G not
blocked by any ordinary edge if and only if there is a weakly
stable matching in (G′,O′), where preferences of O′ are the
same as of O at vertices of G and given by the figure at the
new vertices.

i j

2
1 3

13

2 2 j2i

u v

u v

Hence for each instance of the stable roommates problem with free edges, one
can construct in polynomial time an equivalent instance of the problem described in
Theorem 2.2, that is we have a polynomial reduction of the former problem to the
latter. As the former problem is NP-complete by Theorem 2.1, the latter one has this
property as well.
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