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November 2008



EGRES Technical Report No. 2008-14 1

The constructive characterization of
(k, `)-edge-connected digraphs ?

Erika R. Kovács and László A. Végh ??

Abstract

We give a constructive characterization for (k, `)-edge-connected digraphs,
proving a conjecture of Frank and Szegő.

1 Introduction

By constructive characterization of a certain class H of graphs, we mean a set of con-
struction steps and a set of basic instances in H satisfying the following. Every graph
constructed by a sequence of such steps starting from one of the basic instances is in
H and moreover all graphs in H can be obtained this way. For example, a graph is
connected if and only if it can be obtained from a single vertex by adding new edges
between old vertices or adding a new edge between an old and a new vertex. The well-
known ear-decomposition gives a constructive characterization for 2-connected graphs.
A survey on constructive characterizations can be found in [8].

A digraph is called k-edge-connected if deleting any k − 1 edges leaves it strongly
connected. By Menger’s well-known theorem, this is equivalent to the property that
there are k edge-disjoint paths from any vertex to any other. A classical constructive
characterization is Mader’s theorem for k-edge-connected digraphs.

Theorem 1.1 (Mader [9]). A directed graph is k-edge-connected if and only if it can be
obtained from a single vertex by the iterative application of the following two operations.

(i) add a new edge (possibly a loop),

(ii) subdivide k existing edges and identify the subdividing vertices.
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oratory (CNL) at the Eötvös University, while the second author by the Siemens-ZIB Scholarship
Program.
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Section 1. Introduction 2

Operation (ii) will be called pinching k edges with z. By pinching 0 edges we
simply mean the addition of a new vertex of degree 0.

A digraph G = (V,E) is called (k, `)-edge-connected for some integers 0 ≤ ` ≤ k,
if G has a root vertex s and for each vertex z 6= s, there exist k edge disjoint sz paths
and ` edge disjoint zs paths. Note that (k, k)-edge-connectivity with arbitrary root
coincides with k-edge-connectivity and (k, 0)-edge-connectivity means by Edmonds’
disjoint arborescences theorem [1] that there are k disjoint spanning arborescences
rooted in s.

A related concept for undirected graphs is the following. An undirected graph is
called (k, `)-partition-connected if for any partition of the vertices into t ≥ 2 classes,
there are at least k(t − 1) + ` edges connecting different classes. Note that (k, 0)-
partition-connectivity is by Tutte’s theorem [10] equivalent to having k disjoint spanning
arborescences. The link between these concepts for directed and undirected graphs is
established by the following theorem:

Theorem 1.2 (Frank, [2]). For integers 0 ≤ ` ≤ k, an undirected graph G has a
(k, `)-edge-connected orientation if and only if G is (k, `)-partition connected.

The following theorem is the main result of the paper. It was conjectured by Frank
and Szegő ([6], Conjecture 5.6.):

Theorem 1.3. For 0 ≤ ` ≤ k − 1, a directed graph is (k, `)-edge-connected if and only
if it can be built up from the single vertex s by the following two operations.

(i) add a new edge,

(ii) for some i with ` ≤ i ≤ k− 1, pinch i existing edges with a new vertex z, and add
k − i new edges from old vertices to z.

Using Theorem 1.2, the following undirected counterpart is a straightforward conse-
quence.

Corollary 1.4. For 0 ≤ ` ≤ k − 1, an undirected graph is (k, `)-partition-connected if
and only if it can be built up from the single vertex s by the following two operations.

(i) add a new edge,

(ii) for some i with ` ≤ i ≤ k− 1, pinch i existing edges with a new vertex z, and add
k − i new edges between z and some old vertices.

The special case of Theorem 1.3 for ` = 0 was shown by Frank [3] and for ` = 0 by
Frank and Szegő [6], while for ` = k−1 it was proved by Frank and Király in [5]. In all
cases of this theorem and as well in Theorem 1.1, it is straightforward that all graphs
constructed by operations (i) and (ii) are (k, `)-edge-connected, so the nontrivial part
is the reverse direction. The reverse operation of (i) is deleting an edge, thus we may
focus our attention to minimally (k, `)-edge-connected graphs in the sense that deleting
any edge would destroy (k, `)-edge-connectivity.

An exceedingly important tool is Mader’s splitting off theorem. In a digraph G =
(V,E), we mean by splitting off two edges e = xz, f = zy the operation of deleting e
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and f and adding the new edge xy. Let ρ(X) = ρG(X) = ρE(X) and δ(X) = δG(X) =
δE(X) denote the in- and out-degrees of the set X, respectively. Let ρ(z) and δ(z)
denote the in- and out degrees of the vertex z. If ρ(z) = δ(z), we mean by a complete
splitting at z a sequence of splitting off operations of all edges incident to z and finally
removing z. We say that a digraph G = (U + z, E) is k-edge-connected in U if there
exist k-edge-disjoint paths between every two vertices in U (the paths may possibly use
z).

Theorem 1.5 (Mader). Let G = (U + z, E) be a digraph k-edge-connected in U and
ρ(z) = δ(z). Then there exists a complete splitting at z resulting in a k-edge-connected
graph.

Theorem 1.5 may be used to prove Theorem 1.1. For the nontrivial direction it
is enough to find a vertex z in a minimally k-edge-connected graph having both in-
and out-degree k. An easy consequence of this theorem can be used to derive the
constructive characterization of (k, 0)-edge-connected graphs. However, for the cases
` = 1 and ` = k − 1 a nontrivial generalization of Mader’s theorem is needed, which is
due to Frank. We say that the digraph G = (U + z, E) is (k, `)-edge-connected in U
for a root node s ∈ U , if for every vertex x ∈ U there are k-edge-disjoint paths from s
to x and ` paths from x to s.

Theorem 1.6 (Frank, [4]). Let G = (U + z, E) be a digraph (k, `)-edge-connected in U
and ρ(z) = δ(z). Then there exists a complete splitting at z resulting in a (k, `)-edge-
connected graph.

The reason why the proof is more difficult in case of ` = 1 and ` = k − 1 than for is
` = 0 and ` = k is due to the following reason. In the latter cases it was enough to find
a vertex satisfying certain conditions for the in- and outdegrees, and one could always
perform a complete splitting at such a vertex. However, for ` = 1 and ` = k − 1 the
conditions for the degrees do not suffice and a more thorough analysis of the structure
of minimal (k, `)-edge-connected graphs is needed.

To give some motivation of our proof, we sketch the proof for ` = k − 1 by Frank
and Király [5]. Consider a minimally (k, k − 1)-edge-connected graph. The reverse
operation of (ii) may be applied at a vertex z with in-degree k and out-degree k − 1.
We call such vertices special. If for a special vertex z we manage to find an edge uz
so that G − uz is (k, k − 1)-edge-connected in U = V − z, then Theorem 1.6 may be
applied to G′ = (U + z, E − uz) giving a (k, k − 1)-edge-connected graph G′′ on U .
Then we can get G from G′′ by by applying step (ii) with pinching those k − 1 edges
with z which were resulted by the splitting off and finally adding the edge uz.

However, not every special vertex z admits an edge uz as above (and it is already
nontrivial to find a special vertex). The proof uses an indirect argument: assume that
every edge in xy ∈ E satisfies one of the following conditions. On the one hand, if y is
special, then we assume that G− xy is not (k, k− 1)-edge-connected in V − y. On the
other hand, if y is not special, we use that G is minimally (k, k − 1)-edge-connected,
thus G − xy is not (k, k − 1)-edge-connected. One can define a notion of tight sets so
that each edge will be “blocked” by a tight set. Then the uncrossing method may be
used for these tight sets to derive a final contradiction.
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Section 1. Introduction 4

Our proof is motivated by this argument, but for general `, severe new difficulties
arise. Starting from a minimally (k, `)-edge-connected digraph, we call a vertex z
special if according to its in- and out-degree it might be the result of operation (ii) in
Theorem 1.3, that is, if ` ≤ δ(z) ≤ k−1 and ρ(z) = k. We say that a subset F of edges
entering a special vertex z is locally admissible at z, if G−F is (k, `)-edge-connected
in V −z. F is called sufficient at z if |F | = k−δ(z). Once a sufficient locally admissible
F is found, Theorem 1.6 may be applied to G− F and z and the proof finishes as for
` = k − 1.

Thus our aim is to find a special vertex z and a sufficient locally admissible set F
at z. It is easy to characterize the maximal size of a locally admissible set for a given
special z, however, this size may be strictly smaller than k−δ(z). The main difficulty is
how to handle together the locally admissible sets belonging to different special vertices.
The notion of globally admissible edge sets in Definition 2.3 is introduced for this
purpose.1 For a globally admissible edge set and an arbitrary special vertex z, the subset
Fz ⊆ F of edges entering z is locally admissible at z. However, the converse is not true
in the sense that the union of locally admissible edge sets belonging to different special
vertices will not be necessarily globally admissible. We say that a globally admissible
edge set F is sufficient, if for some special z, Fz is sufficient; otherwise it is called
insufficient. What we prove is the existence of a sufficient globally admissible edge
set. Unfortunately, it is not true that every maximal globally admissible set is sufficient,
as it will be shown by an example in Section 6.

Among other methods, splitting off techniques will be used also in the proof of the
existence of a sufficient globally admissible set. However, Theorem 1.6 turns out to be
too weak for our aims. Actually, Theorem 1.6 is a special case of an abstract theorem
of Frank [4] for covering positively crossing supermodular functions by a digraph. This
theorem is presented in Section 4 where we formulate a generalization which will enable
us the usage of a complete splitting operation preserving a property stronger than the
(k, `)-edge-connectivity.

The way we handle tight sets also differs from the standard uncrossing methods. A
set is called tight with respect to a globally admissible set F if the inequality concerning
this set in the definition of global admissibility holds with equality. As in the proof
for ` = k − 1, for a maximal F there is a tight set “blocking” each edge in E − F .
However, it is not possible to apply the uncrossing method to arbitrary tight sets for
an arbitrary globally admissible F . The intersection and union of two tight sets will
be tight only under the assumption that F is maximal and insufficient. It turns out
interestingly that under this assumption, some basic types of tight sets do not occur at
all. This will be discussed in Section 5.

The paper is organized as follows. In Section 2, the precise definitions are given
and some basic properties are exhibited. We also give the proof of Theorem 1.3 here
based on the main technical tool Theorem 2.1. This is a special case of the stronger
Theorem 2.7 also stated in this section, and proved in Section 3 relying on three basic
lemmata. Section 4 describes the general splitting-off theorem and the proof of the
first basic lemma, while Section 5 contains a sequence of technical claims and the

1This highly technical definition is omitted at this point.
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Section 2. Basic concepts and the Proof of Theorem 1.3 5

proof of the other two basic lemmata. Finally, in Section 6 we describe the structure
of locally admissible sets and present a polynomial algorithm for finding a sufficient
locally admissible set F at a special vertex z. We also show an example of an insufficient
maximal globally admissible edge set.

2 Basic concepts and the Proof of Theorem 1.3

Let G = (V,E) be a (k, `)-edge connected directed graph with root s ∈ V . For X ⊆ V ,
let γ(X) = k if s /∈ X and γ(X) = ` if s ∈ X. For two sets X, Y ⊆ V and an edge
set H, by δH(X, Y ) we mean the number of directed edges in the edge set H from
X−Y to Y −X. Let dH(X, Y ) = δH(X, Y )+ δH(Y,X) and d̄H(X, Y ) = dH(X, V −Y ).
Let ∆in

H (X) and ∆out
H (X) denote the set of edges in H entering and leaving the set X,

respectively. Whenever the index H is omitted in these concepts then it corresponds
to the edge set E. X and Y are said to be crossing, if X ∩ Y 6= ∅, X ∪ Y 6= V and
neither of X and Y contains the other. Sometimes we will use x in the sense of {x};
A + x (resp. A − x) will denote A ∪ {x} (resp. A − {x}). For a real number α, let
α+ = max(0, α) denote its positive part.

A vertex v ∈ V is called special, if ρ(v) = k, ` ≤ δ(v) ≤ k− 1. Let S denote the set
of special vertices (S 6= ∅ is not assumed). If X ⊆ S then we say that X is a special
set. Observe that s /∈ S as δ(s) ≥ k. For a z ∈ S, a subset F of edges entering z is
locally admissible at z, if G−F is (k, `)-edge-connected in V −z and |F | ≤ k−δ(z).
A locally admissible F will be called sufficient if |F | = k − δ(z). Theorem 1.3 will be
an easy consequence of the following.

Theorem 2.1. In a minimally (k, `)-edge-connected digraph G = (V,E) there exists a
special vertex z with a sufficient locally admissible set at z.

Let us see how Theorem 1.3 follows from this.

Proof of Theorem 1.3. First let us show that the operations (i) and (ii) preserve (k, `)-
edge-connectivity. This is straightforward in case of (i). For (ii), let G′ = (V + z, E ′)
denote the digraph resulting from the (k, `)-edge-connected digraph G = (V,E) by
applying (ii). For every v ∈ V − s, the k edge-disjoint paths from s to v and the `
edge-disjoint paths from v to s in G naturally give the same number of paths in G′.
Thus the only problem could be if there are too few paths from s to z or from z to s.

In this case, by Menger’s theorem we have a subset X of V + z with s /∈ X, z ∈ X,
and either ρ(X) < k or δ(X) < `. Since G′ is (k, `)-edge-connected in V , the only
possibility is X = {z}. However, ρ(z) = k and δ(z) ≥ ` gives a contradiction.

For the other direction, if G is not minimally (k, `)-edge-connected, then an edge can
be deleted preserving (k, `)-edge-connectivity. Otherwise, Theorem 2.1 is applicable.
Consider the special vertex z and the sufficient locally admissible F . G − F is (k, `)-
edge-connected in V − z and ρ(z) = δ(z), satisfying the conditions of Theorem 1.6. For
the graph G′ resulting by a complete splitting at z, operation (ii) can be applyied to
get G.

The locally admissible edge sets are characterized by the following claim.
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Section 2. Basic concepts and the Proof of Theorem 1.3 6

Claim 2.2. F ⊆ ∆in(z) is locally admissible at z if and only if |F | ≤ k − δ(z) and for
each ∅ 6= X ( V , X 6= {z},

ρE−F (X) ≥ γ(X) (1)

Proof. If F is locally admissible then for X 6= V − z, (1) is the necessary cut condition
as G − F is (k, `)-edge-connected in V − z. If X = V − z then it is equivalent to
δE−F (z) ≥ `, which follows since δF (z) = 0. The converse direction follows by Menger’s
theorem.

It is easy to check in polynomial time whether a set of edges entering z is locally
admissible. Furthermore these edge sets have a nice structure: they form a matroid. A
consequence is that a building sequence can be found in polynomial time for a (k, `)-
edge-connected graph G. These will be shown in Section 6.

Consider now an arbitrary edge set F ⊆ E. Let Fv denote the subset of F entering
vertex v. Let µ(X) = δF (V −S−X,X), and let t(X) = min{δF (V −S−X, v) : v ∈ X}.
A v giving the minimum value in the definition of t(X) is called a seed of X. Let
T (X) = max{ρFv(X) : v ∈ X}, and a v giving the maximum value is called a sprout
of X. Note that a set can have multiple seeds and sprouts.

Definition 2.3. In a digraph G = (V,E) with special vertices S ⊆ V , we say that
F ⊆ E is globally admissible, if

ρ(X) ≥ γ(X) + ρF (X), if X − S 6= ∅, X ( V, (2)

ρ(X) ≥ k + T (X), if X is special,|X| ≥ 2, (3)

ρ(X) ≥ γ(X) + µ(X)− t(X), for every ∅ 6= X ( V, (4)

|Fv| ≤ ρ(v)− δ(v), for every special vertex v and, (5)

Fv = ∅, if v /∈ S. (6)

Note that if X is not special then all vertices in X − S are seeds of X and t(X) = 0,
thus (2) implies (4). For a special set X, we have two conditions. In the right hand
side of (4), we consider only the edges coming from vertices not in S, however, not all
such edges are taken into account. The importance of (3) is clear from the following
claim.

Claim 2.4. If F is globally admissible, then for each v ∈ S, Fv is locally admissible.

Proof. We have to verify (1). If X is not special, then ρE−Fv(X) ≥ ρE−F (X) ≥ γ(X),
by (2). If X is special and |X| ≥ 2, then by (3), ρE−Fv(X) ≥ ρ(X)− T (X) ≥ k.

Claim 2.5. If F is globally admissible in G and F ′ ⊆ F , then F ′ is also globally
admissible in G.

Proof. When removing an edge from F , the right hand sides in (2), (3) and (4) cannot
increase.

EGRES Technical Report No. 2008-14



Section 2. Basic concepts and the Proof of Theorem 1.3 7

F = ∅ is globally admissible if and only if G is (k, `)-edge-connected. By the above
claim, any graph G that admits a globally admissible F is automatically (k, `)-edge
connected.

We say that a globally admissible set F is maximal, if there is no edge uv ∈ E − F
so that F + uv is also globally admissible. A globally admissible F is called sufficient
if (5) holds with equality for at least one special v, otherwise it is called insufficient.

Let us introduce now the various types of tight sets. We say that a set X is tight
with respect to the globally admissible F , if at least one of (2), (3) or (4) holds with
equality for X. A tight set with X − S 6= ∅ is called normal tight. A special tight X
with |X| ≥ 2 satisfying (3) with equality is called T -tight and for a special tight set
for which (4) holds with equality we use the term µ-tight. If s /∈ X then X is called
in-tight and if s ∈ X then V − X is called out-tight. Note that according to these
definitions, an out-tight set is not necessarily tight.

Claim 2.6. If F is globally admissible and for uv ∈ E − F , v ∈ S, F + uv is not
globally admissible, then uv enters a tight set X satisfying one of the followings: (a)
X is a normal tight set, or (b) X is a T -tight set with sprout v, or (c) X is µ-tight,
u ∈ V − S and X has a seed t with t 6= v.

Proof. By the maximality of F , F + uv should violate one of (2), (3) or (4). If none
of them holds with equality for F , then it cannot happen as the right hand sides may
increase by at most 1. Thus uv must enter a tight set X. If X is T -tight and v is
not a sprout of v, then T (X) does not increase by adding uv to F thus (3) will not be
violated for X. Similarly, if X is µ-tight and u ∈ S, then (4) remains unchanged for
F + uv. If u /∈ S but the unique seed of X is v, then for F + uv, both µ(X) and t(X)
increase by 1.

Note that if F is maximal globally admissible, this claim applies for every edge
uv ∈ E − F , v ∈ S.

For technical reasons, we do not prove Theorem 2.1 directly, but a slight generaliza-
tion. In order to state this form, the following notion is needed. A globally admissible
edge set F saturates the graph G if every edge e = uv ∈ E − F with v /∈ S enters a
normal tight set. We are going to prove the following:

Theorem 2.7. Let F0 ⊆ ∆out(s) be an arbitrary globally admissible set of edges in
G = (V,E) so that F0 saturates G. Then there exists a sufficient globally admissible
F ⊇ F0.

The (k, `)-edge-connectivity of G follows by the existence of F0. However, G is not
assumed to be minimal subject to this property. Nevertheless F0 = ∅ is a globally
admissible edge set saturating G if and only if G is a minimally (k, `)-edge-connected
digraph. Thus Theorem 2.1 is a direct consequence of Theorem 2.7. Unfortunately, it
is not true that every maximal globally admissible F ⊇ F0 is sufficient, as shown by a
counterexample in Section 6.

Let uv be an edge entering the tight set X. If v ∈ S and X and uv satisfy one of the
conditions in Claim 2.6 or v /∈ S and X is normal tight, then we say that X blocks
uv.
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Section 3. Proof of Theorem 2.7 8

We conclude this section with some elementary propositions.

Claim 2.8. If X, Y ⊆ V , then

ρ(X) + ρ(Y ) = ρ(X ∩ Y ) + ρ(X ∪ Y ) + d(X, Y ), and (7)

ρ(X) + ρ(Y ) = ρ(X − Y ) + ρ(Y −X) + (ρ(X ∩ Y )− δ(X ∩ Y )) + d̄(X, Y ). (8)

Claim 2.9. For any X, Y ⊆ V ,

γ(X) + γ(Y ) = γ(X ∪ Y ) + γ(X ∩ Y ), and (9)

γ(X) + γ(Y ) ≤ γ(X − Y ) + γ(Y −X). (10)

Claim 2.10. For any X ⊆ V , ρ(X)− δ(X) =
∑

v∈X ρ(v)− δ(v).

Claim 2.11. Assume F is insufficient globally admissible, and Z 6= ∅ is special. Then
δ(Z) < ρE−F (Z).

Proof. For each v ∈ Z, ρ(v)−δ(v) > |Fv|, thus by summing for all v ∈ Z, ρ(Z)−δ(Z) =∑
v∈Z ρ(v) − δ(v) >

∑
v∈Z |Fv|. The right hand side is at least ρF (Z), thus the claim

follows.

Claim 2.12. For G = (U + u,E) with ρ(u) = δ(u), let Gu denote the result of an
(arbitrary) complete splitting at u. Then for an X ( U + u, ρGu(X − u) ≤ ρG(X).

Proof. If u /∈ X, then the claim follows since splitting off a pair of edges incident to
u cannot increase the degree of X = X − u. In the case of u ∈ X, ρGu(X − u) ≤
δG(U −X, u) + δG(U −X,X − u) = ρG(X).

3 Proof of Theorem 2.7

The proof relies on three basic lemmata. First:

Lemma 3.1. Let F0 ⊆ ∆out(s) be an insufficient globally admissible set of edges, and
ρ(u) = δ(u) for some s 6= u ∈ V . There exists a complete splitting at u so that F0 is
globally admissible in the resulting graph.

This will be proved in Section 4, the next two in Section 5.

Lemma 3.2. Assume F ′ is a globally admissible edge set and X is a tight set with
|X| ≥ 2, s /∈ X, |X − S| ≤ 1. Then for any maximal globally admissible F ⊇ F ′, F is
sufficient.

Lemma 3.3. If F is maximal globally admissible with u ∈ S + s for each uv ∈ F , then
F is sufficient.

Let us now turn to the proof of Theorem 2.7. Consider a counterexample G = (V,E)
and F0 so that |V | is minimal, and subject to this, |F0| is maximal. Consider a maximal
globally admissible F ⊇ F0. By the assumption, F is insufficient.
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Case I

Assume there is a u ∈ V with ρ(u) = δ(u) = k. By Lemma 3.1, there is a complete
splitting at u so that F0 is globally admissible in the resulting graph Gu = (V − u,E ′).

Claim 3.4. F0 saturates Gu.

Proof. The set of special vertices is the same S in G and Gu. Consider an edge e = yz in
Gu with z /∈ S. Assume first that e was an edge in G as well. There is a normal tight set
X ⊆ V blocking e in G, since F0 saturated G. Claim 2.12 implies ρGu(X−u) ≤ ρG(X).
X − u is also normal and as the subset of F0 entering X − u in Gu is the same as the
subset in G entering X, it follows that X − u blocks e in Gu.

If e = yz is a new edge then take a set X that blocked uz in G. X is again a normal
tight set in Gu. Note that y /∈ X otherwise the in-degree of X would be smaller in
Gu than in G while the value of ρF0(X) does not change. Hence X blocks e in Gu,
completing the proof.

As Gu has less vertices than G, by the minimality of |V | there exists a special vertex
w and a sufficient locally admissible edge set Fw so that F ′ = Fw ∪ F0 is globally
admissible. Note that w is special in G as well.

From Gu we can get to G by pinching the k splitted edges with u. By abuse of
notation, we will denote by Fw the edge set in G corresponding to Fw in Gu in the
sense that if an edge xw ∈ Fw has been divided by u, then we replace xw by uw in
Fw. We will also use F ′ in this sense in G. Unfortunately, it might happen that F ′

is not globally admissible in G. Consider a globally admissible F1 maximal subject to
the condition F0 ⊆ F1 ⊆ F ′ with |F1| as large as possible. If F1 = F0 ∪ Fw then F1

is sufficient as δG(w) = δGu(w) Otherwise, we are going to prove that there is a tight
set Z for F1 with |Z − S| ≤ 1 so Lemma 3.2 is applicable giving a sufficient globally
admissible superset of F1.

Assume Fw − F1 6= ∅, and consider an edge zw ∈ Fw − F1. By Claim 2.6, zw is
blocked by some tight set Z with respect to F1.

Claim 3.5. Z ⊆ S ∪ {u}

Proof. Z = V − u is impossible as δF1(u) < |Fw| ≤ k − `, thus ρE−F1(V − u) > `.
Assume we have V − Z − u 6= ∅ and Z − S − u 6= ∅. As F ′ is admissible in Gu and
Z−u is not special, ρGu,E′−F ′(Z−u) ≥ γ(Z) follows. Claim 2.12 for (V,E−F ′) implies
ρG,E−F ′(Z) ≥ ρGu,E′−F ′(Z−u). However, ρE−F1(Z) > ρE−F ′(Z) ≥ γ(Z) as zw ∈ F1−F
enters Z, showing that Z cannot be tight. This implies the claim.

Case II

Assume Case I does not hold and there is an edge uv ∈ F with u ∈ V − S − s. Let
G1 = (V,E − uv + sv), F1 = F0 + sv.

Claim 3.6. F1 is globally admissible in G1 and saturates it.
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Section 4. Splitting off 10

Proof. If |{u, s} ∩ X| 6= 1 then no term changes in the conditions (2), (3) and (4) for
X. This is in fact always the case for (3). If u ∈ X, s /∈ X, then in (2) and (4), both
sides increase by one, while if u /∈ X, s ∈ X, both sides decrease by one. (Note that
t(X) = 0 in both cases as X − S 6= ∅.)

This implies the admissibility and that all tight sets remain the same. Thus if an
edge uv ∈ E − F with v /∈ S was blocked by a normal tight set for F0 in G, then the
same blocks it in G1, proving the saturation.

By the choice of G and F0, there is a sufficient edge set F ′ ⊇ F1 in G1 with |F ′w| =
k− δG1(w) for some w special vertex in G1. All vertices but u and s have the same in-
and out-degrees in G and G1, thus w is special in G unless w = u and ρ(w) = δ(w) = k.
Having excluded Case I, this cannot happen.

Let F ′′ = F ′ − sv + uv. As in the previous claim, it is straightforward to show that
F ′′ is globally admissible in G containing F0.

Case III.

For all edges in uv ∈ F , u ∈ S + s. Now the conditions of Lemma 3.3 are satisfied,
showing that F is sufficient.

4 Splitting off

A set function X : 2V → R+ is called positively crossing supermodular, if for crossing
X and Y with p(X) > 0, p(Y ) > 0,

p(X) + p(Y ) ≤ p(X ∪ Y ) + p(X ∩ Y ).

Frank has formulated the following theorem as an abstract generalization of Mader’s
splitting off theorem:

Theorem 4.1 (Frank, [4]). Let U be a ground-set, mi and mo two non-negative integer
valued functions on U with mi(U) = mo(U). Let p be a non-negative, integer valued
positively crossing supermodular set function on U with p(∅) = p(U) = 0. Then there
exists a digraph H = (U,A) for which

ρH(X) ≥ p(X) for every X ⊆ V (11)

and
ρH(v) = mi(v), δH(v) = mo(v) for every v ∈ V (12)

if and only if

mi(X) ≥ p(X) for every X ⊆ U and (13)

mo(U −X) ≥ p(X) for every X ⊆ U. (14)
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Theorem 1.6 is a straightforward consequence: for a graph G = (U + z, E) which is
(k, `)-edge connected in U with root node s ∈ U , let E ′ denote the set of edges induced
by U . For v ∈ U , let mo(v) = δE(v, z) and mi(v) = δE(z, v). Let p(∅) = p(V ) = 0 and
let p(X) = max(0, γ(X) − ρE′(X))+ otherwise. It is easy to check that this function
is positively crossing supermodular and that the conditions of the theorem hold due to
the (k, `)-connectedness in U . A set H of edges ensured by the theorem corresponds to
the splitted edges.

Now we present a generalization of this theorem. The only difference will be that
we require a property slightly weaker than positively crossing supermodularity. We
remark that it is still only a special case of a theorem in the master thesis of T.
Király [7, Theorem 2.8]. Our proof follows the same lines as the proof given in [5] for
Theorem 4.1.

Theorem 4.2. Let U be a ground-set, mi and mo two non-negative integer valued
functions on U with mi(U) = mo(U). Let p be a non-negative, integer valued set
function on U with p(∅) = p(U) = 0 satisfying the following property. For crossing sets
X, Y ∈ U , with p(X), p(Y ) > 0, either

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ) or (15)

p(X) + p(Y ) < p(X − Y ) + p(Y −X) +mi(X ∩ Y )−mo(X ∩ Y ). (16)

Then there exists a digraph H = (U,A) satisfying (11) and (12) if and only if (13) and
(14) hold.

Proof. Necessity is obvious as p(X) ≤ ρH(X) ≤ min{mi(X),m0(U − X)}. For suffi-
ciency, assume for a contradiction that no such H exists. An H satisfying (12) might
be found easily. Let qH(X) = p(X)− ρH(X) denote the violation of (11) for X and let
νH = maxX⊆U qH(X) denote the maximum violation. Let FH := {X ⊂ U : qH(X) =
νH} the set of maximally violating sets. As (11) does not hold, νH > 0, thus p(X) > 0
for every X ∈ FH .

Claim 4.3. Let X, Y ∈ FH crossing. Then both X ∩ Y and X ∪ Y belong to FH .

Proof. If (15) holds for X and Y then 2νH = p(X) + p(Y )− ρH(X)− ρH(Y ) ≤ p(X ∪
Y ) + p(X ∩ Y )− ρH(X ∪ Y )− ρH(X ∩ Y ) ≤ 2νH , thus the claim follows. Assume now
(16) holds. Observe that mi(X ∩ Y )−m0(X ∩ Y ) = ρH(X ∩ Y )− δH(X ∩ Y ). Using
this,

2νH = p(X) + p(Y )− ρH(X)− ρH(Y ) <

< p(X − Y ) + p(Y −X) +mi(X ∩ Y )−mo(X ∩ Y )− ρH(X)− ρH(Y ) ≤
≤ 2νH + ρH(X − Y ) + ρH(Y −X) + (ρH(X ∩ Y )− δH(X ∩ Y ))− ρH(X)− ρH(Y ).

Finally we get

ρH(X) + ρH(Y ) < ρH(X − Y ) + ρH(Y −X) + (ρH(X ∩ Y )− δH(X ∩ Y )),

a contradiction to (8).
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Assume H is chosen so that (*) νH is as small as possible, and subject to this, (**)
|FH| is as small as possible. Let K be a minimal member of F and L ⊇ K be a maximal
member. There is an edge e = uv of H with u, v ∈ K and an f = xy with x, y ∈ U −L
otherwise K or L would violate (13) or (14). Let us replace e and f by uy and xv and
let H ′ denote the resulting digraph.

Now ρH′(X) ≥ ρH(X) − 1 for every X ⊆ V and equality may hold only if X ∩
{x, y, u, v} is either {x, v} or {u, y}. This condition cannot hold for an X ∈ F as it
would imply that X and K are crossing.
K /∈ FH′ as ρH′(K) = ρH(K) + 2. So by (**), there is an X ∈ FH′ − FH with

qH(X) = νH −1. By symmetry we may assume X ∩{x, y, u, v} = {x, v}. p(X), p(K) >
0. Again (15) gives a contradiction easily, and if (16) holds, then

2νH − 1 = p(X) + p(K)− ρH(X)− ρH(K) <

< p(X −K) + p(K −X) +mi(X ∩K)−mo(K ∩X)− ρH(X)− ρH(K) ≤
≤ 2νH − 1 + ρH(X −K) + ρH(K −X) + ρH(X ∩K)− δH(X ∩K)− ρH(X)− ρH(K).

In the last equation we have used that by the minimal choice of X and X − K 6= ∅,
qH(X −K) ≤ νH − 1. This is again a contradiction to (8).

Now we can derive Lemma 3.1 as an easy consequence.

Proof of Lemma 3.1. As F0 ⊆ ∆out(s), µ(X) = ρF (X) = δF (s,X) for everyX. Observe
that in this case we only have to guarantee (4) as it implies both (2) and (3).

Let U = V − u, and let G′ = (U,E ′) denote the deletion of u from G. Let us define
p(X) the following way. Let p(∅) = p(V ) = 0, otherwise let

p(X) := (γ(X)− ρE′(X) + µ(X)− t(X))+ = (γ(X)− ρE′−F (X)− t(X))+

Let mo(z) = δG(z, u) and mi(z) = δG(u, z).

Claim 4.4. The conditions of Theorem 4.2 are satisfied.

Using this claim Lemma 3.1 follows immediately. Let us split off the edges incident
to u according to the edge set H given by the theorem. As u was not special, the edges
in F0 are left unchanged. Let Gu = (U,E ′ + H) denote the graph after the splitting.
We have to prove that F is globally admissible in Gu. Again it is enough to verify (4),
which is a direct consequence of ρH(X) ≥ p(X).

Proof of Claim 4.4. Consider crossing sets X, Y ⊆ U with p(X), p(Y ) > 0. t(X) ≥
t(X ∪ Y ) and if X has a seed in X ∩ Y , then t(X) = t(X ∩ Y ) and the same holds for
exchanging X and Y . So if X ∩ Y − S 6= ∅ or X ∩ Y is special but it contains a seed
of X or Y , then t(X) + t(Y ) ≥ t(X ∩ Y ) + t(X ∪ Y ) follows. In this case

p(X) + p(Y ) = γ(X) + γ(Y )− t(X)− t(Y )− ρE′−F (X)− ρE′−F (Y ) ≤
≤ γ(X ∪ Y ) + γ(X ∩ Y )− t(X ∪ Y )− t(X ∩ Y )−

−ρE′−F (X ∪ Y )− ρE′−F (X ∩ Y ) ≤ p(X ∪ Y ) + p(X ∩ Y ),
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thus (15) holds. Assume now X ∩ Y is special and X has a seed x ∈ X − Y , Y has a
seed y ∈ Y −X.

p(X) + p(Y ) = γ(X) + γ(Y )− t(X)− t(Y )− ρE′−F (X)− ρE′−F (Y ) ≤
≤ γ(X − Y ) + γ(Y −X)− t(X)− t(Y )−

−ρE′−F (X − Y )− ρE′−F (Y −X)− (ρE′−F (X ∩ Y )− δE′−F (X ∩ Y ))

As F was insufficient, |Ft| < ρE(t)− δE(t) in the original graph G for every t ∈ X ∩ Y ,
which implies |Ft| < ρE′(t) + mi(t) − δE′(t) − mo(t). This gives mo(t) − mi(t) <
ρE′−F (t) − δE′−F (t), thus mo(X ∩ Y ) −mi(X ∩ Y ) < ρE′−F (X ∩ Y ) − δE′−F (X ∩ Y ).
Now t(X) = t(X − Y ) and t(Y ) = t(Y −X) because of the seeds x and y, so we get

p(X) + p(Y ) < γ(X − Y ) + γ(Y −X)− t(X − Y )− t(Y −X)−
−ρE′−F (X − Y )− ρE′−F (Y −X) + (mi(X ∩ Y )−mo(X ∩ Y )) ≤

≤ p(X − Y ) + p(Y −X) +mi(X ∩ Y )−mo(X ∩ Y ).

It is left to verify (13) and (14). Let X ⊆ U . As F was globally admissible in G,
ρE−F (X) ≥ γ(X) − t(X). ρE(X) = mi(X) + ρE′(X), giving (13). On the other
hand, ρE−F (X + u) ≥ γ(X + u) − t(X + u) = γ(X) as u /∈ S. ρE−F (X + u) =
mo(U −X) + ρE′−F (X) thus mo(U −X) ≥ γ(X)− ρE′−F (X), giving (14).

5 Lemmata

Claim 5.1. Assume ∅ 6= Z ( X ( V , X − Z ⊆ S and δE−F (Z,X − Z) = ∅. Then
ρ(Z) < ρ(X)− δF (V −X,X − Z) and ρE−F (Z) < ρE−F (X).

Proof. For the first part, δ(X −Z) < ρE−F (X −Z) by Claim 2.11 as X −Z is special.
ρ(Z) = ρ(X)+δ(X−Z,Z)−δF (V −X,X−Z)−δE−F (V −X,X−Z) < ρ(X)−δF (V −
X,X −Z) since δ(X −Z,Z)− δE−F (V −X,X −Z) = δ(X −Z,Z)− ρE−F (X −Z) ≤
δ(X − Z) − ρE−F (X − Z) < 0 by the previous remark. The second part follows from
this using ρF (Z) + δF (V −X,X − Z) ≥ ρF (X).

The next lemma describes strongly connectivity properties of various tight sets.

Lemma 5.2. (i) Assume F is insufficient globally admissible, and X is an out-tight set.
If for some Z ⊆ X, δE−F (Z,X−Z) = 0, then Z is out-tight and ∆out

E−F (Z) = ∆out
E−F (X).

(ii) If X is normal in-tight, Z ⊆ X, then δE−F (Z,X − Z) = 0 implies that X − Z is
also normal in-tight and ∆in

E−F (X) = ∆in
E−F (X − Z). (iii) If X is µ-tight, and u is a

seed of X, then there is an edge uv ∈ E − F with v ∈ X. (iv) If X is T -tight and v is
a sprout of X, then there is an edge uv ∈ E − F with u ∈ X.

Proof. (i) δE−F (X) = ` and δE−F (Z) ≥ `. Thus if δE−F (Z,X − Z) = 0 then all edges
leaving Z must leave X as well, and this is what we wanted to prove.

(ii) Assume first X − Z − S 6= ∅. ρE−F (X) = k, ρE−F (X − Z) ≥ k, and the claim
follows as in the first part.
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Assume now X −Z is special. By Claim 5.1, ρE−F (Z) < ρE−F (X) = k, a contradic-
tion as X was not special, thus neither is Z.

(iii) ρ(X) = k+δF (V −X−S,X−u). If all edges in X from u are in F , then we can use
Claim 5.1 for Z = {u}, thus k = ρ(u) < k+δF (V −X−S,X−u)−δF (V −X,X−u) ≤ k,
a contradiction.

(iv) ρ(X) = k+T (X) = k+ δF (V −X, v). If all edges in X entering v are in F , then
Claim 5.1 can be applied for Z = X−v. Thus k ≤ ρ(X−v) < k+T (X)−δF (V −X, v) =
k, a contradiction again.

Claim 5.3. For sets ∅ 6= Z ⊆ X, X−Z ⊆ S, if X has a seed u ∈ Z then t(X) = t(Z).

Proof. As X − Z ∈ S, for any x ∈ Z, δF (V − Z − S, x) = δF (V −X − S, x). u is the
vertex in X minimizing δ(V −X − S, x), thus the claim follows.

In the next lemma, we show some configurations of tight sets which may not exist
for an insufficient globally admissible F .

Lemma 5.4. Assume F is insufficient globally admissible. There exists no X ⊆ V
with the following properties: |X| ≥ 2, X is in-tight and (i) X − S 6= ∅ and there is
a subpartition Y = {Y1, . . . , Ym} of X so that X − S ⊆ ∪Y, each Yi is out-tight and
proper subset of X or (ii) X is µ-tight and there is an out-tight Y ( X containing a
seed u of X; (iii) X is T -tight and there is an out-tight Y ( X not containing a sprout
z of X.

Proof. (i) We may assume that there is no special Yi as leaving out such members
from Y the conditions still hold. Thus ρE−F (Yi) ≥ k for each i and δE−F (Yi) = `
as they are out-tight sets. Let X0 = X − ∪Y . As X0 is special, Claim 2.11 implies
ρE−F (X0)− δE−F (X0) > δF (X0) if X0 6= ∅. Now ρE−F (X) = k, δE−F (X) ≥ `, thus

k − ` ≥ ρE−F (X)− δE−F (X) =

= (ρE−F (X0)− δE−F (X0)) +
m∑

i=1

(ρE−F (Yi)− δE−F (Yi)) ≥ δF (X0) +
m∑

i=1

(k − `),

a contradiction, since either X0 6= ∅ and thus the last inequality is strict, or m ≥ 2 as
we did not allow Y = {X}.

(ii) Let u denote a seed of X as in the conditions. t(X) = t(Y ) by Claim 5.3.
δ(Y ) = `+δF (Y ) as Y is out-tight. Claim 2.11 gives ρ(X−Y )−δ(X−Y ) > ρF (X−Y ).
Similarly to the previous case,

k + µ(X)− t(X)− `− δF (X) ≥ ρ(X)− δ(X) = ρ(X − Y )− δ(X − Y ) +

+ρ(Y )− δ(Y ) > ρF (X − Y ) + k + µ(Y )− t(Y )− `− δF (Y ).

This gives δF (Y )−µ(Y ) > δF (X) + ρF (X − Y )−µ(X). Using µ(X) = µ(Y ) + δF (V −
X − S,X − Y ) and δF (Y ) ≤ δF (X) + δF (Y,X − Y ), one gets δF (Y,X − Y ) + δF (V −
X − S,X − Y ) > ρF (X − Y ), clearly a contradiction.
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(iii) As in the previous two cases,

k + T (X)− `− δF (X) ≥ ρ(X)− δ(X) = ρ(X − Y )− δ(X − Y ) +

+ρ(Y )− δ(Y ) > ρF (X − Y ) + k − `− δF (Y )

Thus δF (Y ) + T (X) > δF (X) + ρF (X − Y ). As δF (Y ) ≤ δF (X) + δF (Y,X − Y ) and
T (X) = δF (V −X, z), we have δF (Y,X−Y )+δF (V −X, z) > ρF (X−Y ), a contradiction
again.

Claim 5.5. (a) Assume F is insufficient globally admissible and X∩Y is special. Then
ρ(X) + ρ(Y ) > ρ(X − Y ) + ρ(Y −X) + δF (V −X,X ∩ Y ) + δF (V − Y,X ∩ Y ).

(b) If Y is normal tight, Y −X−S 6= ∅, s /∈ X ∩Y , then ρ(Y ) ≤ ρ(Y −X)+ δF (V −
Y,X ∩ Y ).

Proof. (a) By (8), it is enough to prove that (ρ(X ∩ Y ) − δ(X ∩ Y )) + d̄(X, Y ) >
δF (V −X,X∩Y )+δF (V −Y,X∩Y ). By Claim 2.11, ρF (X∩Y ) < ρ(X∩Y )−δ(X∩Y )
and obviously, δF (V −X − Y,X ∩ Y ) ≤ d̄(X, Y ). These together imply the claim.

(b) Since Y −X is not special, ρ(Y −X) ≥ γ(Y −X)+ρF (Y −X) and γ(Y −X) = γ(Y )
as s /∈ X ∩ Y . Using these,

ρ(Y ) = γ(Y ) + ρF (Y ) = γ(Y ) + δF (V − Y, Y −X) + δF (V − Y,X ∩ Y ) ≤
≤ γ(Y −X) + ρF (Y −X) + δF (V − Y,X ∩ Y ) ≤ ρ(Y −X) + δF (V − Y,X ∩ Y ).

We are almost ready to prove Lemma 3.2. The following lemma is slightly weaker,
but will easly imply it.

Lemma 5.6. If F ′ is globally admissible and there exists a special tight set X with
|X| ≥ 2, then any F ⊇ F ′ maximal globally admissible set will be sufficient.

Proof. Let F be a maximal globally admissible set containing F ′. Clearly, X is tight
for F as well. Let X be chosen minimal subject to these conditions. We prove that F
is sufficient.

First assume that X is a T -tight set with sprout z. By Lemma 5.2(iv) there is an
edge uz ∈ E−F with u ∈ X. By Claim 2.6, uz must enter a tight set Y which is either
normal or T -tight with sprout z. Case (c) is excluded since u is special.

First assume Y is normal. If V−Y ⊆ X then we have a contradiction by Lemma 5.4(iii)
as V − Y is an out-tight set satisfying the conditions. Y ⊂ X is impossible as it would
give Y ⊆ S. Thus X and Y are crossing.

ρ(X) = k + T (X) ≤ ρ(X − Y ) + δF (V −X,X ∩ Y ) (17)

as z ∈ X ∩ Y and ρ(X − Y ) ≥ γ(X − Y ) = k. Using both Claim 5.5(b) and (a) we get
a contradiction unless F is sufficient.

If Y is a T -tight set, by the minimality of X, X and Y are crossing. (17) holds again
and also ρ(Y ) = k + T (Y ) ≤ ρ(Y − X) + δF (V − Y,X ∩ Y ) as z ∈ X ∩ Y is also a
sprout of Y . A contradiction again.
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Assume now X is µ-tight with seed u. By Lemma 5.2(iii), we have a uv ∈ E − F
with v ∈ X blocked by a tight set Y . In the first part of the proof we have already
seen that no T -tight sets exist. Neither may Y be µ-tight since u is special. Thus Y
should be normal. Again V − Y ⊆ X would contradict Lemma 5.4(ii) and Y ⊂ X is
impossible, thus X and Y should be crossing. Using Claim 5.3 for X and Z = X − Y ,
t(X − Y ) = t(X). Thus

ρ(X) = k + µ(X)− t(X) = k + δF (V − S −X,X)− t(X − Y ) =

k + δF (V − S −X,X − Y )− t(X) + δF (V − S −X,X ∩ Y ) ≤
≤ ρ(X − Y ) + δF (V −X,X ∩ Y ).

Using again Claim 5.5(b) and (a) give a contradiction.

Lemma 5.7. Assume F is a maximal, insufficient globally admissible set of edges. If
X and Y are crossing tight sets, then X ∪ Y and X ∩ Y are tight as well. If X or Y
blocks an edge uv ∈ E − F , then either X ∪ Y or X ∩ Y blocks uv as well.

Proof. By Lemma 5.6, we know that both X and Y are normal tight. Assume first
that (X ∩ Y )− S 6= ∅. From (9) and the submodularity of the ρ function we have:

ρE−F (X) + ρE−F (Y ) = γ(X) + γ(Y ) = γ(X ∩ Y ) + γ(X ∪ Y ) ≤
≤ ρE−F (X ∩ Y ) + ρE−F (X ∪ Y ) ≤ ρE−F (X) + ρE−F (Y ),

implying that both X ∩ Y and X ∪ Y are tight and dE−F (X, Y ) = 0. The second part
of the claim follows as both of them are normal.

Suppose that X ∩ Y ⊆ S. We show this is impossible. X − Y and Y −X are both
non-special sets, thus Claim 5.5(b) applies for Y and also for X by exchanging the role
of X and Y . Claim 5.5(a) leads to a contradiction again.

An easy consequence of Lemma 5.7 is the following:

Claim 5.8. If F is maximal insufficient globally admissible and uv ∈ E − F , either
there is a unique minimal in-tight set Bin

uv blocking uv or a unique minimal out-tight
Bout

uv blocking uv. If u, v ∈ X for an in- or out-tight set X, then Bin
uv ⊆ X or Bout

uv ⊆ X.

Proof. By Lemma 5.7, for every edge uv ∈ E − F there is a unique minimal B1 and
a unique maximal B2 in-tight set entered by uv. If s /∈ B1 then B1 is in-tight thus
Bin

uv = B1, if s ∈ B1 then Bout
uv = V −B2. (Note that both sets may exist). The second

part also follows by Lemma 5.7.

Now we are ready to prove Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. By Lemma 5.6, the only case left is if X is normal tight with
s /∈ X, |X − S| = 1. Let X − S = {u}. If there is no edge in E − F from u to X − u,
then by Lemma 5.2, X − u is normal in-tight, a contradicting X − u ⊆ S. Thus there
is an edge uv ∈ E − F with v ∈ X. Let Y = Bin

uv or Y = Bout
uv as in Claim 5.8. In the

first case Y ⊆ S contradicting that it is a tight set and every tight set is normal. In the
second case, X and Y = {Y } satisfy the conditions of Lemma 5.4(i), a contradiction
again.
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Proof of Lemma 3.3. Let K denote the set of in-tight singletons and L the set of out-
tight singletons.

Claim 5.9. K ∩ L = ∅.

Proof. Let u ∈ K ∩ L. Trivially, u 6= s. As a singleton tight set cannot be special,
ρ(u) = k and δ(u) ≥ k. However, the out-tightness of {u} implies δE−F (u) = `, thus
δF (u) > 0, a contradiction.

Claim 5.10. If an edge f = uv ∈ E − F is blocked by an in-tight set, then Bin
uv = {v}.

If it is blocked by an out-tight set, then Bin
out = {u}.

Proof. Consider a minimal in-tight or out-tight set X for some edge f = xy ∈ E − F
which is not a singleton. By Lemma 5.2(i) or (ii) and the minimality of X, X is
strongly connected in E − F . We show that either X ⊆ K or X ⊆ L. Consider an
edge uv ∈ E − F with u, v ∈ X, guaranteed by the strong connectivity. By Claim 5.8,
either uv enters a minimal in-tight or leaves a minimal out-tight Y with Y ⊆ X. By
the minimal choice of X, Y is a singleton: Y = {u} ∈ L or Y = {v} ∈ K. Thus either
X ∩K 6= ∅ or X ∩ L 6= ∅.

Assume first X ∩ K 6= ∅ and let Z = X ∩ K. If X − Z 6= ∅, then by the strongly
connectedness there is an edge uv ∈ E − F with u ∈ Z and v ∈ X − Z blocked by
a minimal in- or out-tight set Y . Again, Y is a singleton and either Y = {u} ∈ L or
Y = {v} ∈ K. Both cases are impossible since u ∈ X ∩K, and v ∈ X −K. Thus we
may conclude X ⊆ K.

For next, consider X ∩ L 6= ∅ and let Z = X ∩ L. If X − Z 6= ∅, then an edge
uv ∈ E − F with u ∈ X − Z, v ∈ Z gives the contradiction as above. Thus X ⊆ L
follows.
X was either in- or out-tight. If X = Bout

xy is out-tight, then X ⊆ L is excluded as
it would give Bout

xy = {x}. Thus X ⊆ K. As K ∩ S = ∅, for each u ∈ X, ρ(u) = k,
δ(u) ≥ k. By the assumption that all edges in F have tail in S + s, δF (X) = 0 thus
δ(X) = `. Now

k − ` ≤ ρ(Z)− δ(Z) =
∑
u∈Z

(ρ(u)− δ(u)) ≤ 0,

giving a contradiction.
If X = Bin

xy is in-tight, then X ⊆ K is excluded since it would give Bin
xy = {y}. Thus

X ⊆ L. X − S 6= ∅ as all tight sets are normal by Lemma 5.6, thus the conditions of
Lemma 5.4(i) apply with Y being the partition of X into singletons.

s /∈ K implies K 6= V . Also K 6= ∅ as by Claim 5.10, all edges leaving s should enter
members of K. As ρE−F (V − K) ≥ `, there is an edge uv ∈ E − F leaving K. This
cannot be blocked by neither an in-tight nor an out-tight singleton.
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6 Further notes

6.1 Matroid property of locally admissible sets

First, we describe the structure of the locally admissible edge sets at a given special
node z. We will prove

Theorem 6.1. The set system Mz = {F : F is locally admissible at z} is a matroid.

This together with Theorem 2.1 gives a straightforward way to find a sufficient locally
admissible edge set. By the Theorem we know that special vertices exist and one of them
has a sufficient locally admissible set. We check the special vertices one-by-one, and at
each special vertex z we greedily choose a maximal locally admissible edge set. Note
that this can be done easily as we just need to take care of the (k, `)-edge connectedness
in V − z which can be checked by flow computations. Theorem 6.1 ensures that if z
admits a sufficient global admissible edge set, we find it this way.

Proof of Theorem 6.1. The only nontrivial property we have to check is that if |F | <
|F ′| and both F, F ′ ∈ Mz then there is an edge uz ∈ F ′ − F so that F + uz is locally
admissible as well. For a contradiction, assume this does not hold. A set X will now
be called tight at z for F if z ∈ X, X 6= {z} and it satisfies (1) with equality. (Actually
this notion coincides with the tight sets containing z when we consider F as a globally
admissible set of edges). Note that since |F ′| ≤ k − δ(z) by definition and |F | < |F ′|,
|F ′| is insufficient.

Claim 6.2. If X and Y are crossing tight sets at z for F then so are X∩Y and X∪Y .

Proof. If X ∩ Y 6= {z}, then (1) also holds for X ∩ Y and X ∪ Y thus the claim follows
by the submodularity of the function ρE−F . We show that the case X ∩ Y = {z} is
impossible. In this case we would have by (8) 2k = ρE−F (X) + ρE−F (Y ) ≥ ρE−F (X −
Y ) + ρE−F (Y −X) + ρE−F (z)− δE−F (z) > ρE−F (X − Y ) + ρE−F (Y −X) ≥ 2k, as F
was insufficient.

Thus for each edge uz ∈ F ′ − F there is a minimal tight set Xuz for F entered by
uz. For different uz, wz ∈ F ′−F , Xuz and Xwz cannot be crossing as Xuz ∩Xwz would
also be tight contradicting their minimality. Thus Xuz ∪Xwz = V . Let T = {V −Xuz :
uz ∈ F ′−F}. T forms a subpartition of V −z so that for each uz ∈ E−F , u is in some
member of T . For each Y ∈ T , δ(Y ) = γ(V −Y )+δF (Y ). Let m(Y ) = |(F ′−F )∩δ(Y )|.
As F ′ is locally admissible, δF ′(Y ) ≤ δ(Y )−γ(V −Y ) = δF (Y ), thus m(Y ) ≤ δF−F ′(Y ).
Summing up for all Y ∈ T we get |F ′−F | =

∑
Y ∈T m(Y ) ≤

∑
Y ∈T δF−F ′(Y ) ≤ |F−F ′|,

contradicting |F | < |F ′|.

6.2 Example of an insufficient maximal globally admissible set

An example for an insufficient maximal globally admissible set is shown on the figure
for k = 4, ` = 2. G is minimally (4, 2)-edge-connected. It contains two special vertices
u and t with in-degree 4 and out-degree 2. Both of them have a sufficient locally
admissible edge set: for both u and t the two edges coming from w are sufficient locally
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admissible. However, if we consider F consisting of one wu and on wt edge (the thick
edges), F is maximal as the following sets block every edge entering u and t: {u}, {t}
{w} are out-tight and {u, t, v, w} is in-tight. However, F is insufficient.

The proof of the case ` = k − 1 by Frank and Király [5] used an argument similar
to the proof of Lemma 3.3. It is for the following reason why this argument cannot
be applied in the general case to prove that every maximal globally admissible set is
sufficient (and in fact, this is not true). Claim 5.9 fails to hold unless F satisfies the
condition in Lemma 3.3: in this example the singleton set {w} is both in- and out-tight.

t

u

v

w

s
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