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Operations Preserving Global Rigidity of Generic

Direction-Length Frameworks

Bill Jackson? and Tibor Jordán??

Abstract

A two-dimensional direction-length framework is a pair (G, p), where G =
(V ;D,L) is a graph whose edges are labeled as ‘direction’ or ‘length’ edges, and
a map p from V to R2. The label of an edge uv represents a direction or length
constraint between p(u) and p(v). The framework (G, p) is called globally rigid
if every other framework (G, q) in which the direction or length between the
endvertices of corresponding edges is the same, is ‘congruent’ to (G, p), i.e. it
can be obtained from (G, p) by a translation and, possibly, a dilation by −1.

We show that labeled versions of the two Henneberg operations (0-extension
and 1-extension) preserve global rigidity of generic direction-length frameworks.
These results, together with appropriate inductive constructions, can be used to
verify global rigidity of special families of generic direction-length frameworks.

1 Introduction

Consider a point configuration p1, p2, ..., pn in Rd together with a set of constraints
which fix the direction or the length between some pairs pi, pj. A basic question is
whether the configuration, with the given constraints, is locally or globally unique,
up to ‘congruence’. Results of this type have applications in localization problems of
sensor networks, CAD, and molecular conformation [4, 14, 17]. The configuration and
the constraints form a ‘direction-length framework’.

A mixed graph G = (V ; D, L) is an undirected graph together with a labeling (or
bipartition) D∪L of its edge set. We refer to edges in D as direction edges and edges
in L as length edges. A direction-length framework, or more simply mixed framework,
is a pair (G, p), where G = (V ; D, L) is a mixed graph and p is a map from V to
Rd, such that p(u) 6= p(v) whenever uv ∈ D ∪ L. When L = ∅, or D = ∅, we say
that (G, p) is a direction framework or length framework, respectively, or simply that
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Figure 1: Two equivalent but non-congruent realizations of a mixed graph. We use
solid or dashed lines to indicate edges with length or direction labels, respectively.

(G, p) is a pure framework. We also say that (G, p) is a realization of G in Rd. Two
frameworks (G, p) and (G, q) are mixed-equivalent if (i) p(u)−p(v) is a scalar multiple
of q(u) − q(v) for all uv ∈ D and (ii) ||p(u) − p(v)|| = ||q(u) − q(v)|| for all uv ∈ L,
where ||.|| denotes the Euclidean norm in Rd.

The mixed frameworks (G, p) and (G, q) are direction-congruent if p(u) − p(v) is a
scalar multiple of q(u) − q(v) for all u, v ∈ V , length-congruent if ||p(u) − p(v)|| =
||q(u)−q(v)|| for all u, v ∈ V , and mixed-congruent if they are both direction-congruent
and length-congruent.

A mixed framework (direction framework, length framework) (G, p) is globally mixed
(direction, length) rigid if every framework which is equivalent to (G, p) is mixed-
congruent (direction-congruent, length-congruent, respectively) to (G, p). See Figure
1.

It is mixed (direction, length) rigid if there exists an ε > 0 such that every frame-
work (G, q) which is equivalent to (G, p) and satisfies ‖p(v)−q(v)‖ < ε for all v ∈ V , is
mixed-congruent (direction-congruent, length-congruent, respectively) to (G, p). This
is the same as saying that every continuous motion of the points p(v), v ∈ V , which
preserves the distances between pairs of points joined by length edges and directions
between pairs joined by direction edges, results in a framework which is mixed (direc-
tion, length) congruent to (G, p).

It is a hard problem to decide if a given framework is rigid or globally rigid. Indeed
Saxe [13] has shown that the global rigidity problem is NP-hard even for 1-dimensional
length frameworks. The problem becomes more tractable, however, if we assume
that there are no algebraic dependencies between the coordinates of the points of
the framework. A framework (G, p) is said to be generic if the set containing the
coordinates of all its points is algebraically independent over the rationals. We say
that a mixed graph G is globally mixed (direction, length) rigid in Rd if all generic
realizations of G in Rd as a mixed (direction, length) framework are globally rigid.
Similarly, we say that a mixed graph G is mixed (direction, length) rigid in Rd if all
generic realizations of G in Rd as a mixed (direction, length) framework are rigid. See
Figure 2.

Whiteley [16] showed that a graph is direction rigid in Rd if and only if it is glob-
ally direction rigid in Rd and characterized the graphs which have this property. In
contrast, length rigidity of graphs in Rd is a weaker property than global length rigid-
ity for all d ≥ 1, and graphs with these properties have been characterized only for
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Figure 2: A mixed graph G for which no generic realization is globally mixed rigid.
This follows from the fact that one side of a 2-separation of G contains length edges
only and hence it can be flipped.
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Figure 3: The 0-extension operation.

d = 1, 2. The cases when d = 1 are not difficult. The characterizations of length
rigidity and global length rigidity when d = 2 are given in [11] and [8], respectively.

Henceforth, we assume that d = 2 unless specified otherwise. The characterizations
of global direction and length rigidity in this case can both be formulated as inductive
constructions using the following graph operations. The operation 0-extension on
vertices u, w of a graph G adds a new vertex v and new edges vu, vw. The operation
1-extension on edge uw and vertex z of G deletes the edge uw and adds a new vertex v
and new edges vu, vw, vz. See Figures 3, 4. These operations are known as Henneberg
operations since they were first used in the study of rigidity by Henneberg [7]. Part
(a) of the next theorem follows from results of Whiteley [16] and Tay and Whiteley
[15]. Part (b) is from [8].

Theorem 1.1. Let G be a graph. Then
(a) G is globally direction rigid if and only if G can be obtained from K2 by 0-
extensions, 1-extensions, and edge-additions.
(b) G is globally length rigid if and only if G = K2, G = K3 or G can be obtained
from K4 by 1-extensions and edge-additions.

u

w
t u

w
t

v

Figure 4: The 1-extension operation.
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Figure 5: A globally mixed rigid mixed graph. The global rigidity of G can be
verified by using the main results of this paper along with an appropriate inductive
construction using labeled Henneberg operations, see also [10].

The problem of characterizing when a mixed graph G is globally mixed rigid is still
an open problem. To solve this problem using a similar strategy to that for global
length rigidity, we would require results which assert that the Henneberg operations
preserve global mixed rigidity, as well as an inductive construction for the conjectured
family of globally rigid mixed graphs which uses these operations. In this paper we
present results of the first type by showing that mixed versions of the Henneberg
operations preserve global rigidity. In [10] we use these results, together with new
inductive constructions, to give a characterization for globally rigid mixed graphs G
for which the edge set of G is a circuit in the direction-length rigidity matroid. (These
concepts will be defined in Section 2.) This complements the results on globally length
rigid graphs whose edge set is a circuit in the length-rigidity matroid [2] and may serve
as a building block in a more complete characterization of mixed global rigidity.

Mixed versions of 0- and 1-extension are defined as follows. A 0-extension (on
vertices u, w) of a mixed graph G, adds a new vertex v and new edges vu, vw in such
a way that if vu, vw are of the same type (i.e. either they are both length edges or
both direction edges) then u, w must be distinct. A 1-extension (on edge uw and
vertex z) of G, deletes an edge uw and adds a new vertex v and new edges vu, vw, vz
for some vertex z ∈ V (G), with the provisos that at least one of the new edges has
the same type as the deleted edge and, if z = u, then the two edges from z to u are
of different type. (Servatius and Whiteley [14] used these operations in the proof of
their characterization of mixed rigid mixed graphs.) In Sections 3, 4 we shall show
that special cases of both these operations preserve global rigidity. Our main results
are as follows.

Theorem 1.2. Let G and H be mixed graphs with |V (H)| ≥ 2. Suppose that G can
be obtained from H by a 0-extension which adds a vertex v incident to two direction
edges. Then G is globally mixed rigid if and only if H is globally mixed rigid.

Theorem 1.3. Let G and H be mixed graphs with |V (H)| ≥ 3. Suppose that G can be
obtained from H by a 1-extension on an edge uw. Suppose further that H is globally
mixed rigid and H − uw is mixed rigid. Then G is globally mixed rigid.

A result on globally length rigid graphs analogous to Theorem 1.3 is given in [9],
see also [3].

In Section 5 we will show that infinitesimal rigidity (defined in the next section) is a
sufficient condition for rigidity, and that the two conditions are equivalent for generic
mixed frameworks. Section 6 is devoted to concluding remarks.
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Section 2. Infinitesimal rigidity and the rigidity matrix 5

2 Infinitesimal rigidity and the rigidity matrix

Servatius and Whiteley [14] developed a rigidity theory for mixed frameworks analo-
gous to that given for pure frameworks. For (x, y) ∈ R2 let (x, y)⊥ = (y,−x). The
rigidity matrix of a mixed framework (G, p) is the matrix R(G, p) of size (|D|+ |L|)×
2|V |, where, for each edge uv ∈ D ∪L, in the row corresponding to uv, the entries in
the 2 columns corresponding to the vertex w are given by: (p(u) − p(v))⊥ if uv ∈ D
and w = u; −(p(u)− p(v))⊥ if uv ∈ D and w = v; (p(u)− p(v)) if uv ∈ L and w = u;
−(p(u)− p(v)) if uv ∈ L and w = v; (0, 0) if w 6∈ {u, v}. The rigidity matrix of (G, p)
defines the rigidity matroid of (G, p) on the ground set D∪L by linear independence of
the rows of the rigidity matrix. The framework is said to be independent if the rows
of R(G, p) are linearly independent and infinitesimally rigid if the rank of R(G, p)
is 2|V | − 2 (which is its maximum possible value). We will show in Section 5 that
infinitesimal rigidity is a sufficient condition for rigidity, and that the two conditions
are equivalent for generic mixed frameworks.

Any two generic frameworks (G, p) and (G, p′) have the same rigidity matroid. We
call this the (2-dimensional) rigidity matroid R(G) = (D ∪ L, r) of the mixed graph
G. We denote the rank of R(G) by r(G). The mixed graph G is independent, or rigid,
if r(G) = |D|+ |L|, or r(G) = 2|V | − 2, respectively. Independent mixed graphs were
characterized in [14]. This gives a characterization of the rigidity matroid of a mixed
graph.

3 Generic points and quasi-generic frameworks

In this section we prove some preliminary results on generic frameworks which we will
use in our proof that extensions preserve global rigidity. A point x ∈ Rn is generic if
its coordinates form an algebraically independent set over Q.

Lemma 3.1. Let fi and gi be non-zero polynomials with integer coefficients in the
indeterminates x1, x2, . . . , xn, and ri = fi/gi for 1 ≤ i ≤ m. Let Ti = {x ∈ Rn :
gi(x) 6= 0} for 1 ≤ i ≤ m and put T =

⋂m

i=1
Ti. Let f : T → Rm by f(x) =

(r1(x), r2(x), . . . , rm(x)). Suppose that maxx∈Rn{rank df |x} = m. If p is a generic
point in Rn, then p ∈ T and f(p) is a generic point in Rm.

Proof: Since p is generic, we have p ∈ T and rank df |p = m. Relabelling if
necessary, we may suppose that the first m columns of df |p are linearly indepen-
dent. Let p = (p1, p2, . . . , pn). Define f ′ : Rm → Rm by f ′(x1, x2, . . . , xm) =
f(x1, x2, . . . , xm, pm+1, . . . , pn). Let p′ = (p1, p2, . . . , pm). Then f ′(p′) = f(p) and
rank df ′|p′ = m.

Let f ′(p′) = (β1, β2, . . . , βm). Suppose that h(β1, β2, . . . , βm) = 0 for some poly-
nomial h with integer coefficients. Then h(r1(p), r2(p), . . . , rm(p)) = 0. Since p is
generic, we must have h(f ′(x)) = 0 for all x ∈ Rm. By the inverse function theorem
f ′ maps a sufficiently small open neighbourhood U of p′ diffeomorphically onto f ′(U).
Thus h(y) = h(f ′(x)) = 0 for all y ∈ f ′(U). Since h is a polynomial map and f ′(U)
is an open subset of Rm, we have h = 0. Hence f ′(p′) = f(p) is generic. •
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Section 3. Generic points and quasi-generic frameworks 6

Given a point p ∈ Rn we use Q(p) to denote the field extension of Q by the
coordinates of p. Given fields K, L with K ⊆ L the transcendence degree of L over K,
td[L : K], is the size of the largest subset of L which is algebraically independent over
K, see [5]. We use K̃ to denote the algebraic closure of K. Note that td[K̃ : K] = 0.

Lemma 3.2. Let fi and gi be non-zero polynomials with integer coefficients in the
indeterminates x1, x2, . . . , xn and ri = fi/gi for 1 ≤ i ≤ n. Let Ti = {x ∈ Rn :
gi(x) 6= 0} for 1 ≤ i ≤ n and put T =

⋂n

i=1
Ti. Let f : T → Rn by f(x) =

(r1(x), r2(x), . . . , rn(x)). Suppose that f(p) is a generic point in Rn. Let L = Q(p)
and K = Q(f(p)). Then K̃ = L̃.

Proof: Since fi(x) is a ratio of two polynomials with integer coefficients, we have
fi(p) ∈ L for all 1 ≤ i ≤ n. Thus K ⊆ L. Since f(p) is generic, by Lemma 3.1 we
have td[K : Q] = n. Since K ⊆ L and L = Q(p) we have td[L : Q] = n. Thus K̃ ⊆ L̃
and td[K̃ : Q] = n = td[L̃ : Q]. Suppose K̃ 6= L̃, and choose γ ∈ L̃ − K̃. Then γ is
not algebraic over K so S = {γ, f1(p), f2(p), . . . , fn(p)} is algebraically independent
over Q. This contradicts the facts that S ⊆ L̃ and td[L̃ : Q] = n. •

A configuration C is a sequence (P1, P2, . . . , Pn) of points in R2. Let Pi = (xi, yi).
We say that C is generic if the point p = (x1, y1, x2, y2, . . . , yn) is a generic point in
R2n. A configuration C ′ = (Q1, Q2, . . . , Qn) is congruent to C if there exists a t ∈ R2

and a λ ∈ {−1, 1} such that Qi = λPi + t for all 1 ≤ i ≤ n. This is equivalent to
saying that C ′ can be obtained from C by either a translation or a rotation through
180◦. We say that C is quasi-generic if C is congruent to a generic configuration, and
that C is in standard position if P1 = (0, 0).

Lemma 3.3. Let C = (P1, P2, . . . , Pn) be a configuration. Then C is quasi-generic if
and only if (P2 − P1, P3 − P1, . . . , Pn − P1) is generic.

Proof: Suppose C is quasi-generic. Then there exists a t ∈ R2 and a λ ∈ {−1, 1} such
that (λP1 + t, λP2 + t, . . . , λPn + t) is generic. This implies that (λ(P2 − P1), λ(P3 −
P1), . . . , λ(Pn − P1)) is generic and hence (P2 − P1, P3 − P1, . . . , Pn − P1) is generic.

Suppose (P2 − P1, P3 − P1, . . . , Pn − P1) is generic. Choose P0 ∈ R2 such that
(P0, P2 − P1, P3 −P1, . . . , Pn − P1) is generic. Then C ′ = (P0, P2 − P1 + P0, P3 − P1 +
P0, . . . , Pn − P1 + P0) is generic. Since we can transform C ′ to C by translating by
t = P1 − P0, C is quasi-generic. •

Let (G, p) be a mixed framework, where G = (V ; D, L). For v1, v2 ∈ V with
p(vi) = (xi, yi) let lp(v1, v2) = (x1−x2)

2 +(y1−y2)
2, and sp(u, v) = (y1−y2)/(x1−x2)

whenever x1 6= x2. Let e = uv ∈ D ∪ L and let p(u) − p(v) = (x, y). We say that e
is vertical in (G, p) if x = 0. The length of e in (G, p) is given by lp(e) = lp(u, v), and
the slope of e by sp(e) = sp(u, v) whenever e is not vertical in (G, p). We say that
(G, p) is generic, quasi-generic or in standard position if p(V ) is, respectively, generic,
quasi-generic, or in standard position. The graph G is independent if D ∪ L is an
independent set in the mixed rigidity matroid of G. We say that G is minimally rigid
if G is rigid and independent. Let V = {v1, v2, . . . , vn} and D ∪ L = {e1, e2, . . . , em}.
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Section 4. Extensions and globally linked vertices 7

We can view p as a point (p(v1), p(v2), . . . , p(vn)) in R2n. Let T be the set of all
points p ∈ R2n such that (G, p) has no vertical direction edges. Then the rigidity
map fG : T → Rm is given by fG(p) = (h(e1), h(e2), . . . , h(em)), where h(ei) = lp(ei)
if ei ∈ L and h(ei) = sp(ei) if ei ∈ D. Note that each row in the evaluation of the
Jacobian of the rigidity map at the point p ∈ T is a non-zero scalar multiple of the
corresponding row in the mixed rigidity matrix of the framework (G, p).

Lemma 3.4. If (G, p) is a quasi-generic framework and G is independent then fG(p)
is generic.

Proof: Choose a generic framework (G, q) conguent to (G, p). Since G is indepen-
dent, rank dfG|q = |E|. Hence Lemma 3.1 implies that fG(q) is generic. The lemma
now follows since fG(p) = fG(q). •

Lemma 3.5. Suppose that (G, p) is in standard position and has no vertical edges,
G is minimally rigid and fG(p) is generic. Let p = (0, 0, p3, p4, p5, . . . , p2n), L = Q(p)
and K = Q(fG(p)). Then (p3, p4, p5, . . . , p2n) is generic and K̃ = L̃.

Proof: Let T be the set of all points q ∈ R2n such that (G, q) is in standard position
and has no vertical direction edges. Let T ′ be the set of all points (q3, q4, . . . , q2n) such
that (0, 0, q3, q4, . . . , q2n) ∈ T . Define f : T ′ → R2n−2 by

f(q3, q4, . . . , q2n) = fG(0, 0, q3, q4, . . . , q2n).

Let p′ = (p3, p4, . . . , p2n). Then f(p′) = fG(p) is generic. We have L = Q(p′) and
K = Q(f(p′)). By Lemma 3.2, K̃ = L̃. Furthermore, 2n − 2 = td[K̃, Q] = td[L̃, Q].
Thus p′ is a generic point in R2n−2. •

Corollary 3.6. Suppose that (G, p) is a rigid generic mixed framework and that (G, q)
is equivalent to (G, p). Then (G, q) is quasi-generic.

Proof: Let H be a minimally rigid spanning subgraph of G. Choose translations of
R2 which map (H, p) and (H, q) to two frameworks (H, p′) and (H, q′) in standard
position. By Lemma 3.4, fH(p) is generic. Thus fH(q′) = fH(p′) = fH(p) is generic.
By Lemmas 3.5 and 3.3, (H, q′) is quasi-generic. Hence (H, q) and (G, q) are quasi-
generic. •

4 Extensions and globally linked vertices

We first prove that 0-extension preserves global rigidity.

Theorem 4.1. Let G = (V, D ∪ L) be a mixed graph, v ∈ V , with d(v) = 2 and
vu, vw ∈ D, and H = G − v. Then G is globally rigid if and only if H is globally
rigid.
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Proof: Suppose that H is globally rigid. Let (G, p) be a generic framework and
(G, q) be equivalent to (G, p). Since H is globally rigid, we may assume (by applying
a suitable translation and/or rotation by 180◦) that p|H = q|H . In particular, p(u) =
q(u) and p(w) = q(w). Since vu, vw ∈ D, this implies that p(v) = q(v). Thus (G, p)
and (G, q) are congruent.

Suppose that G is globally rigid. Let (H, p′) be a generic framework and (H, q′) be
equivalent to (H, p′). Choose a point P ∈ R2 such that p′(V − v) ∪ {P} is generic.
Let (G, p) be the generic realization of G with p(x) = p′(x) for all x ∈ V − v and
p(v) = P . Let Q be the point of intersection of the lines through q′(u) and q′(w)
with slopes sp(v, u) and sp(v, w), respectively. Let (G, q) be the realization of G with
q(x) = q′(x) for all x ∈ V − v and q(v) = Q. Then (G, p) and (G, q) are equivalent.
Since G is globally rigid, (G, p) and (G, q) are congruent. Hence (H, p′) and (H, q′)
are congruent. •

To prove a similar result concerning 1-extensions we need a few more definitions.
Let (G, p) be a generic mixed framework and u, v ∈ V . The pair {u, v} is globally
distance linked, respectively globally direction linked, in (G, p) if, in all equivalent
frameworks (G, q), we have lp(u, v) = lq(u, v), respectively sp(u, v) = sq(u, v). It is
globally linked in (G, p) if it is both globally distance linked and globally direction
linked. The pair {u, v} is globally distance linked, respectively globally direction linked
or globally linked, in G if it is globally distance linked, respectively globally direction
linked or globally linked, in all generic frameworks (G, p).

Lemma 4.2. Let G = (V, D ∪ L) be a mixed graph and v ∈ V (G) with d(v) = 3. Let
vu, vw, vt be the edges incident to v and suppose that G − v is rigid.
(a) If {vu, vw, vt} ⊆ D, then {u, w}, {u, t} and {w, t} are globally direction linked in
G.
(b) If {vu, vw, vt} ⊆ L, then {u, w}, {u, t} and {w, t} are globally distance linked in
G.
(c) If {vu, vw, vt} ∩ D 6= ∅ 6= {vu, vw, vt} ∩ L, then {u, w}, {u, t} and {w, t} are
globally linked in G.

Proof: Note that v must have three distinct neighbours in cases (a) and (b), but may
only have two distinct neighbours in case (c). Relabelling if necessary, we may suppose
that u 6= w 6= t in all cases. Let V = {v1, v2, . . . , vn}, where v1 = u, v2 = w, v3 = t
if u 6= t, and vn = v. Let (G, p∗) and (G, q∗) be equivalent quasi-generic frameworks.
By Lemma 3.3, (G, p∗) is congruent to a framework (G, p), where p(v1) = (0, 0),
p(vi) = (p2i−1, p2i) for 2 ≤ i ≤ n, and {p3, p4, . . . , p2n} is algebraically independent
over Q. Similarly (G, q∗) is congruent to a framework (G, q), where q(v1) = (0, 0),
and q(vi) = (q2i−1, q2i) for 2 ≤ i ≤ n.

Let p′ = p|V −v and q′ = q|V −v. Consider the equivalent quasi-generic frameworks
(G − v, p′) and (G − v, q′). Applying Lemmas 3.4 and 3.5 to a minimally rigid span-
ning subgraph of G − v, we have K̃ = L̃ where K = Q(p′) and L = Q(q′). Thus
q3, q4, q5, q6 ∈ K̃ and q3, q4, q5, q6 are algebraically independent over Q.
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Section 4. Extensions and globally linked vertices 9

(a) Since (G, q) is equivalent to (G, p), we have the following equations:

q2n/q2n−1 = p2n/p2n−1 (1)

(q2n − q4)/(q2n−1 − q3) = (p2n − p4)/(p2n−1 − p3) (2)

(q2n − q6)/(q2n−1 − q5) = (p2n − p6)/(p2n−1 − p5). (3)

We may rewrite each of the above equations as:

q2np2n−1 = p2nq2n−1 (4)

q2n(p2n−1 − p3) − q2n−1(p2n − p4) = q4(p2n−1 − p3) − q3(p2n − p4) (5)

q2n(p2n−1 − p5) − q2n−1(p2n − p6) = q6(p2n−1 − p5) − q5(p2n − p6) (6)

Using equations (4) and (5) we obtain

q2n−1p4 − q2np3 = q3(p4 − p2n) − q4(p3 − p2n−1). (7)

Similarly, using equations (4) and (6), we obtain

q2n−1p6 − q2np5 = q5(p6 − p2n) − q6(p5 − p2n−1). (8)

We may solve (7) and (8) for q2n−1 and q2n and then substitute into (4) to obtain

a2,0p
2

2n−1 + a0,2p
2

2n + a1,1p2n−1p2n + a1,0p2n−1 + a0,1p2n + a0,0 = 0,

where ai,j ∈ K̃. This means, that there is a polynomial

f = a2,0z
2

1 + a0,2z
2

2 + a1,1z1z2 + a1,0z1 + a0,1z2 + a0,0 ∈ K̃[z1, z2]

such that f(p2n−1, p2n) = 0. Since {p3, p4, . . . , p2n} is algebraically independent over
Q, {p2n−1, p2n} is algebraically independent over K̃. Thus f ≡ 0. We have, a2,0 =
q4p6− q6p4, a0,2 = q3p5− q5p3 and a1,1 = q6p3 − q4p5 + q5p4 − q3p6. Putting a2,0 = 0 we
obtain p6 = q6p4/q4. Similarly, a0,2 = 0 implies that p5 = q5p3/q3. We may substitute
these values for p5, p6 into the equation a1,1 = 0 to obtain p4/p3 = q4/q3. Thus the
pair (u, w) is globally direction linked. Symmetry now implies that (u, w) and (w, t)
are also globally direction linked.

(b) Since (G, q) is equivalent to (G, p), we have the following equations:

q2

2n−1 + q2

2n = p2

2n−1 + p2

2n (9)

(q2n−1 − q3)
2 + (q2n − q4)

2 = (p2n−1 − p3)
2 + (p2n − p4)

2 (10)

(q2n−1 − q5)
2 + (q2n − q6)

2 = (p2n−1 − p5)
2 + (p2n − p6)

2. (11)

Using equations (9) and (10) we obtain

q3(2q2n−1 − q3) + q4(2q2n − q4) = p3(2p2n−1 − p3) + p4(2p2n − p4). (12)

Similarly, using equations (9) and (11), we obtain

q5(2q2n−1 − q5) + q6(2q2n − q6) = p5(2p2n−1 − p5) + p6(2p2n − p6). (13)

EGRES Technical Report No. 2008-08



Section 4. Extensions and globally linked vertices 10

We may solve (12) and (13) for q2n−1 and q2n and then substitute into (9) to obtain

a2,0p
2

2n−1 + a0,2p
2

2n + a1,1p2n−1p2n + a1,0p2n−1 + a0,1p2n + a0,0 = 0,

where ai,j ∈ K̃. We may deduce, as in (a), that ai,j = 0 for all 0 ≤ i + j ≤ 2. In
particular,

a2,0 = (p3q6 − p5q4)
2 + (p3q5 − p5q3)

2 − (q3q6 − q5q4)
2 = 0

a0,2 = (p4q6 − p6q4)
2 + (p4q5 − p6q3)

2 − (q3q6 − q5q4)
2 = 0

a1,1 = p3(p4q
2

6 + p4q
2

5 − p6q3q5 − p6q4q6) +

p5p6q
2

3 + p5p6q
2

4 − p4p5q4q5 − p4p5q3q5 = 0.

We may solve the a1,1-equation for p3 and substitute into the a2,0-equation to obtain
(q3q6 − q5q4)

2b2,0 = 0, where

b2,0 = p2

5[(p4q6 − p6q4)
2 + (p4q5 − p6q3)

2] − [q6(p4q6 − p6q4) + q5(p4q5 − p6q3)]
2.

Since q3, q4, q5, q6 are algebraically independent over Q, we have (q3q6−q5q4)
2 6= 0 and

hence b2,0 = 0. If we now use the a0,2-equation to replace p2
5(p4q6 − p6q4)

2 + (p4q5 −
p6q3)

2, q2
6(p4q6 − p6q4)

2, and q2
5(p4q5 − p6q3)

2 by p2
5(q3q6 − q5q4)

2, q2
6[(q3q6 − q5q4)

2 −
(p4q5−p6q3)

2], and q2
5 [(q3q6−q5q4)

2− (p4q6−p6q4)
2], respectively, in the b2,0-equation,

we obtain
(q3q6 − q5q4)

2(p2

5 + p2

6 − q2

5 − q2

6) = 0.

Since (q3q6 − q5q4)
2 6= 0, this gives (p2

5 + p2
6) − (q2

5 + q2
6) = 0. Thus the pair (u, t) is

globally distance linked. Symmetry now implies that (u, w) and (w, t) are also globally
distance linked.

(c) We need to consider two cases, depending on whether v is incident to two direction
edges or two length edges.

Case 1: vu ∈ L and vw, vt ∈ D.
We first consider the subcase when u 6= t. Since (G, q) is equivalent to (G, p), we have
the following equations:

q2

2n−1 + q2

2n = p2

2n−1 + p2

2n (14)

(q2n − q4)/(q2n−1 − q3) = (p2n − p4)/(p2n−1 − p3) (15)

(q2n − q6)/(q2n−1 − q5) = (p2n − p6)/(p2n−1 − p5). (16)

Using equation (15) we obtain

q2n−1(p4 − p2n) − q2n(p3 − p2n−1) = q3(p4 − p2n) − q4(p3 − p2n−1). (17)

Similarly, using equation (16), we obtain

q2n−1(p6 − p2n) − q2n(p5 − p2n−1) = q5(p6 − p2n) − q6(p5 − p2n−1). (18)
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We may solve (17) and (18) for q2n−1 and q2n and then substitute into (14) to obtain∑
0≤i+j≤4

ai,jp
i
2n−1p

j
2n = 0, where ai,j ∈ K̃ for all 0 ≤ i+j ≤ 6. Again we have ai,j = 0

for all 0 ≤ i + j ≤ 4. In particular,

a4,0 = (p6 − p4)
2 − (q6 − q4)

2 = 0

a3,1 = 2((p5 − p3)(p6 − p4) − (q5 − q3)(q6 − q4)) = 0

a3,0 = 2[(p6 − p4)(p4p5 − p6p3) + (q6 − q4)(p4q3 − p6q5) +

(q6 − q4)
2(p5 + p3)] = 0

a0,3 = 2[(p5 − p3)(p3p6 − p5p4) + (q5 − q3)(p3q4 − p5q6) +

(q5 − q3)
2(p6 + p4)] = 0

The a4,0-equation tells us that q6 − q4 = α(p6 − p4) for some α ∈ {1,−1}. Sub-
stituting into the a3,1- and a3,0-equations, we obtain q5 − q3 = α(p5 − p3), and
(p6 − p4)(p6[p5 − αq5] − p4[p3 − αq3]) = 0. Since p6 6= p4, we may use both equa-
tions to deduce that p3 = αq3 and p5 = αq5. A similar argument using the a4,0-, a3,1-
and a0,3-equations gives p4 = αq4 and p6 = αq6. Hence either pi = qi for all 3 ≤ i ≤ 6
or pi = −qi for all 3 ≤ i ≤ 6. Thus {u, w}, {u, t} and {w, t} are globally linked in G.

The subcase when u = t can be handled similarly. We replace each of p5, p6, q5, q6

by zero in the above analysis. The resulting a4,0- and a3,1-equations then imply that
(p3, p4) = ±(q3, q4) and hence (u, w) is globally linked in G.

Case 2: vu ∈ D and vw, vt ∈ L.
We first consider the subcase when u 6= t. Since (G, q) is equivalent to (G, p), we have
the following equations:

q2n/q2n−1 = p2n/p2n−1 (19)

(q2n−1 − q3)
2 + (q2n − q4)

2 = (p2n−1 − p3)
2 + (p2n − p4)

2 (20)

(q2n−1 − q5)
2 + (q2n − q6)

2 = (p2n−1 − p5)
2 + (p2n − p6)

2. (21)

Using equations (20) and (21) we obtain

(2q2n−1 − q3 − q5)(q5 − q3) + (2q2n − q4 − q6)(q6 − q4) =

(2p2n−1 − p3 − p5)(p5 − p3) + (2p2n − p4 − p6)(p6 − p4). (22)

We may solve (19) and (22) for q2n−1 and q2n and then substitute into (20) to obtain∑
0≤i+j≤4

ai,jp
i
2n−1p

j
2n = 0, where aij ∈ K̃ for all 0 ≤ i+ j ≤ 4. Again we have ai,j = 0

for all 0 ≤ i + j ≤ 4. In particular,

a4,0 = (q5 − q3)
2 − (p5 − p3)

2 = 0

a0,4 = (q6 − q4)
2 − (p6 − p4)

2 = 0

a3,1 = 2(−p5p6 − p3p4 + p3p6 + p4p5 + q5q6 − q3q6 − q5q4 + q3q4) = 0

a3,0 = (p5 − p3)(p
2

5 − p2

3 + p2

6 − p2

4 + q2

4 − q2

6) − (p5 + p3)(q5 − q3)
2 = 0

a0,3 = (p6 − p4)(p
2

6 − p2

4 + p2

5 − p2

3 + q2

3 − q2

5) − (p6 + p4)(q6 − q4)
2 = 0
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The a4,0-equation tells us that (q5 − q3)
2 = (p5 − p3)

2. We may use this to replace
(q5−q3)

2 by (p5−p3)
2 in the last term of the a3,0 equation to obtain (p5−p3)(p

2
6−p2

4+
q2
4 −q2

6) = 0. Since {p3, p4, . . . , p2n} is algebraically independent over Q, (p5−p3) 6= 0.
Thus p2

6 − p2
4 = q2

6 − q2
4 . We may combine this with the a4,0-equation to deduce that

p2
4 = q2

4 and p2
6 = q2

6. A similar analysis using the a0,4- and a0,3-equations yeilds p2
3 = q2

3

and p2
5 = q2

5. Thus pi = αiqi for some αi ∈ {1,−1} and all 3 ≤ i ≤ 6. Substituting
into the a3,1-equation we obtain

(1 − α5α6)q5q6 + (1 − α3α4)q3q4 + (α3α6 − 1)q3q6 + (α4α5 − 1)q4q5 = 0.

Since {q3, q4, q5, q6} is algebraically independent over Q, all coefficients must be zero.
This implies that all the αi are equal and hence either pi = qi for all 3 ≤ i ≤ 6 or
pi = −qi for all 3 ≤ i ≤ 6. Thus {u, w}, {u, t} and {w, t} are globally linked in G.

The subcase when u = t can be handled similarly. We replace each of p5, p6, q5, q6

by zero in the above analysis. The resulting a4,0-, a0,4- and a3,1-equations then imply
that (p3, p4) = ±(q3, q4) and hence (u, w) is globally linked in G. •

Theorem 4.3. Let G be a 1-extension of a mixed graph H, so H = G − v + uw for
some vertex v of G where u, w are neighbours of v. Suppose that H − uw is rigid and
that x, y are vertices of H. If (x, y) is globally linked in H then (x, y) is globally linked
in G.

Proof: Suppose (G, p) is a generic mixed framework and that (G, q) is equivalent to
(G, p). Let p′ = p|V −v and q′ = q|V −v. Since G − v = H − uw is rigid, Lemma 4.2
implies that {u, w} is globally direction linked in G if G is a direction 1-extension of
H , that {u, w} is globally distance linked in G if G is a distance 1-extension of H ,
and that {u, w} is globally linked in G if G is a mixed 1-extension of H . Thus (H, p′)
and (H, q′) are equivalent. Since {x, y} is globally linked in H , we have

lp(x, y) = lp′(x, y) = lq′(x, y) = lq(x, y)

and
sp(x, y) = sp′(x, y) = sq′(x, y) = sq(x, y).

Thus {x, y} is globally linked in G. •

Corollary 4.4. Let H be a globally rigid mixed graph with |V (H)| ≥ 3 and G be
obtained from H by a 1-extension, which deletes an edge uw and adds a vertex v
joined to vertices u, w, t. Suppose that H − uw is rigid. Then G is globally rigid.

Proof: Theorem 4.3 and the fact that H is globally rigid imply that all pairs
{x, y} ⊆ V − v are globally linked in G. Suppose (G, p) is a generic framework
and that (G, q) is equivalent to (G, p). Let p′ = p|V −v and q′ = q|V −v. Since all
pairs {x, y} ⊆ V − v are globally linked in G, we may assume (by applying a suitable
translation and/or rotation by 180◦ to (G, p)) that p′ = q′. Since (G, p) is generic and
dG(v) = 3, this implies that we must also have p(v) = q(v). Thus (G, p) and (G, q)
are congruent. •
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5 Rigidity and infinitesimal rigidity

In this section we show that infinitesimal rigidity and rigidity are equivalent conditions
for generic mixed frameworks. It follows that infinitesimal rigidity is a necessary
condition for global mixed rigidity in mixed graphs. (Other necessary conditions for
mixed global rigidity are given in [10].) Our proofs use the rigidity map and some
elementary differential topology. They are similar to those of the analogous results
for length frameworks given by Asimow and Roth [1].

Let U be an open subset of Rm, f : U → Rn be a smooth map. For X ⊂ Rn

let f−1(X) = {u ∈ U : f(u) ∈ X}. Let k be the maximum rank of the Jacobian
df |y over all y ∈ U . A point x ∈ U , is a regular point of f if rank df |x = k, and
f(x) is a regular value of f if f−1(f(x)) contains only regular points. Note that if
G = (V ; D, L) is a rigid mixed graph and fG : T → R|D∪L| is its rigidity map, then a
point p ∈ T is a regular point of fG if and only if (G, p) is infinitesimally rigid, and
fG(p) is a regular value of fG if and only if all frameworks (G, q) which are equivalent
to (G, p) are infinitesimally rigid.

Lemma 5.1. Suppose that (G, p) is an infinitesimally rigid mixed framework. Then
(G, p) is rigid.

Proof: Let V (G) = {v1, v2, . . . , vn}. Since (G, p) is infinitesimally rigid, we may
choose a spanning subgraph H of G such that H has 2n − 2 edges and (H, p) is in-
finitesimally rigid. Relabelling the vertices of G if necessary, we may suppose that
the last 2n − 2 rows of dfH|p are linearly independent. Suppose that (H, p) is not
rigid. Then for all k ≥ 1, there exists a realization (H, p(k)) of H such that (H, p)
and (H, p(k)) are equivalent non-congruent frameworks and ‖p − p(k)‖ < 1/k. Ap-
plying a suitable translation to (H, p) and to each (H, p(k)) if necessary, we may
suppose that (H, p) and each (H, p(k)) are in standard position with v1 mapped onto
the origin. We may choose our coordinate system such that (H, p), and hence also
each (H, p(k)), has no vertical direction edges. Let T be the set of all points q ∈ R2n

such that (H, q) is in standard position and has no vertical direction edges. For each
q = (0, 0, q3, q4, . . . , q2n) ∈ T let q̂ = (q3, q4, . . . , q2n) and put T̂ = {q̂ : q ∈ T}.
Define f : T̂ → R2n−2 by f(q̂) = fH(q). Since the last 2n−2 rows of dfH |p are linearly
independent, df |p̂ is non-singular. By the inverse function theorem, f maps some

open neighborhood U of p̂ in T̂ diffeomorphically onto f(U). In particular, for all

points q̂ ∈ U − p̂, we have f(q̂) 6= f(p̂). This contradicts the fact that the points ˆp(k)

converge to p̂ and satisfy f( ˆp(k)) = f(p̂) for all k ≥ 1. Thus (H, p) is rigid. Hence
(G, p) is also rigid. •

We next show that the converse of Lemma 5.1 holds when (G, p) is quasi-generic.
We will need the following basic result from differential topology, see for example [12,
Lemma 1, page 11].

Lemma 5.2. Let U be an open subset of Rm and f : U → Rn be a smooth map.
Suppose that x ∈ U and that f(x) is a regular value of f with rank df |x = k. Then
f−1(f(x)) is an (m − k)-dimensional manifold.

EGRES Technical Report No. 2008-08



Section 6. Concluding remarks 14

Lemma 5.3. Suppose that (G, p) is a quasi-generic mixed framework. Then (G, p) is
rigid if and only if (G, p) is infinitesimally rigid.

Proof: Sufficiency follows from Lemma 5.1. Suppose that that (G, p) is not infinites-
imally rigid. We may choose our coordinate system such that (G, p) is in standard
position and has no vertical direction edges. Let T be the set of all points q ∈ R2n

such that (G, q) is in standard position and has no vertical direction edges, where
n = |V (G)|. For each q = (0, 0, q3, q4, . . . , q2n) ∈ T let q̂ = (q3, q4, . . . , q2n) and put
T̂ = {q̂ : q ∈ T}. Define f : T̂ → Rm by f(q̂) = fG(q), where m = |E(G)|. Since p̂
is generic, p̂ is a regular point of f . Let k = rank df |p̂. By continuity, there exists an

open neighbourhood W ⊂ T̂ of p̂ such that rank df |ŵ = k for all w ∈ W . Let g = f |W .
Then f(p̂) is a regular value of g. By Lemma 5.2, M = g−1(g(p̂)) = f−1(f(p̂))∩W is a
(2n−2−k)-dimensional manifold. Since (G, p) is not infinitesimally rigid, k < 2n−2
and hence M has dimension at least one. Thus we may choose a sequence of points
p̂i ∈ M −{p̂}, converging to p̂. Since p̂i ∈ M , f(p̂i) = f(p) and hence (G, pi) is equiv-
alent to (G, p). Since (G, pi) and (G, p) are in standard position and p̂i 6= p̂, (G, pi) is
not a translation of (G, p). Furthermore, when p̂i is close enough to p̂, (G, pi) is not a
dilation of (G, p) by −1. Hence (G, pi) is not congruent to (G, p) whenever pi is close
enough to p. Thus (G, p) is not rigid. •

6 Concluding remarks

In this paper we proved, among others, that mixed versions of the Henneberg oper-
ations preserve global mixed rigidity. In [10] we use these results, together with new
inductive constructions, to give a characterization for globally rigid mixed graphs G
for which the edge set of G is a circuit in the direction-length rigidity matroid. Al-
though this characterization may lead to a more complete characterization of global
mixed rigidity, the following example indicates that we may need additional opera-
tions (other than 0- and 1-extensions and edge-additions) in an inductive construction
which could be used to characterize global mixed rigidity in general mixed graphs.
Consider the mixed graph G obtained by connecting two disjoint copies of pure length
K4’s by four disjoint direction edges. This graph, which appears to be globally mixed
rigid, has no vertices of degree less than four and for all edges e of G the mixed graph
G − e is no longer globally mixed rigid. Thus it cannot be obtained from a smaller
globally mixed rigid graph by any of the above operations.
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