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Abstract

A graph G = (V,E) is said to be 6-mixed-connected if G−U−D is connected
for all sets U ⊆ V and D ⊆ E which satisfy 2|U | + |D| ≤ 5. In this note we
prove that 6-mixed-connected graphs are (redundantly globally) rigid in the
plane. This improves on a previous result of Lovász and Yemini.

1 Introduction

All graph considered are without loops and multiple edges. In this note we consider
sufficient connectivity conditions which imply the rigidity or global rigidity of a graph
in two dimensions. For definitions and basic results on rigid and globally rigid bar-
and-joint frameworks and graphs see e.g. [2, 3, 4, 9]. It is well-known, by a result of
Lovász and Yemini [8, Theorem 2] from 1982, that 6-vertex-connected graphs are rigid
in the plane. This implies, by using the more recent characterization of globally rigid
graphs [4, Theorem 7.1], that 6-vertex-connectivity is also sufficient to ensure global
rigidity [4, Theorem 7.2]. An infinite family of 5-vertex-connected non-rigid graphs
given in [8] shows that hypothesis on the vertex connectivity in the Lovasz-Yemini
theorem cannot be reduced from six to five. On the other hand, it was shown in [5]
that the connectivity hypothesis can be replaced by a slightly weaker hypothesis of
‘essential-6-vertex-connectivity’ which allows vertex cuts of size four or five as long as
they only separate one or at most three vertices, respectively, from the graph.

The purpose of this note is to show that the connectivity hypothesis of the Lovasz-
Yemini theorem can be weakened in a more substantial way and still guarantee the
rigidity and global rigidity of the graph. To this end we define the following form
of ‘mixed connectivity’, which was introduced, in a more general form, by Kaneko
and Ota [6] and has turned out to be a useful concept in graph connectivity, see
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dapest, Hungary. e-mail: jordan@cs.elte.hu. Supported by the MTA-ELTE Egerváry Research
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e.g. [1]. Let G = (V, E) be a graph. A pair (U,D) with U ⊆ V and D ⊆ E is a
mixed cut in G if G−U −D is not connected. We say that G is 6-mixed-connected if
2|U | + |D| ≥ 6 for all mixed cuts (U,D) in G. Equivalently, G is 6-mixed-connected
if G is 6-edge-connected, G − v is 4-edge-connected for all v ∈ V , and G − {u, v} is
2-edge-connected for all pairs u, v ∈ V . It follows that 6-vertex-connected graphs are
6-mixed-connected and 6-mixed-connected graphs are 3-vertex-connected.

The following characterization of rigidity, which can be deduced from Laman’s
result [7], is a slight reformulation of [8, Corollary 4], see [4, Corollary 2.5]. A
cover of G = (V, E) is a collection X = {X1, X2, ..., Xt} of subsets of V such that
{E(G[X1], E(G[X2], ..., E(G[Xt])} partitions E, where E(G[X]) denotes the set of
edges in the subgraph G[X] of G induced by X.

Theorem 1.1. [8] Let G = (V, E) be a graph. Then G is rigid if and only if for all
covers X of G we have

∑
X∈X (2|X| − 3) ≥ 2|V | − 3.

As it is noted in [8], 6-vertex-connectivity of G = (V, E) not only implies that G
is rigid, but also implies the stronger result that G − F is rigid for all F ⊆ E with
|F | ≤ 3. We shall extend this stronger form to 6-mixed-connected graphs.

Theorem 1.2. Let G = (V, E) be a 6-mixed-connected graph. Then G − F is rigid
for all F ⊆ E with |F | ≤ 3.

Proof: We proceed by contradiction. Suppose that the graph G and specified edge set
F is a counterexample chosen such that |V |+ |F | is as small as possible and, subject
to this condition, |E| is as large as possible. Since G − F is not rigid, Theorem 1.1
implies that there exists a cover X of G− F such that

∑
X∈X (2|X| − 3) ≤ 2|V | − 4.

Let Yf be the vertex set of f for each f ∈ F . The minimality of |F | implies that
Yf 6⊆ X for all f ∈ F and X ∈ X . Hence Y = X ∪ {Yf : f ∈ F} is a cover of G
which satisfies ∑

Y ∈Y

(2|Y | − 3) ≤ 2|V | − 1. (1)

The maximality of |E| implies that G[Y ] is a complete graph K|Y | for all Y ∈ Y .
For each v ∈ V , let c(v) be the number of sets in Y which contain v.

Claim 1.3. Suppose c(v) = 1 for some v ∈ V and let Y be the member of Y which
contains v. Then G[Y ] = K7.

Proof: Let G[Y ] = Kp. Since G is 6-mixed-connected, dG(v) ≥ 6. Since c(v) = 1,
this implies that p ≥ 7. Let G′ = G − v, Y ′ = Y − v and X ′ = (X − Y ) ∪ Y ′. Then
X ′ covers G′ − F and

∑
X∈X ′(2|X| − 3) ≤ 2|V − v| − 4. Thus G′ − F is not rigid.

The minimality of |V | + |F | now implies that G′ is not 6-mixed-connected. Thus
G′ = (V ′, E ′) has a mixed cut (U,D) with U ⊆ V ′, D ⊆ E ′, and 2|U |+ |D| ≤ 5. Let
H = G′ − U −D, H1 be a connected component of H, and H2 = H − H1. Since G
is 6-mixed-connected, v is adjacent to at least one vertex of each of H1 and H2 in G.
Let x, y1, y2 be the number of neighbours of v in U , H1, and H2, respectively. The
fact that G[Y ] = Kp implies that x + y1 + y2 = dG(v) = p− 1, and that the number
of edges of G′ from H1 to H2 is at least y1y2. Thus 2x + y1y2 ≤ 2|U |+ |D| ≤ 5. This,
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and the fact that x + y1 + y2 = p− 1 ≥ 6 gives p = 7. •

Let Z = {Y ∈ Y : c(v) = 1 for some v ∈ Y } and B =
⋃

Z∈Z Z. For each v ∈ V ,
let T (v) be the multi-set containing the sizes of the distinct members of Y which
contain v, and let b(v) be the number of elements of Z which contain v.

Claim 1.4. Suppose Z ∈ Z. Then∑
v∈Z

1

b(v)

∑
a∈T (v)

(
2− 3

a

)
≥ 2

∑
v∈Z

1

b(v)
.

Proof: Let:

Z1 = {v ∈ Z : c(v) = 1}
Z2 = {v ∈ Z : b(v) = 1 and T (v) = {7, 2}}
Z3 = {v ∈ Z : c(v) ≥ 2, b(v) = 1, and T (v) 6= {7, 2}}
Z4 = {v ∈ Z : b(v) ≥ 2}.

The definitions of Z1, Z2 and Claim 1.3 imply:∑
v∈Z1

1
b(v)

∑
a∈T (v)

(
2− 3

a

)
=

11
7
|Z1| (2)

∑
v∈Z2

1
b(v)

∑
a∈T (v)

(
2− 3

a

)
=

29
14
|Z2|. (3)

Similarly, the definitions of Z3, Z4 and Claim 1.3 imply:∑
v∈Z3

1
b(v)

∑
a∈T (v)

(
2− 3

a

)
≥ 18

7
|Z3| (4)

∑
v∈Z4

1
b(v)

∑
a∈T (v)

(
2− 3

a

)
≥ 11

7
|Z4|. (5)

We also have:
2
∑
v∈Z

1
b(v)

≤ 2|Z1|+ 2|Z2|+ 2|Z3|+ |Z4| . (6)

We may use (in)equalities (2) to (6) and the fact that |Z1| = 7−|Z2|− |Z3|− |Z4| to obtain:∑
v∈Z

1
b(v)

∑
a∈T (v)

(
2− 3

a

)
≥ 2

∑
v∈Z

1
b(v)

− 3
7
|Z1|+

1
14
|Z2|+

4
7

(|Z3|+ |Z4|)

= 2
∑
v∈Z

1
b(v)

+
1
2
|Z2|+ |Z3|+ |Z4| − 3. (7)

Let D be the set of edges of G from Z2 to V −Z. The definition of Z2 implies that |D| = |Z2|.
Since Z1 6= ∅, (Z3 ∪ Z4, D) is a mixed cut of G. (Note that V − Z 6= ∅, since otherwise
G = K7 and F = ∅ would follow, contradicting the fact that K7 is rigid.) Hence

2(|Z3|+ |Z4|) + |D| = 2(|Z3|+ |Z4|) + |Z2| ≥ 6. (8)
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The claim now follows from (7) and (8). •

We can now complete the proof of the theorem. For each v ∈ V let Yv be the set of all
elements of Y which contain v. We have∑

v∈V

∑
Y ∈Yv

(
2− 3
|Y |

)
=

∑
Y ∈Y

∑
v∈Y

(
2− 3
|Y |

)
=

∑
Y ∈Y
|Y |
(

2− 3
|Y |

)
=

∑
Y ∈Y

(2|Y | − 3) ≤ 2|V | − 1 (9)

by (1). On the other hand∑
v∈V

∑
Y ∈Yv

(
2− 3
|Y |

)
=
∑
v∈B

∑
Y ∈Yv

(
2− 3
|Y |

)
+

∑
v∈V−B

∑
Y ∈Yv

(
2− 3
|Y |

)
.

By Claim 1.4∑
v∈B

∑
Y ∈Yv

(
2− 3
|Y |

)
=
∑
Z∈Z

∑
v∈Z

1
b(v)

∑
a∈T (v)

(
2− 3

a

)
≥ 2

∑
Z∈Z

∑
v∈Z

1
b(v)

= 2|B|.

Furthermore, for each v ∈ V − B, we have c(v) = |Yv| ≥ 2, and
∑

Y ∈Yv
(|Y | − 1) ≥ 6, since

dG(v) ≥ 6. These inequalities imply that∑
Y ∈Yv

(
2− 3
|Y |

)
≥ 2.

Thus ∑
v∈V−B

∑
Y ∈Yv

(
2− 3
|Y |

)
≥ 2|V −B|.

Thus ∑
v∈V

∑
Y ∈Yv

(
2− 3
|Y |

)
≥ 2|B|+ 2|V −B| = 2|V |.

This contradicts (9) and completes the proof of the theorem. •

We showed in[4, Theorem 7.1] that a graph on at least four vertices is globally rigid in
two dimensions if and only if it is 3-vertex-connected and redundantly rigid, i.e. it remains
rigid after deleting any of its edges. Let G = (V,E) be a 6-mixed-connected graph. By
definition, G − e is 3-vertex-connected for all e ∈ E. Theorem 1.2 implies that G − e is
redundantly rigid for all e ∈ E. Thus we obtain:

Theorem 1.5. Let G = (V,E) be a 6-mixed-connected graph. Then G− e is globally rigid
for all e ∈ E.
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