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The stable roommates problem with choice functions

Tamás Fleiner?

Abstract

The stable marriage theorem of Gale and Shapley states that for n men and n women
there always exists a stable marriage scheme, that is, a set of marriages such that no
man and woman exists that mutually prefer one another to their partners. The stable
marriage theorem was generalized in two directions: the stable roommates problem is
the “one-sided” version, where any two agents on the market can form a partnership.
The generalization by Kelso and Crawford is in the “two-sided” model, but on one
side of the market agents have a so-called substitutable choice function, and stability is
interpreted in a natural way. It turned out that even if both sides of the market have
these substitutable choice functions, there still exists a stable assignment. This latter
version contains the “many-to-many” model where up to a personal quota, polygamy is
allowed for both men and women in the two-sided market.

The goal of this work is to solve the stable partnership problem, a generalization of
the one-sided model with substitutable choice functions. We do not quite reach that: be-
sides substitutability, we also need the increasing property for the result. Luckily, choice
functions in well-known stable matching theorems comply with this property. The main
result is a generalization of Irving’s algorithm, that is the first efficient method to solve
the stable roommates problem. This general algorithm allows us to deduce a generaliza-
tion of Tan’s result on characterizing the existence of a stable matching and to prove a
generalization of the so-called splitting property of many-to-many stable matchings. We
show that our algorithm is linear-time in some sense and indicate that for general (i.e.
not necessary increasing) substitutable choice functions the stable partnership problem
is NP-complete.

Keywords: Stable marriage problem, stable roommates problem, Irving’s algorithm,
choice function

1 Introduction

Gale and Shapley [8] introduced their famous marriage model almost a half century ago. The
model consists of n men and n women such that each person has a linear preference order
on the members of the opposite gender. The marriage theorem states, that for each such
model there exists a stable marriage scheme, that is, a set of disjoint couples in such a way
that no man and woman mutually prefer one another to their partners. It turned out that
variants of the model are useful in Game Theory, Economics, Graph Theory, Complexity
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Theory, Combinatorial Optimization and the Theory of Algorithms. Also, stable matchings
have a rich structure, and this also led to further generalizations. There are two natural
directions of these generalizations. For the first one, we drop the two-sided property of
the market. This way we get the stable roommates problem: any two agents may have a
relationship, the solution of the problem is more difficult, and a stable matching does not
always exist. Irving [10] was the first who gave an efficient algorithm that finds a stable
matching in a given model if it exists. Since then, many different approaches are known
for the same problem. (Cf. Tan [16], Tan and Hsueh [17], Subramanian [15], Feder [5] and
others. See also the book of Roth and Sotomayor [12] and of Gusfield and Irving [9] for
further details.)

The other direction for a possible generalization is that we allow that an agent may
participate in several relationships, so instead of a matching, we look for a certain subgraph
of the underlying graph with degree prescriptions. This is done by keeping linear preference
orders, but introducing quotas for the agents (this model is present already in the original
paper of Gale and Shapley), or in a much more general way, by choice functions. This is
what was initiated by Crawford and Knoer [4], and continued by Kelso and Crawford [11].
This choice function model is closely related to the lattice theoretical fixed point theorem
of Knaster and Tarski [18] as it was pointed out by Fleiner [6]. It is worth mentioning that
the nonbipartite stable roommates problem has to do with an other fixed point theorem:
as Aharoni and Fleiner [1] observed, it is a special case of the well known game theoretical
Scarf’s lemma [13]. (Scarf’s lemma can be regarded as a discrete version of Kakutani’s fixed
point theorem, which is a generalization of the topological fixed point theorem of Brouwer.)

In the present work, we move into both directions. In Section 2, we describe our one-sided
(nonbipartite) model and define the stability concept by choice functions. By a generaliza-
tion of Irving’s algorithm, we solve the defined stable partnership problem in Section 3 for
so called increasing choice functions. Furthermore, the same way as Tan [16] did, we show
that a certain half-integral solution always exists, and such a solution is either a generalized
stable matching or it is an immediate proof for the nonexistence of it. The reader who finds
it difficult to follow all the details may focus only on the solution of the stable partnership
problem and ignore the existence of half-integral solutions. It is fairly easy to reduce the
algorithm to the integral stable partnership problem, and proofs become much easier. If the
choice functions of the model are given by an oracle then the algorithm works in polynomial
time, and Section 4 gives a detailed analysis. We also show there that for general choice
functions the stable partnership problem is NP-complete. Section 5 contains a structural
result on stable partnerships: we generalize a result of Fleiner [7] (that was independently
found by Teo et al. [14]) on the splitting property of stable matchings. We conclude in
Section 6 with raising the question of a possible generalization of the well-known Scarf’s
lemma.

2 Preliminaries

Let G = (V,E) be a finite graph. For a subset E′ of E and vertex v of G let us denote
by E′(v) the set of edges of E′ that are incident with v. Let Cv denote the choice function
of vertex v, i.e. function Cv : 2E(v) → 2E(v) maps any set X of edges incident with v to a
subset of X that v chooses from X. We shall assume that choice functions we handle are
substitutable, that is, if x 6= y and x ∈ Cv(X), then x ∈ Cv(X \ {y}) holds. This roughly
means that if agent v would select some option x from set X of available options, then v
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would still select option x even if some other options are not available any more. For choice
function Cv, let us define function Cv of ignored options by Cv(X) := X \ Cv(X). It is
useful to see a connection between the above two notions.

Theorem 2.1. A choice function C on a finite groundset is substitutable if and only if C
is monotone, that is, if Y ⊆ X implies that C(Y ) ⊆ C(X).

In [6] choice functions C with the property that C is monotone are called comonotone.
So by theorem 2.1, a choice function on a finite ground set is comonotone if and only if it
is substitutable. Note that on infinite ground sets, comonotonicity of a choice function is a
stronger property than substitutability.

Proof. For finite groundsets, substitutability is equivalent with the property that for any
Y ⊆ X we have Y ∩ C(X) ⊆ C(Y ). Monotonicity of C is equivalent with the property
that for any Y ⊆ X, C(X) is disjoint from C(Y ), which is clearly equivalent with the first
property.

We say that a subset S of E is a stable partnership if for any vertex v Cv(S(v)) = S(v)
(this property is often called individual rationality) and no blocking edge e = uv 6∈ S exists
such that both e ∈ Cu(S(u) ∪ {e}) and e ∈ Cv(S(v) ∪ {e}) holds. The stable partnership
problem is given by a graph G = (V,E), choice functions Cv for each vertex, and our task
is to decide whether a stable partnership exists, and if yes, we have to find one.

An example of a substitutable choice function Cv on ground-set E(v) is a linear choice
function: we have a linear order on E(v) and Cv(X) is the minimal element of X according
to this linear order. If for all vertices v of G, choice function Cv is linear then a stable
partnership is simply a stable matching. Another possible choice function is when for each
vertex v, we have a “quota” b(v), and Cv(X) is the b(v) smallest element of X according
to the linear order. For these linear choice functions with quotas, a stable partnership is
nothing but the well-studied “many-to-many” stable matching (or stable b-matching). An
even more general substitutable choice function can be defined with matroids: let M be a
matroid on E(v) and fix a linear order on E(v) as well. Let Cv(F ) be the output of the
greedy algorithm on F , that is, we scan the elements of F in the given linear order, and
scanned element e is selected into Cv(F ), if e together with the previously selected elements
is independent in M.

Fleiner [6] generalized a result of Kelso and Crawford [11] by showing the following the-
orem.

Theorem 2.2 (Fleiner [6]). If G = (V,E) is a finite bipartite graph and for each vertex v,
choice function Cv on E(v) is substitutable, then there always exists a stable partnership.

Choice functions in the above examples satisfy the following additional property. Choice
function Cv is increasing if Y ⊆ X implies that |Cv(Y )| ≤ |Cv(X)|. This roughly means that
if extra choices are added, then we select at least as many options as we would have picked
without the extra ones. For a choice function Cv, we say that subset X of E v-dominates
element x if x ∈ Cv(X(v) ∪ {x}). If it causes no ambiguity, then instead of v-domination
we may speak about domination. For a choice function Cv, let Dv(X) denote the set of
elements (v-)dominated by X. Clearly, Cv(X) ⊆ Dv(X) and Cv(X) = X \Dv(X) holds for
any subset X of E(v).

Lemma 2.3. If choice function Cv is substitutable then dominance function Dv is monotone.
If choice function Cv is substitutable and increasing and Y ⊆ Dv(X) then Cv(X ∪ Y ) =

Cv(X), thus Dv(X ∪ Y ) = Dv(X).
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Proof. Assume first that A ⊆ B and a ∈ Dv(A). Monotonicity of Cv implies that a ∈
Cv(A∪{a}) ⊆ Cv(B∪{a}), so a ∈ Dv(B), hence Dv is monotone. (Actually, the implication
is true in the other direction, as well. If Dv is monotone then X 7→ X ∩Dv(X) = Cv(X) is
also also monotone, hence Cv is substitutable by Lemma 2.1.)

For the second part, let y ∈ Y ∪ Cv(X) be an arbitrary element dominated by X. So
y ∈ Cv(X ∪ {y}) ⊆ Cv(X ∪ Y ), where the second relation follows from the monotonicity
of Cv. Hence Y ∪ Cv(X) ⊆ Cv(X ∪ Y ), that is, Cv(X ∪ Y ) = (X ∪ Y ) \ Cv(X ∪ Y ) ⊆
(X ∪ Y ) \ (Cv(X) ∪ Y ) ⊆ X \ Cv(X) = Cv(X). As X ⊆ X ∪ Y , the increasing property of
Cv implies that |Cv(X)| ≤ |Cv(X ∪ Y )|, so Cv(X) = Cv(X ∪ Y ) follows.

With this notion of dominance, we can reformulate the notion of a stable partnership.

Theorem 2.4. If G = (V,E) is a finite graph and for each vertex v, choice function Cv on
E(v) is substitutable then S is a stable partnership if and only if E \ S =

⋃
v∈V Dv(S(v)),

that is, if S dominates exactly E \ S.

Proof. If S is a stable partnership then by individual rationality, no edge of S is dominated
by S. As no blocking edge exists, each edge outside S is dominated by S. On the other hand,
if E \ S =

⋃
v∈V Dv(S ∩ E(v)) then no edge of S is dominated by S, thus S is individually

rational. As each edge outside S is dominated, no blocking edge exists.

Let Cv be a choice function and let X ⊆ E(v). For an edge x in Cv(X) the X-replacement
of x according to Cv is the set R = Cv(X \ {x}) \ Cv(X). Roughly speaking, if option x is
not available any more, then from X we select the options of R instead of option x.

Lemma 2.5. If Cv is an increasing and substitutable choice function on E(v), X ⊆ E(v)
and x ∈ Cv(X), then the X-replacement R of x contains at most one element.

Proof. We have Cv(X) \ {x} ⊆ Cv(X \ {x}) by substitutability, so Cv(X \ {x}) = Cv(X) ∪
R \ {x}. From the increasing property of Cv, we get |Cv(X)| ≥ |Cv(X \ {x})| = |Cv(X) ∪
R \ {x}| = |Cv(X)|+ |R| − 1, and the lemma follows.

Let G = (V,E) be a graph and for each vertex v, let Cv be a choice function on E(v).
Let S be a subset of E and fix disjoint subsets S1, S2, . . . , Sl of S such that each Si is an
odd cycle with a fixed orientation. (Note that cycle Si is not necessarily a circuit: it can
traverse the same vertex several times.) Let S+

i (v) and S−i (v) denote the set of edges of Si
that leave and enter vertex v, respectively. Define edge set S+(v) := S(v) \

⋃l
i=1 S

−
i (v) as

the unoriented edges of S(v) together with the arcs of the Si’s that leave v. Similarly let
S−(v) := S(v) \

⋃l
i=1 S

+
i (v), denote the set unoriented edges of S(v) and all arcs of the Si’s

that enter v. We say that (S, S1, . . . , Sl) is a stable half-partnership if

1. for each v ∈ V , Cv(S(v)) = S+(v). Moreover,

2. If arcs e ∈ S−i (v) and f ∈ S+
i (v) are consecutive on Si then e is the S(v)-replacement

of f according to Cv.

3. E \ S =
⋃
v∈V Dv(S−(v)).

(The name of the notion corresponds to the fact that a stable half-partnership can be
regarded as a stable fractional partnership, where edges of the Si’s have weight 1

2 , and all
other edges of S have weight 1.) A consequence of the definition is that if (S, S1, . . . , Sl)
is a stable half-partnership and e = uv is an edge then exactly one of the following three
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possibilities holds. Either e is an unoriented edge of S (that does not belong to any of the
Si’s), or e is an edge of some Si, and hence if e = S−i (v) then e is dominated by S+

i (v), or e 6∈
S and hence e is dominated by S−(u) at some vertex u of e. If (S, S1, . . . , Sl) has properties
1. and 2. and edge e = uv 6∈ S is not dominated (i.e. e = uv and e 6∈ Du(S−(u))∪Dv(S−(v)))
then we say that e is blocking (S, S1, . . . , Sl). Observe that if (S) is a stable half-partnership
(that is, no oriented odd cycles are present) if and only if S is a stable partnership. Now
we can state our main result.

Theorem 2.6. If G = (V,E) is a finite graph and for each vertex v, choice function Cv on
E(v) is increasing and substitutable then there exists a stable half-partnership. Moreover,
if (S, S1, . . . , Sl) and (S′, S′1, . . . , S

′
m) are stable half-partnerships, then l = m and sets of

oriented cycles {S1, . . . , Sl} and {S′1, . . . , S′m} are identical.

Corollary 2.7. If (S, S1, . . . , Sl) is a stable half-partnership then either l = 0 and S is a
stable partnership, or no stable partnership exists whatsoever.

Corollary 2.7 shows that to solve the stable partnership problem in case of increasing
substitutable choice functions, it is enough to find a stable half-partnership. Note that
Theorem 2.6 is a generalization of Tan’s result [16] on stable half-matchings (or on “stable
partitions” in Tan’s terminology).

3 Proof of the main result

To prove our main result, we follow Tan’s method. Tan extended Irving’s algorithm such that
it finds a stable half-matching, and, with the help of the algorithm, he proved the unicity of
the oriented odd cycles. Here, instead of linear orders, we work with increasing substitutable
choice functions. To handle this situation, we shall generalize Irving’s algorithm to our
setting. Irving’s algorithm works in such a way that it keeps on deleting edges such that
no new stable matching is created after a deletion, and, if there was a stable matching
before a deletion, there should be one after it, as well. Irving’s algorithm terminates if the
actual graph is a matching, which, by the deletion rules is a stable matching for the original
problem. Similarly, our algorithm will delete edges in such a way that after a deletion no
new stable half-partnership can be created. Moreover, if there was a stable half-partnership
(S, S1, . . . , Sl) before some deletion, then we cannot delete an edge of any of the Si’s and
at least one stable half-partnership has to survive the deletion. If our algorithm terminates
then we are left with a graph G′ such that edge set E(G′) of G′ is a stable half partnership
of G′, hence it is a stable half partnership of G, as well. Our algorithm has different deletion
rules, and there is a priority of them. The algorithm always takes a highest priority step
that can be made.

To start the algorithm we need some definitions. We say that the first choices of v are
the edges of Cv(E(v)). These are the best possible options for agent v. If edge e = vw is a
first choice of v then we call arc e = vw a 1-arc. Note that if vw is a 1-arc then it is possible
that wv is also a 1-arc. Let A denote the set of 1-arcs. For a vertex v let A+(v) and A−(v)
stand for the set of 1-arcs that are oriented away from v and towards v, respectively.

The 1st priority (proposal) step is that we find and orient all 1-arcs.
As the problem did not change (we did not delete anything), the set of stable half-

partnerships is the same as it was before the orientation. After we found all 1-arcs, we
execute the
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2nd priority (rejection) step: If Dv(A−(v)) 6= ∅ for some vertex v then we delete
Dv(A−(v)).

Lemma 3.1. The set of stable half-partnerships does not change by a 2nd priority step.

Proof. Assume that (S, S1, . . . , Sl) is a stable half-partnership after the deletion. This means
that for each 1-arc f = uv of A−(v) either f belongs to S−(v), or, as f cannot be dominated
by S−(u) at u, f is dominated by S−(v) at v. Lemma 2.3 implies that Dv(A−(v)) =
Dv(Cv(A−(v))) ⊆ Dv(S−(v) ∪ Cv(A−(v))) = Dv(S−(v)), hence no deleted edge can block
(S, S1, . . . , Sl). This means that no new stable half-partnership can emerge after a 2nd
priority deletion.

Assume now that (S, S1, . . . , Sl) is a stable half-partnership before the deletion and some
edge e ∈ Dv(A−(v)) belongs to S. Similarly to the previous argument, this means that for
each 1-arc f = uv of Cv(A−(v)) either f belongs to S−(v), or (as f cannot be dominated
by S−(u) at u) f is dominated by S−(v) at v. Lemma 2.3 implies that e ∈ Dv(A−(v)) =
Cv(Dv(A−(v))) ⊆ Dv((S−(v)) ∪ Cv(A−(v)) = Dv(S−(v)), so e cannot belong to S(v), a
contradiction.

Later we need the following lemma.

Lemma 3.2. If no 1st and 2nd priority steps can be made then |A+(v)| = |A−(v)| for each
vertex v.

Proof. By the increasing property of Cv, we have |A−(v)| = |Cv(A−(v))| ≤ |Cv(E(v))| =
|A+(v)|. So each vertex v has at least as many outgoing 1-arcs as the number of 1-arcs
entering v. As both the total number of outgoing 1-arcs and the total number of ingoing
1-arcs is exactly |A|, the previous inequality must be an equality for each vertex v.

If no more 1st and 2nd priority steps can be made, we check for replacements. For a 1-arc
e = uv, let er = uw denote the E(u)-replacement of e according to Cu. (It might happen
that er does not exist.)

3rd priority (replacement) step: For each 1-arc e = uv, find E(u)-replacement er.
As we do not delete anything in a 3rd priority step, the set of stable partnerships does

not change by this step. Next we study replacements of 1-arcs.

Lemma 3.3. Assume that no 1st and 2nd priority steps can be made and that 1-arc e = uv
is not bidirected, that is, vu is not a 1-arc. Then the E(u)-replacement er of e is a unique
edge of E(u).

Proof. By Lemma 3.2 and the increasing property of Cu, we have |A+(u)| = |A−(u)| =
|Cu(A−(u))| ≤ |Cu(E(u)\{e})| ≤ |Cu(E(u))| = |A+(u)|, hence there is equality throughout.
In particular, we see that |Cu(E(u) \ {e})| = |A+(u)|. By substitutability of Cu, we have
A+(u) \ {e} = Cu(E(u)) \ {e} ⊆ Cu(E(u) \ {e}). This means that the E(u)-replacement of
e (that is, Cu(E(u) \ {e}) \A+(u)) is a unique edge of E(u).

Lemma 3.4. Assume that no 1st and 2nd priority step can be executed and e = uv is a 1-arc
such that vu is not a 1-arc. If er = uw is the E(u)-replacement of e, then Dw({er}∪A−(w))
contains exactly one 1-arc err = xw. Moreover, 1-arc err = xw has the property that its
inverse wx is not a 1-arc.
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Proof. By the 2nd priority step er 6∈ Dw(A−(w)), hence er ∈ Cw({er} ∪ A−(w)). The
increasing property of Cw gives that |A−(w)| = |Cw(A−(w))| ≤ |Cw({er} ∪ A−(w))| ≤
|Cw(E(w))| = |A+(w)| = |A−(w)|, where the last equality is due to Lemma 3.2. So we have
equality throughout, i.e. |A−(w)| = |Cw({err} ∪ A−(w))|, so er has a unique {er} ∪ A−(w)-
replacement err = xw. Clearly, if wx was a 1-arc then err ∈ Cw({err} ∪ A−(w)) holds, a
contradiction.

Assume now that no 1st, 2nd and 3rd priority steps are possible and consider the following
two cases.

Case 1. All 1-arcs are bidirected, that is, if e = uv is a 1-arc, then its opposite vu is also
a 1-arc. In other words, A+(v) = A−(v) = A(v) = E(v) for each vertex v. This means that
the edge set of our graph is a stable partnership, the algorithm terminates and outputs (S).

Case 2. There exists a 1-arc e = uv that is not bidirected. So there is an E(u)-
replacement er of e. Edge err in Lemma 3.4 is another 1-arc that is not bidirected. Following
the alternating sequence of nonbidirected 1-arcs and their replacements, we shall find a
sequence (e1, (e1)r, e2, (e2)r, . . . , em, (em)r, em+1 = e1) in such a way that (ei)rr = ei+1 for
i = 1, 2, . . . ,m and edges e1, e2, . . . , em are different 1-arcs, none of them is bidirected. After
Irving, we call such an alternating sequence (e1, (e1)r, e2, (e2)r, . . . , em, (em)r) of 1-arcs and
edges a rotation.

Lemma 3.5. Assume that (S, S1, . . . , Sl) is a stable half-partnership in graph G and no 1st,
2nd and 3rd priority step is possible. If (e1, (e1)r, e2, (e2)r, . . . , em, (em)r) is a rotation and
ei = xv ∈ S(v) then ei−1 = uw ∈ S+(u) follows, where addition is meant modulo m.

In particular, if ei ∈ S then {e1, e2, . . . , em} ⊆ S.

Proof. First we show that eri−1 = uv 6∈ S−(v) ∪Dv(S−(v)). Indirectly, assume eri−1 = uv ∈
S−(v) ∪ Dv(S−(v)). If f = zv ∈ A−(v) is a 1-arc then f (being a first choice) cannot be
dominated at z, so f ∈ S−(v) ∪Dv(S−(v)) follows, that is,

A−(v) ⊆ S−(v) ∪Dv(S−(v)) . (1)

By Lemma 2.3,

ei = (ei−1)rr ∈ Dv(A−(v) ∪ {(ei−1)r}) ⊆ Dv(S−(v) ∪Dv(S−(v)) ∪ {(ei−1)r}) = Dv(S−(v))

so ei 6∈ S(v), a contradiction. Thus eri−1 = uv 6∈ S−(v), hence eri−1 = uv 6∈ S+(u) and
eri−1 6∈ Dv(S−(v)), hence eri−1 ∈ Du(S+(u)). As eri−1 is the E(u)-replacement of first choice
ei−1, it follows that ei−1 ∈ S+(u), as Lemma 3.5 claims.

Lemma 3.6. Assume that no 1st, 2nd and 3rd priority step is possible and that
(S, S1, . . . , Sl) is a stable half-partnership. If (e1, (e1)r, e2, (e2)r, . . . , em, (em)r) is a rotation
then sets {e1, e2, . . . , em} and {er1, er2, . . . , erm} are either disjoint or identical.

If {e1, e2, . . . , em} = {er1, er2, . . . , erm} then m is odd and {e1, e2, . . . , em} is one of the Sj’s.
If sets {e1, e2, . . . , em} and {er1, er2, . . . , erm} are disjoint and ei ∈ S then {e1, . . . , em} ⊆

S \ (S1 ∪ . . . ∪ Sl). Moreover, (S′, S1, . . . , Sl) is a stable half-partnership for S′ = S \
{e1, e2, . . . , em} ∪ {er1, er2, . . . , erm}.

Proof. Assume first that sets {e1, e2, . . . , em} and {er1, er2, . . . , erm} are not disjoint, so ei =
uv = (ei+k)r for some i ∈ {1, 2, . . . ,m} and 1 ≤ k < m, where addition is meant modulo m.
If 1-arc ei+k is a first choice of x then (ei+k)r cannot be the first choice of x by the definition
of a replacement. This means that 1-arc ei+k = vw is a first choice of v (and not of u). As
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(ei+k)r is an E(v)-replacement of first choice ei+k of v, it follows that (ei+k)r ∈ Dv(F ) imply
ei+k ∈ F . Choose F = A−(v) ∪ {(ei−1)r}. We know that (ei+k)r = ei = (ei−1)rr ∈ Dv(F )
by the definition of (ei−1)rr, hence ei+k ∈ A−(v) ∪ {(ei−1)r}. As ei+k = vw is a 1-arc in the
rotation, ei+k 6∈ A−(v), so ei+k = (ei−1)r.

We proved that ei = (ei+k)r implies ei+k = (ei−1)r. The above argument for this latter
equality means that ei−1 = (ei+k−1)r. That is, ei = (ei+k)r yields ei−1 = (ei+k−1)r, ei−2 =
(ei+k−2)r, ei−3 = (ei+k−3)r, and so on. So for any j, we have ej = (ej+k)r. In particular,
we see that {e1, e2, . . . , em} = {er1, er2, . . . , erm}.

Another consequence is that ei+k = (ei−1)r = ei−1−k, so i+k ≡ i−1−k(mod m), that is,
2k+ 1 ≡ 0(mod m). As 1 ≤ k < m, we get that m = 2k+ 1, and edges e1, e2, . . . , em form a
cycle in order e1, ek+1, em, ek, em−1, ek−1, . . . , e2, ek+2. We shall prove that {e1, e2, . . . , em} ⊆
S. If ei ∈ S then this follows by Lemma 3.5. Otherwise, (ei+k)r = ei 6∈ S. This means
that (ei+k)r ∈ Dv(S−(v)), so ei+k ∈ S−(v) ⊆ S(v), and {e1, e2, . . . , em} ⊆ S by Lemma 3.5
again.

By property (1), A−(v) ⊆ S−(v) ∪Dv(S−(v)). Hence, by Lemma 2.3, we have

ei = (ei−1)rr ∈ Dv(A−(v) ∪ {(ei−1)r})
= Dv(A−(v) ∪ {ei+k}) ⊆ Dv(S−(v) ∪Dv(S−(v)) ∪ {ei+k})
⊆ Dv(S−(v) ∪Dv(S−(v)) ∪ S+(v)) = Dv(S+(v)) ,

thus, ei ∈ S(v) \ S+(v). This means that ei belongs to one of the cycles Sj of sta-
ble half-partnership (S, S1, S2, . . . , Sl), and ei is the replacement of ei+k for all i. Thus
{e1, e2, . . . , em} is indeed one of the Sj ’s.

To finish the proof, we settle the remaining case when sets {e1, e2, . . . , em} and
{(e1)r, (e2)r, . . . , (em)r} are disjoint. If ei ∈ S then {e1, e2, . . . , em} ⊆ S and 1-arc ei = uv is
in S+(u) by Lemma 3.5. If, indirectly ei ∈ Sj , so ei 6∈ S−(u) then (ei)r = uz 6∈ Du(S−(u)) as
(ei)r is the E(u)-replacement of ei. So either (ei)r ∈ Dz(S−(z)) or (ei)r ∈ S−(u). In the for-
mer case, ei+1 = (ei)rr ∈ Dz(A−(z)∪{(ei)r}). By property (1), A−(z) ⊆ S−(z)∪Dz(S−(z)),
so by Lemma 2.3 we have ei+1 ∈ Dz(S−(z) ∪Dz(S−(z)) ∪ {(ei)r}) = Dz(S−(z)), that con-
tradicts to ei+1 ∈ S. So (ei)r ∈ S−(u) holds. But ei+1 ∈ S is the E(v)-replacement of
(ei)r, and this can only happen if ei, (ei)r and ei+1 all belong to the same odd cycle Sj . The
argument shows that Sj is exactly the cycle (e1, (e1)r, e2, (e2)r, . . . , em, (em)r), which is a
contradiction, as |Sj | is not odd. So {e1, . . . , em} ⊆ S \ (S1 ∪ . . . ∪ Sl), as we claimed.

Consider (S′, S1, . . . , Sl). (Recall that S′ = S \ {e1, e2, . . . , em}∪ {er1, er2, . . . , erm}.) To see
that it is a stable half-partnership we check the three properties of the definition. Fix a vertex
v and let R+ and R− be the set of 1-arcs of rotation (e1, (e1)r, e2, (e2)r, . . . , em, (em)r) that
leave and enter v, respectively. Let moreover T+ := {(ei)r : ei ∈ R+} and T− := {(ei−1)r :
(ei−1)rr = ei ∈ R−}. Let S∗ be one of the sets S(v), S−(v) or S(v) \ {e} for some edge e of
some S+

j (v). To prove properties 1. and 2., we show that Cv(S∗ \ (R+ ∪R−) ∪ T+ ∪ T−) =
Cv(S∗) \ (R+ ∪R−) ∪ T+ ∪ T−.

The definition of replacements, property (1) and the monotonicity of Dv (Lemma 2.3)
implies that R− ⊆ Dv(A−(v) ∪ T−) ⊆ Dv(S−(v) ∪Dv(S−(v)) ∪ T−) ⊆ Dv(S−(v) ∪ T−) ⊆
Dv(S∗∪T−), hence R− is disjoint from Cv(S∗∪T−) and hence Cv(S∗∪T−) = Cv(S∗∪T− \
R−). Substitutability of Cv gives Cv(S∗ ∪ T−) ∩ S∗ ⊆ Cv(S∗), thus Cv(S∗ ∪ T− \ R−) =
Cv(S∗ ∪ T−) ⊆ Cv(S∗) \ R− ∪ T−. The increasing property of Cv implies that |(Cv(S∗)| ≤
|Cv(S∗ ∪ T−)| ≤ |Cv(S∗) \R− ∪ T−| = |Cv(S∗)| − |R−|+ |T−|, so from |R−| = |T−| we get
that Cv(S∗ ∪ T−) = Cv(S∗ ∪ T− \R−) = Cv(S∗) ∪ T− \R−.
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Assume that edge (ei)r = uv ∈ T+ is in S. Property (1) shows that A−(u) ⊆ S−(u) ∪
Du(S−(u)), so ei+1 = (ei)rr ∈ Du(A−(u) ∪ {(ei)r}) ⊆ Du(S−(u) ∪ Du(S−(u)) ∪ {(ei)r}) =
Du(S−(u)∪ {(ei)r}). This contradicts ei+1 ∈ S \ (S1 ∪ . . .∪ Sl). This argument proves that
(ei)r 6∈ S and that (ei)r 6∈ Du(S(u)). So (ei)r has to be dominated at v: (ei)r ∈ Dv(S−(v)).
As (ei)r was an arbitrary edge of T+, we proved that T+ is disjoint from S, moreover
T+ ⊆ Dv(S−(v)) ⊆ Dv(S∗ ∪ S−) = Dv(S∗) ⊆ Dv(S∗ ∪ T−) = Dv(S∗ ∪ T− \ R−) (we used
the monotonicity of Dv), thus Cv(S∗ ∪ T− \ R−) = Cv(S∗ ∪ T− \ R− ∪ T+). We use the
substitutability of Cv for S∗ ∪ T− ∪ T+ \ (R− ∪R+) ⊆ S∗ ∪ T− ∪ T+ \R−:

Cv(S∗) ∪ T− \ (R− ∪R+) =
(
Cv(S∗) ∪ T− \R−

)
∩
(
S∗ ∪ T− ∪ T+ \ (R− ∪R+)

)
(2)

= Cv(S∗ ∪ T− \R−) ∩
(
S∗ ∪ T− ∪ T+ \ (R− ∪R+)

)
= Cv(S∗ ∪ T− ∪ T+ \R−) ∩

(
S∗ ∪ T− ∪ T+ \ (R− ∪R+)

)
⊆ Cv(S∗ ∪ T− ∪ T+ \ (R− ∪R+)) .

As edges of T+ are E(v)-replacements, it follows that T+ ⊆ Cv(S∗ ∪T− ∪T+ \ (R− ∪R+)),
so with (2) we have Cv(S∗) ∪ T− ∪ T+ \ (R− ∪R+) ⊆ Cv(S∗ ∪ T− ∪ T+ \ (R− ∪R+)). The
increasing property of Cv gives that

|Cv(S∗)|+ |T−|+ |T+| − (|R−|+ |R+|) = |Cv(S∗) ∪ T− ∪ T+ \ (R− ∪R+)|
≤ |Cv(S∗ ∪ T− ∪ T+ \ (R− ∪R+))|
≤ |Cv(S∗ ∪ T− ∪ T+ \R−)|

= |Cv(S∗) ∪ T− \R−| = |Cv(S∗)|+ |T−| − |R−| ,

hence Cv(S∗) ∪ T− ∪ T+ \ (R− ∪R+) = Cv(S∗ ∪ T− ∪ T+ \ (R− ∪R+)), as we claimed. So
we justified properties 1. and 2. for (S′, S1, . . . , Sl).

For property 3., we have already seen that Cv(S′(v)) is disjoint from S′, so it remains
to check that any edge e ∈ E \ S′ is dominated at some vertex. There are two cases for e:
either e = ei ∈ R− is a 1-arc of our rotation. The above argument for S∗ = S−(v) shows
that R− ⊆ Dv((S′)−(v)), so we may assume that e 6∈ S, hence e ∈ Dv(S−(v)) for some
vertex v. Again the above proof shows that everything that S−(v) is dominating according
to Cv is also dominated by (S′)−(v), except for R+. This proves property 3.

4th priority (rotation elimination) step:
Find a rotation (e1, (e1)r, e2, (e2)r, . . . , em, (em)r) with disjoint sets {e1, e2, . . . , em} and
{er1, er2, . . . , erm} and delete {e1, e2, . . . , em}.

To justify the rotation elimination step, we only have to check that it does not create a
new stable half-partnership.

Lemma 3.7. Any stable half-partnership after a 4th priority step is also a stable half-
partnership before this step.

Proof. Observe that after the elimination, each edge (ei)r becomes a 1-arc. Assume that
(S, S1, . . . , Sl) is a stable half-partnership after the step. As in the proof of Lemma 3.6,
let R− denote the set of deleted 1-arcs of our rotation that enter a fixed vertex v, let
T− := {(ei−1)r : (ei−1)rr = ei ∈ R−} be the new 1-arcs entering v and let A− be the set of
those 1-arcs that enter v and have not been deleted during the step.

By the definition of the rotation, from property (1) and the monotonicity of Dv we get
R− ⊆ Dv(A−∪R−∪T−) = Dv(A−∪T−) ⊆ Dv(S−(v)∪Dv(S−(v))) = Dv(S−(v)), and this
is exactly what we wanted to prove.
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Theorem 3.8. If no 1st, 2nd, 3rd and 4th priority step can be made on graph G then
(E(G), S1, S2, . . . , Sl) is a stable half-partnership, where cycles Si are given by the rotations.

Proof. We have already seen that if all 1-arcs are bidirected then we have a stable part-
nership, which is a special case of a stable half-partnership. So assume that no further
step can be executed but we still have a 1-arc e that is not bidirected. We have also
seen that if we follow the alternating sequence of non bidirected 1-arcs and their replace-
ments e, er, err, (e

r
r)
r, (err)

r
r, . . . then we find a rotation (e1, (e1)r, e2, (e2)r, . . . , em, (em)r), that

must be an odd cycle Si that cannot be eliminated. This means that m = 2k + 1, and
ei = (ei+k)r = (ei−1)rr for 1 ≤ i ≤ m, where addition is modulo m. We shall prove that our
starting point, 1-arc e is an edge of this rotation. Hence, if our algorithm cannot make a
step then all 1-arcs are either bidirected or belong to a unique odd rotation.

To this end, we may assume that err is an edge of the rotation, namely err = uv = ei =
(ei+k)r. That is, ei is the E(v)-replacement of first choice ei+k, that is Cv(E(v) \ {ei+k}) ∪
Dv(E(v) \ {ei+k}) = E(v) \ {ei+k}, in other words, if ei ∈ Dv(X) for some subset X of
E(v) then ei+k ∈ X must hold. But the definition of err gives that ei ∈ Dv(A−(v) ∪ {er}),
so ei+k ∈ A−(v) ∪ {er}. 1-arc ei+k ∈ A+(v) is not bidirected, hence ei+k 6∈ A−(v), thus
ei+k = er is an edge of the rotation, as well.

Similarly as above, ei+k = vw is the E(w)-replacement of first choice ei−1 of w, hence
Cw(E(w) \ {ei−1}) ∪ Dw(E(w) \ {ei−1}) = E(w) \ {ei−1}. This means that if ei+k is the
E(w)-replacement of edge e then e = ei−1 must hold. So e is an edge of our rotation, and
all non bidirected 1-arcs of G belong to odd rotations.

Next we prove that all edges of G are 1-arcs. If, indirectly, e = uv is not a 1-arc,
then e ∈ Du(A+(u)) by the 1st priority step and e 6∈ Du(A−(u)) by the 2nd priority step.
So u is incident with some nonbidirected 1-arcs such that these 1-arcs all belong to odd
rotations, and each 1-arc of A−(u) is the E(u)-replacement of different 1-arcs of A+(u).
As e 6∈ Du(A−(u)), we have e ∈ Cu(A−(u) ∪ {e}), and |Cu(A−(u) ∪ {e})| ≤ |Cu(E(u))| =
|Cu(A+(u))| = |Cu(A−(u))| implies that there is a unique 1-arc f ∈ A−(u) that is dominated:
f ∈ Du(A−(u) ∪ {e}). But f is the E(u)-replacement of some other arc g ∈ A+(u), and
we have already seen twice in this proof that this means that g is a member of each edge
set that Cv-dominates f : g ∈ A−(u) ∪ {e}. But this is a contradiction as 1-arc g is not
bidirected and leaves u and e is not a 1-arc.

So if the algorithm cannot make any further step then our graph consists of bidirected 1-
arcs and odd rotations S1, S2, . . . , Sk. It is trivial from the definition that (E(G), S1, . . . , Sk)
is a stable half-partnership.

4 Complexity issues

Irving’s original algorithm [10] is very efficient: it runs in linear time. However, this algo-
rithm is different from the one that we get if we apply our algorithm to an ordinary stable
roommates problem. The difference is that Irving’s algorithm has two phases: in the first
phase it makes only 1st and 2nd priority steps, and after the 1st phase is over, it keeps
on eliminating rotations, and never gets back to the 1st phase. The explanation is that
our rotation elimination is more restricted than Irving’s that does not only delete just first
choices, but also removes some other edges.

Actually, it is rather straightforward to modify our algorithm to work similarly, and this
improves even its time-complexity. The reason that we did not do this in the previous
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section is that the proof is more transparent this way. So what do we have to do to speed
up the algorithm?

Observe that after a rotation elimination (4th priority) step, if 1-arc ei = uv is deleted,
then ei ceases to be a first choice of u. The new first choice instead of ei will be its
replacement (ei)r. So we can include (with no extra cost) that we orient each replacement
edges. Of course, refusal (2nd priority) steps may still be possible, but only at those vertices
that the newly created 1-arcs enter. The definition of a rotation implies that if we apply a
refusal step at such a vertex then no 1-arc gets deleted, but we might delete some unoriented
arcs. So if we modify the rotation elimination step in such a way that we also include these
extra 1st and 2nd priority steps within the rotation elimination step, then once we start to
eliminate rotations, we never go back to the first phase. That is, we shall never have to
make a proposal or a rejection step again.

To analyse the above (modified) algorithm, we have to say something about the calculation
of the choice function and the dominance function. Assume that functions Cv and Dv are
given by an oracle for all vertices v of G, such that for an arbitrary subset X of E(v) these
oracles output Cv(X) and Dv(X) in unit time. Note that if we have only the oracle for Dv

then we can easily construct one for Cv from the identity Cv(X) = X \Dv(X). Similarly,
if we have an oracle for Cv then Dv(X) can be calculated by O(n) calls of the Cv-oracle,
according to the definition of Dv. (As usual, n and m denotes the number of vertices and
edges of G, respectively.)

The algorithm starts with n C-calls, and continues with n D-calls. After this, each
deletion in a 2nd priority step involves one C-call at vertex u where we deleted, and, if this
C-call generates a new 1-arc e = uv, then we also have to make one D-call at the other end
v of e. So the first phase (the 1st and 2nd priority steps) uses at most O(n + m) C-calls
and O(n+m) D-calls.

In the second phase, the algorithm makes 3rd priority steps and modified rotation elimi-
nation steps. We do it in such a way that we start from a nonbidirected 1-arc e and follow
the sequence e, er, err, (e

r
r)
r, . . ., until we find a rotation. The rotation will be a suffix of

this sequence, and after eliminating this rotation, we reuse the prefix of this sequence, and
continue the rotation search from there. This means that for the 3rd type steps we need
altogether O(m) C-calls. The modified rotation elimination steps consist of deleting each
1-arc ei = uv of the rotation, orienting edges (ei)r = uw and applying refusal steps at
vertices w. As we delete at most m edges in all rotation eliminations, this will add at most
O(m) D-calls. All additional work of the algorithm can be allocated to the oracle calls, so
we got the following.

Theorem 4.1. If we modify the rotation elimination step as described above, then our
algorithm uses O(n + m) C-calls and D-calls to find a stable half-partnership and runs in
linear time.

In the introduction, we indicated that in case of bipartite graphs there always exists a
stable partnership for so called path independent substitutable choice functions (see [6]).
That is, we do not have to require the increasing property of functions Cv if we want to solve
the stable partnership problem on a bipartite graph. A natural question is if it is possible to
generalize our result on stable partnerships to substitutable, but not necessarily increasing
choice functions. In our proof, we heavily used the fact that if no proposal and rejection
steps can be made then each 1-arc has a replacement and these replacements improve some
other 1-arc at their other vertices. This property is not valid in the more general setting.
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Below we show that the stable partnership problem for substitutable choice functions is
NP-complete by reducing the 3-SAT problem to it.

Theorem 4.2. For any 3-CNF expression φ, we can construct a graph Gφ and substitutable
choice functions Cv on the stars of Gφ in polynomial time in such a way that φ is satisfyable
if and only if there exists a stable partnership in Gφ for the choice functions Cv.

Proof. Define directed graph Dφ such that Dφ has three vertices aC , bC and vC for each
clause C of φ and two vertices tx and fx for each variable x of φ. The arc set of Dφ consists
of arcs txfx and fxtx for each variable x of φ, arcs of type vCtx (and vCfx) if literal x (literal
x̄) is present in clause C of φ. Moreover, we have arcs aCbC , bCvC and vCaC for each clause
C of φ. If A is a set of arcs incident with some vertex v of Dφ then C ′v(A) = A if no arc
of A leaves v, otherwise C ′v(A) is the set of arc of A that leave v. It is easy to check that
choice function C ′v is substitutable. Let Gφ be the undirected graph that corresponds to Dφ

and let Cv denote the choice function induced by C ′(v) on the undirected edges of Gφ. We
shall show that φ is satisfiable if and only if there is a stable partnership of Gφ for choice
functions Cv, that is, if and only if there is a subset S of arcs of Dφ such that S does not
contain two consecutive arcs and for any arc uv outside S there is an arc vw of S.

Assume now that φ is satisfiable, and consider an assignment of logical values to the
variables of φ that determine a truth evaluation of φ. If the value of variable x is true then
add arc fxtx, if it is false, then add arc txfx to S. Do this for all variables of φ. Furthermore,
add all arcs aCbC to S. If variable x is true then add all arcs vctx to S for all clauses that
contain variable x. If variable y is false then add all arcs vcfx to S for all clauses that
contain negated variable ȳ. Clearly, the hence defined S does not contain two consecutive
arcs. If some arc of type txfx or fxtx is not in S then it is dominated by the other, which
is in S. Each arc of type vCaC is dominated by arc aCbC of S and each arc of type bCvC is
dominated by some arc of type xtx or yfy as C has a variable that makes C true.

To finish the proof, assume that S is a stable partnership of Dφ. Observe that for each
variable x either txfx or fxtx belongs to S, as no other arc dominates these arcs. If txfx ∈ S
then set varible x to be false, else assign logical value true to x. We have to show that for
this asssigment the evaluation of each clause C is true, that is, there is an arc of S from vC
to some tx or fx. Indirectly, if there is no such arc then the corresponding edges of S form
a stable partnership on directed circuit vCaCbC , which is impossible.

So the decision problem of the existence of a stable partnership is NP-complete.

5 A coloring property of stable partnerships

In this section we prove a generalization of a result by Cechlárová and Fleiner [3].

Theorem 5.1. Let S be a stable partnership for graph G = (V,E) and increasing substi-
tutable choice functions Cv. For each vertex v it is possible to partition E(v) into (possibly
empty) parts E0(v), E1(v), E2(v), . . . , E|S(v)|(v) in such a way that for any stable partnership
S′ we have S′ ∩ E0(v) = ∅ and |S′ ∩ Ei(v)| = 1 holds for i = 1, 2, . . . , |S(v)|.

Proof. Let us find some stable partnership S by the algorithm in the previous section. Fix a
vertex v and determine the partition of E(v) in the following manner. Each element of S(v)
will belong to a different part. Follow the algorithm backwards, that is, we start from S and
we build up the original G by adding edges according to the deletions of the algorithm. If
we add an edge that is not incident with v, then we do not do anything. If we add an edge
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e of E(v) that was deleted by a 2nd priority step, then we put e into part E0(v). This is a
good choice, since e is contained in no stable partnership. If e was deleted in a 4th priority
step along a rotation then this rotation contains another (replacement) edge f incident with
v. Lemma 3.6 shows that if we assign e to that part Ei(v) that contains f , then still no
stable partnership can contain two edges of the same part Ei(v). Let us buid up the graph
by backtracking the algorithm. This way, we find a part for each edge of E(v), and this
partition clearly has the property we need.

The following corollary describes the phenomenon that is called the “rural hospital theo-
rem” in the stable matching literature. This states that if a hospital cannot fill up its quota
with residents in some stable outcome, then no matter which stable outcome is selected, it
always receives the same applicants.

Corollary 5.2. If S and S′ are stable partnerships then |S(v)| = |S′(v)| for any vertex v
of the underlying graph.

There is an aesthetic problem with Theorem 5.1, namely, that part E0(v) of the star of
v is redundant in the following sense. If we remove all edges from E0(v) and independently
from one another we assign each of them to an arbitrary part Ei(v) (for 1 ≤ i ≤ |S(v)|)
then the resulted partition also satisfies the requirements of Theorem 5.1 and E0(v) = ∅ for
all vertices v. In what follows, by proving a strengthening of Theorem 5.1, we exhibit an
interesting connection between the stable partnership problem and the stable roommates
problem.

If G = (V,E) is a graph and v is a vertex of it then detaching v into k parts is the inverse
operation of merging k vertices into one vertex. That is, we delete vertex v, introduce new
vertices v1, v2, . . . , vk and each edge that was originally incident with v will be incident with
one of v1, v2, . . . , vk. If k : V → {1, 2, 3, . . .} is a function then a k-detachment of G is a
graph Gk that we get by detaching each vertex v of G into k(v) parts. Clearly, there is a
natural correspondance between the edges of G and that of Gk. With this notation, there
is an equivalent formulation of Theorem 5.1: if G is a graph, and increasing substitutable
choice function Cv is given for each vertex v of G and S is a stable partnership then there
exists a k-detachment Gk of G in such a way that any stable partnership of G corresponds
to a matching of Gk, where k(v) := |S(v)| for each vertex v of G.

Theorem 5.3. Let S be a stable partnership for graph G = (V,E) and increasing substi-
tutable choice functions Cv. Let k(v) := max{|S(v)|, 1}. There is a k-detachment Gk of
G and there are linear orders <vi on the stars of Gk such that any stable partnership of G
corresponds to a stable matching of Gk.

Proof. Just like in the proof of Theorem 5.1, we start from a stable partnership S′, produced
by our algorithm and we build up Gk and construct orders <vi by following the algorithm
backwards.

Let Gi = (V,Ei) denote the actual graph after the ith step of our algorithm, that is, G0 =
G and Gt = (V, S′) for some t. Assume that we have a k-detachment Gki of Gi and suitable
linear orders such that any stable partnership of Gi (for the restricted choice functions Cv|Ei)
corresponds to a stable matching of Gki . We show how to find a k-detachment Gki−1 of Gi−1

and extensions of the linear orders such that any stable partnership of Gi−1 corresponds
to a matching of Gki−1. If we do this, then Gk0 with the constructed linear orders is a
k-detachment we look for.
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First we construct Gkt by detaching Gt into a matching. This means that each vertex
v incident with S′ is detached into |S′(v)| = |S(v)| = k(v) parts (and we do not detach
isolated vertices of Gt). As each degree of Gkt is 0 or 1, the linear orders are trivial. Clearly
the only stable partnership S′ of G corresponds to the unique stable matching of Gkt . So
assume we have have already constructed Gki and the linear orders. If the ith step of the
algorithm was 1st or 3rd type then Gi−1 = Gi, hence we can choose Gki−1 = Gki and the
same linear orders on the stars.

Assume that the ith step is a 1st type rejection step, that is, we delete some edges incident
with some vertex v, say vu1, vu2, . . . , vup. Define k-detachment Gki−1 by adding p edges to
the Gki in such a way that the edge corresponding to vui will be edge (say) v1u1

j . The
extended linear orders on the stars of Gki−1 will be the same as those of Gki , except for we
append the new edges v1u1

j to the end of these orders, that is, these new edges will be the
least preferred ones of the vertices. Lemma 3.1 implies that the set of stable partnerships
of Gi and of Gi−1 is the same, so it is enough to check that no stale matching Sk of Gki that
corresponds to a a stable parnership S of Gi is blocked by some edge v1u1

j .
Edge vuj is not blocking S, hence at least one of v and uj is covered by S. Corollary

5.2 implies that |S(v)| = |S′(v)| and S(uj)| = |S′(uj)|, so this means that Sk has an edge e
that covers v1 or u1

j . The definition of the linear orders on the stars of Gi−1 implies v1u1
j is

dominated by e, so v1u1
j cannot block stable matching Sk.

The remaining case is that the ith step of the algorithm is a 4th type rotation elimi-
nation. Assume the eliminated rotation is (e1, (e1)r, e2, (e2)r, . . . , em, (em)r), so we delete
edges e1, e2, . . . , em where 1-arc ej = ujvj is a first choice of uj . After the elimination, each
edge (ej)r = ujvj+1 becomes a first choice of uj for j = 1, 2, . . . ,m.

To construct Gki−1, we add an edge ekj to Gki that correspond to ej for j = 1, 2, . . . ,m.
Assume that edges (ej−1)r = uj−1vj and (ej)r = ujvj+1 of Gi correspond to edges utj−1v

t′
j

and usjv
s′
j+1, of Gki , respectively. Then the edge of Gki−1 that corresponds to ej will be

ekj := usjv
t
j . In other words, we choose k-detachment Gki−1 in such a way that edges of the

rotation correspond to a cycle. We insert ekj into the linear order of usj in such a way that
ekj and ((ej)r)r are consecutive and ekj is preceeding ((ej)r)r. We insert ekj into the linear
order of vtj in such a way that and ekj and ((ej−1)r)k will also be consecutive according to the
order of vtj , but ekj succeeds ((ej−1)r)k. We do this for all j = 1, 2, . . . ,m, hence determining
k-detachment Gki−1 and linear orders on its stars.

First we prove that for any eliminated edge ej of the rotation, edge ((ej)r)k is the first
edge in the linear order of usj in Gki . By the definition of the replacement and rotation
elimination, (ej)r is a first choice of uj in Gi. So after the (i − 1)st step of the algorithm,
(ej)r never could be an uj-replacement of another edge. This means, that from the ith step
on, we never inserted an edge right before (ej)r in the linear order of usj . So if (ej)r is an
edge of stable partnership S′ produced by our algorithm then (ej)r is still the most preferred
edge of usj . If (ej)r is deleted after the (i− 1)st step then we had to delete it in the lth step,
in a rotation elimination, as a first choice of uj . This means on one hand that ((ej)r)k is
first in the linear order of usj , in Gkl . As we did not insert any edge before ((ej)r)k during
the construction of Gkl−1, G

k
l−2, . . . , G

k
i , we see that ((ej)r)k is first in the linear order of usj

in Gki .
We prove that any stable parnership of Gi−1 corresponds to a stable matching of Gki−1.

If S is a stable parnership of Gi−1 then either e1, e2, . . . , em ∈ S or S is a stable partnership
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of Gi by Lemma 3.5. In the first case, Lemma 3.6 implies that

S \ {e1, e2, . . . , em} ∪ {(e1)r, (e2)r, . . . , (em)r}

is a stable partnership, hence it corresponds to a stable matching of Gki by the induction
hypothesis. As we have chosen edges ekj and ((ej)r)k and ekj and ((ej−1)r)k consective in the
linear orders of usj and of vtj , we see that no edge can block the matching that corresponds
to S in Gki−1.

In the second case, when S is a stable partnership of Gi, we have to show that the stable
matching of Gki that corresponds to S (by the induction hypothesis) is not blocked by edge
ekj . If ((ej)r)k is in the stable matching then it dominates ekj at vtj . If ((ej)r)k does not
belong to the stable matching then it cannot block it, hence, as ((ej)r)k is the best edge of
ut

′
j+1, the stable matching dominates it at vtj . So this matching that corresponds to S in
Gki−1 also dominates ekj . This completes the proof.

Note that Theorem 5.3 is not an equivalence: it is not true that for any stable partnership
problem there exists a detachment with appropriate linear orders in such a way that stable
partnerships correspond bijectively to stable matchings. A counterexample is a graph on two
vertices, four parallel edges with opposite linear orders on the vertices. The choice function
of both vertices is the best two edges of the offered set, that is the stable partnership
problem is a stable 2-matching problem. It is easy to see that there are exatly 3 different
stable partnerships, but any 2-detachment has 1, 2 or 4 stable matching.

6 Conclusion, open questions

In this work, we extended Tan’s result [16] from stable matchings to a much more gen-
eral framework. An interesting, and perhaps not well enough understood feature of Tan’s
characterization is that it follows from Scarf’s lemma [13] just like its generalization to sta-
ble b-matchings [2]. Our present extension is a characterization of a very similar kind. A
most natural question to ask is whether our result can also be deduced from an appropriate
generalization of Scarf’s lemma.

Note that Scarf’s proof of his well known lemma is algorithmic. However, Scarf’s algo-
rithm is not known to be polynomial. For special applications, like Tan’s characterization
there are known polynomial algorithms, like the one of Tan and Hsueh [17]. Another natu-
ral question is whether the Tan-Hsueh algorithm can be extended to an efficient algorithm
that finds a stable half-partnership. In fact, the Tan-Hsueh algorithm can be generalized
to the stable b-matching problem (that is, to the many-to-many stable roommates prob-
lem) the following way. We assign quota b(v) = 0 to each agent v, such that ∅ is a stable
b-matching. Then, in each phase of the algorithm, we rise one quota by one and find a new
stable half-b-matching. The work we do during such a phase is essentially the same that
the Tan-Hsueh algorithm does in one phase. We do this until we reach the real quota for
each agent. Note that this generalized Tan-Hsueh algorithm can be extended to our stable
partnership setting. We sketch it below.

For a linear order ≺v on E(v), define truncated choice function Civ on subset X of E(v)
as the ≺v-smallest i elements of Cv(X). If Cv is increasing and substitutable then it is
not difficult to choose ≺v in such a way that Civ is also an increasing substitutable choice
function for any i. So ∅ is a stable half-partnership for choice functions C0

v . In the be-
ginning of a phase, we start with a stable half-partnership for truncated choice functions
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Ci1v1 , C
i2
v2 , . . . , C

in
vn

. We pick a vertex vj such that ij < n, and find a stable half-partnership
for the same truncated choice functions, except that we use Cij+1

vj instead of Cijvj . To do
this, we use a straightforward generalization of the Tan-Hsueh algorithm. After ij = n for
all vertices vi, we have a stable half-partnership for the original problem.
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