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A result on crossing families of odd sets

Tamás Király?

Abstract
The following question is answered: given a crossing family F of odd subsets

of an even-sized ground set V , what is the condition of the existence of a pairing
M of the elements of V for which dM (X) = 1 for every X ∈ F? We show that
the pairing exists if and only if F does not have a specific configuration of 4
sets. We present a consequence related to the conjecture of Woodall on dijoins.

1 Introduction
Let V be a ground set of even cardinality. Two sets X ⊆ V and Y ⊆ V are said to
be crossing if the sets X − Y, Y −X, X ∩ Y, V − (X ∪ Y ) are all non-empty. A family
F of subsets of V is called crossing if the intersection and union of any two crossing
members of F are also in F .

A pairing M of V is a set of unordered pairs of elements of V so that every element
appears in exactly one pair. For a pairing M of V and X ⊆ V let dM(X) denote the
number of pairs in M with exactly 1 element in X. The problem addressed in this
paper is to characterize families F of subsets of V for which there exists a pairing M
such that dM(X) = 1 for every X ∈ F (such a pairing is called a feasible pairing).

A set is called even (odd) if its cardinality is even (odd). If there is a feasible
pairing for F then obviously every set in F is odd. We say that a family F of odd
sets contains a bad configuration if it contains four sets with the following properties:

• The intersection of any 3 sets is empty,

• The union of any 3 sets is V ,

• The intersection of any 2 sets is odd.

If F contains a bad configuration {X1, X2, X3, X4}, then there is no pairing M with
dM(X) = 1 for every X ∈ F . To see this, consider (u, v) ∈ M with u ∈ X1 and
v /∈ X1. There is an index i ∈ {2, 3, 4} such that u ∈ X1−Xi and v ∈ Xi−X1, which
implies that dM(X1)+dM(Xi) ≥ 2+dM(X1∩Xi) ≥ 3, where the last inequality holds
because X1 ∩Xi is odd.

Our main result is that if F is a crossing family then this is the only possible
obstacle for the existence of a pairing.
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Theorem 1.1. Let F be a crossing family of odd subsets of V that contains no bad
configuration. Then V has a pairing M such that dM(X) = 1 for every X ∈ F .

This result is somewhat related to the odd-vertex pairing theorem of Nash-Williams
[1], which can be stated in the following form. Let G = (V, E) be an undirected graph,
and let p : 2V → Z+ be a symmetric skew supermodular set function with even values,
such that p(X ∪ Y ) ≤ max{p(X), p(Y )} for every X, Y ⊆ V . If p(X) ≤ dG(X) for
every X ⊆ V , then there is a pairing M of the odd-degree nodes of G such that
dM(X) ≤ dG(X)− p(X) for every X ⊆ V . It would be interesting to find a common
generalization of these two results.

We prove Theorem 1.1 in Section 2. A corollary related to Woodall’s conjecture on
dijoins and a conjecture on a possible generalization are presented in Section 3. The
theorem can also be stated in a more general (but essentially equivalent) form that
includes a crossing family of even sets where dM(X) = 0 is required.

Theorem 1.2. Let F0 be a crossing family of even sets and let F1 be a crossing family
of odd sets such that F0 ∪ F1 is also crossing and F1 contains no bad configuration.
Then V has a pairing M for which dM(X) = 0 for every X ∈ F0 and dM(X) = 1 for
every X ∈ F1.

We show that Theorem 1.2 follows from Theorem 1.1. Let F0 and F1 be families
with the properties in Theorem 1.2. We use induction on |F0|; if F0 ⊆ {∅, V } then
we are done, otherwise let X0 be a nonempty proper subset of V in F0. We construct
two new instances of the problem, (V ′,F ′0,F ′1) and (V ′′,F ′′0 ,F ′′1 ):

V ′ := V ∩X0,

F ′0 := {X ∈ F0 : X ( X0} ∪ {X ⊆ X0 : X ∪ (V −X0) ∈ F0},
F ′1 := {X ∈ F1 : X ⊆ X0} ∪ {X ⊆ X0 : X ∪ (V −X0) ∈ F1},
V ′′ := V −X0,

F ′′0 := {X ∈ F0 : X ⊆ V −X0} ∪ {∅ 6= X ⊆ V −X0 : X ∪X0 ∈ F0},
F ′′1 := {X ∈ F1 : X ⊆ V −X0} ∪ {X ⊆ V −X0 : X ∪X0 ∈ F1}.

It is easy to see that F ′0,F ′1,F ′0∪F ′1, and F ′′0 ,F ′′1 ,F ′′0 ∪F ′′1 are all crossing families on V ′

and V ′′ respectively. Suppose that F ′1 contains a bad configuration {X ′1, X ′2, X ′3, X ′4},
and the corresponding sets in F1 are {X1, X2, X3, X4}. If Xi = X ′i for at least 3
sets, then the union of these 3 sets is an even set in F1, which is impossible. If
Xi 6= X ′i for at least 3 sets, then the intersection of these 3 sets is an even set in F1,
again impossible. So Xi = X ′i for exactly 2 sets, but this means that {X1, X2, X3, X4}
would be a bad configuration in F1. A similar argument shows that F ′′1 cannot contain
a bad configuration.

Since max{|F ′0|, |F ′′0 |} ≤ |F0|, there is a feasible pairing M ′ on V ′ and a feasible
pairing M ′′ on V ′′. Their union, M = M ′ ∪M ′′ is a pairing on V . If a set X ∈ F0

(X ∈ F1) does not cross X0, then dM(X) = 0 (dM(X) = 1) by the construction. If
X ∈ F0 crosses X0, then X ∩ X0 ∈ F ′0 and X − X0 ∈ F ′′0 , so dM(X) = dM ′(X ∩
X0) + dM ′′(X − X0) = 0. If X ∈ F1 crosses X0, and X ∩ X0 is even (odd), then
X ∩ X0 ∈ F ′0 and X − X0 ∈ F ′′1 (X ∩ X0 ∈ F ′1 and X − X0 ∈ F ′′0 ), so dM(X) =
dM ′(X ∩X0) + dM ′′(X −X0) = 1. It follows that M is a feasible pairing on V .
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2 Proof of the main theorem
Let F be a crossing family of odd subsets of V that contains no bad configuration. The
argument at the end of the previous section shows that a minimal counterexample for
Theorem 1.2 is in fact a counterexample for Theorem 1.1. Therefore we may assume
that Theorem 1.2 holds on any ground set smaller than V . The following lemma is
the key ingredient of the proof.

Lemma 2.1. For every s ∈ V there exists t ∈ V so that there are no crossing members
X, Y of F with s ∈ X ⊆ V − t and t ∈ Y ⊆ V − s.

Proof. Let s be an arbitrary element of V . An ordered pair (X, Y ) of crossing members
of F is called a relevant pair if s ∈ X and s /∈ Y . The forbidden set corresponding to
the pair (X, Y ) is the set Y − X. The statement of the lemma is equivalent to the
claim that V − s cannot be covered by forbidden sets.

We denote by U the set of elements of V that are covered by some forbidden set.
Let P be a family of relevant pairs whose forbidden sets cover U , it is of minimal size
with this property, and it has the following two additional properties:

• every forbidden set corresponding to a pair in P is maximal (it is not a proper
subset of another forbidden set),

• if (X, Y ) ∈ P , X ′ ⊆ X, Y ′ ⊇ Y , and one of the inclusions is proper, then
(X ′, Y ′) is not a relevant pair.

Clearly there is a family P with these properties, and we fix such a family. Our aim
is to analyze the structure of P to show that U 6= V − s.

In describing the structure we will frequently use a symmetry argument that goes as
follows. An equivalent instance of the problem can be defined by taking the comple-
ment of each set in F . The obtained family, which we now denote by F∗, is crossing,
it is composed of odd sets, and it contains no bad configuration since the comple-
ment of a bad configuration is also a bad configuration. Moreover, the complement
of each relevant pair in F is a relevant pair in F∗ (where the complement of (X, Y )
is (V − Y, V −X)), and they define the same forbidden set, so we may assume that
P∗ consists of the complements of the pairs in P . This means that for any possible
configuration of pairs in P the configuration obtained by complementing the pairs is
also possible.

Most of the proof is concerned with unordered pairs of relevant pairs in P . A pair
of pairs in P (or popp for short) is called nice if the forbidden sets of the two pairs are
disjoint and it is called ugly otherwise (we assume that the two pairs are not identical
in a popp). The following claim is a characterization of the possible structures a popp
can have.

Claim 2.2. If ((X1, Y1), (X2, Y2)) is a nice popp, then one of the following holds:

1. X1 = X2, Y1 ∩ Y2 = ∅,

2. X1 ) X2, Y1 ∩ (X2 ∪ Y2) = ∅ (or same with reversed index),
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3. X1 and X2 are crossing, Y1 ∩ (X2 ∪ Y2) = ∅, and Y2 ∩ (X1 ∪ Y1) = ∅,

4. X1 ∪X2 = V , Y1 ∩ Y2 = ∅,

5. Y1 = Y2, X1 ∪X2 = V ,

6. Y1 ) Y2, X2 ∪ (X1 ∩ Y1) = V (or same with reversed index),

7. Y1 and Y2 are crossing, X1 ∪ (X2 ∩ Y2) = V , and X2 ∪ (X1 ∩ Y1) = V .

If ((X1, Y1), (X2, Y2)) is an ugly popp, then one of the following holds:

(u1) X1 and X2 are crossing, Y1 = Y2 =: Y , X1 ∪X2 ∪ Y = V , X1 ∩X2 ∩ Y = ∅,

(u2) Y1 and Y2 are crossing, X1 = X2 =: X, X ∪ Y1 ∪ Y2 = V , X ∩ Y1 ∩ Y2 = ∅.

Proof. First, let us consider the case Y1 ∩ Y2 = ∅. The case when X1 = X2 or
X1 ∪X2 = V appears in the claim, so we assume that these do not hold.

• If X1 ) X2, then Y1∩X2 = ∅, otherwise (X1, Y1) should be replaced by (X2, Y1)
in P .

• If X1 and X2 are crossing, then Y1∩ (X1∩X2) = ∅, otherwise (X1, Y1) should be
replaced by (X1∩X2, Y1) in P . Suppose that Y1∩X2 6= ∅. Then Y1∩X2 is odd,
so Y1∩(X1∪X2) is even, hence Y1∪(X1∪X2) = V ; similarly, Y2∪(X1∪X2) = V ,
but this is impossible since X1 ∪X2 6= V and Y1 ∩ Y2 = ∅.

Next, we consider the case when X1 ∪ X2 = V . By the symmetry argument, the
possible popps in this case are exactly the complements of the possible popps when
Y1 ∩ Y2 = ∅.

Finally, we consider the case when X1 ∪ X2 6= V and Y1 ∩ Y2 6= ∅. We show that
either (u1) or (u2) holds. Since (X1 ∩X2, Y1 ∪ Y2) is not a relevant pair (otherwise it
would replace either (X1, Y1) or (X2, Y2) in P), we have (X1 ∩X2) ∩ (Y1 ∪ Y2) = ∅ or
(X1 ∩X2) ∪ (Y1 ∪ Y2) = V .

• First suppose that (X1 ∩ X2) ∩ (Y1 ∪ Y2) = ∅ and (X1 ∩ X2) ∪ (Y1 ∪ Y2) 6= V .
We may assume that X1 ∪ (Y1 ∪ Y2) 6= V . Since X1 ∪ (Y1 ∪ Y2) is odd and
(X1 ∩X2) ∪ (Y1 ∪ Y2) is even, we have X2 ∪ (Y1 ∪ Y2) 6= V . Thus (Xi, Y1 ∪ Y2)
is a relevant pair (i = 1, 2), so Y1 = Y2 by the choice of P , and this is case (u1).

• Suppose that (X1 ∩X2) ∩ (Y1 ∪ Y2) 6= ∅ and (X1 ∩X2) ∪ (Y1 ∪ Y2) = V . By the
symmetry argument, this corresponds to case (u2).

• Finally, let us consider the case when (X1∩X2)∩ (Y1∪Y2) = ∅ and (X1∩X2)∪
(Y1∪Y2) = V . Suppose that Y2−(X1∪Y1∪X2) 6= ∅. Then (X1∪Y1)∩X2 is odd,
so Y1∩X2 is even, which means that Y1∩X2 must be empty since Y1∪X2 6= V .
But then either X2 or X2 ∩ Y2 is even, which is impossible. We obtained that
Y2 − (X1 ∪ Y1 ∪X2) = ∅. A similar argument shows that Y1 − (X2 ∪ Y2 ∪X1),
(X1 ∩ Y1 ∩ Y2) − X2, and (X2 ∩ Y2 ∩ Y1) − X1 are all empty. However, in this
case {X1, Y1, X2, Y2} would be a bad configuration in F .
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We have verified all possible cases, so the claim is proven. We remark that the last
case is the only part of the proof of Theorem 1.1 where we use the fact that there is
no bad configuration in F .

The following three claims deal with the relation between two ugly popps.

Claim 2.3. If ((X1, Y1), (X2, Y2)) is an ugly popp, then (X1, Y1) does not appear in
any other ugly popp.

Proof. Suppose that ((X1, Y1), (X2, Y2)) is a (u1)-popp, so Y1 = Y2 =: Y (the proof
for (u2) follows by the symmetry argument). The pair (X1, Y ) does not appear in
another (u1)-popp because the forbidden set of the other pair in the popp would be a
subset of Y , and Y is already covered by Y −X1 and Y −X2. Suppose that (X1, Y )
forms a (u2)-popp with (X1, Y

′). Then the popp ((X2, Y ), (X1, Y
′)) cannot belong

to any of the classes in Claim 2.2 since X1 and X2 are crossing and Y and Y ′ are
crossing.

Claim 2.4. If ((X1, Y ), (X2, Y )) and ((X ′1, Y
′), (X ′2, Y

′)) are (u1)-popps, then Y ∩
Y ′ = ∅. If ((X, Y1), (X, Y2)) and ((X ′, Y ′1), (X

′, Y ′2)) are (u2)-popps, then X∪X ′ = V .

Proof. We prove the claim for (u1); it follows for (u2) by the symmetry argument.
By Claim 2.3, ((Xi, Y ), (X ′j, Y

′)) is a nice popp for every (i, j) ∈ {1, 2}2. Thus either
Y ∩ Y ′ = ∅ or Xi ∪ X ′j = V for every (i, j) ∈ {1, 2}2, but in the latter case Y ⊆
V − (X1 ∩X2) ⊆ X ′1 ∩X ′2 ⊆ V − Y ′, so Y ∩ Y ′ = ∅ anyway.

Claim 2.5. If ((X1, Y ), (X2, Y )) is a (u1)-popp and ((X, Y1), (X, Y2)) is a (u2)-popp,
then V −X ⊆ X1 ∩X2 or Y ⊆ V − (Y1 ∪ Y2).

Proof. By Claim 2.3, ((X, Yi), (Xj, Y )) is a nice popp for every (i, j) ∈ {1, 2}2. There-
fore X ∪ Xj = V or Yi ∩ Y = ∅ holds for every (i, j) ∈ {1, 2}2. This means that if
X ∪ (X1 ∩X2) 6= V , then Y ∩ (Y1 ∪ Y2) = ∅.

To prove the lemma, we have to show that the forbidden sets of the pairs in P
cannot cover V − s. This follows from a simple parity argument if every popp is nice:
in that case, the forbidden sets of the pairs in P are pairwise disjoint and they are all
even, so their union is an even set, while V − s is odd.

The situation is more complicated if there are ugly popps. However, Claims 2.4 and
2.5 imply that the union of the two forbidden sets of an ugly popp is disjoint from
any other forbidden set of a member of P .

We choose a special ugly popp which is minimal in the following sense. For each
(u1)-popp ((X1, Y ), (X2, Y )) we consider the set X1 − X2 and for each (u2)-popp
((X, Y1), (X, Y2)) we consider the set Y1 − Y2. We choose an ugly popp for which this
set is minimal, i.e. no strict subset of it corresponds to another ugly popp.

Suppose first that the special popp is a (u1)-popp ((X1, Y ), (X2, Y )).

Claim 2.6. The set V − (X2 ∪ Y ) is not covered by the forbidden sets of pairs in P.
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Proof. We first show that any forbidden set Y ′−X ′ covers an even number of elements
of V − (X2 ∪ Y ). By Claim 2.3, ((Xi, Y ), (X ′, Y ′)) is a nice popp (i = 1, 2), so either
X ′ ∪ (X1 ∩ X2) = V (in which case we are done) or Y ∩ Y ′ = ∅. We may assume
that Y ′ ∩X1 6= ∅ and X ′ ∪ (X2 ∪ Y ) 6= V . There are 2 possibilities for (X1, Y1) and
(X ′, Y ′) according to Claim 2.2: X ′ ∪X1 = V or X ′ ⊆ X1. In the first case X ′ ⊇ X2

since they cannot be crossing by Claim 2.2, so (Y ′−X ′)− (X2 ∪ Y ) = Y ′−X ′ which
is an even set. In the second case (Y ′ −X ′) − (X2 ∪ Y ) = Y ′ − (X ′ ∪X2), again an
even set.

We proved that each forbidden set covers an even number of elements from V −
(X2 ∪ Y ) (an odd set). To complete the proof, we show that the union of the two
forbidden sets corresponding to the two members of an ugly popp covers an even
number of elements from V − (X2 ∪ Y ).

• First, consider a (u1)-popp ((X ′1, Y
′), (X ′2, Y

′)). Claim 2.4 implies that Y ∩Y ′ =
∅. Suppose that Y ′ −X2 6= ∅; we show that Y ′ −X2 is even.

If Y ′ ∩X2 6= ∅, then Y ′ − (X2 ∪ Y ) = Y ′ −X2 is even, so we can assume that
Y ′ ∩X2 = ∅. By Claim 2.2 either X ′i ⊆ X1 or X ′i ∪X1 = V (i = 1, 2). It is not
possible that X ′1 ∪X ′2 ⊆ X1, since then X ′1 ∪X ′2 ∪ Y ′ 6= V . First suppose that
(X ′1 ∩X ′2) ∪X1 = V . Then X2 ⊆ X ′1 ∩X ′2 since X ′1 and X ′2 cannot cross X2 by
Claim 2.2, so X ′1 − X ′2 ( X1 − X2 which contradicts the choice of the special
ugly popp. Now suppose that X ′1 ⊆ X1 and X ′2 ∪ X1 = V . Then X2 ⊆ X ′2
since X ′2 cannot cross X2 by Claim 2.2, so X ′1 − X ′2 ( X1 − X2, which again
contradicts the choice of the special ugly popp.

• Finally, consider a (u2)-popp ((X, Y1), (X, Y2)). We claim that V −X is disjoint
from V − (X2 ∪ Y ). Clearly this is true if V −X ⊆ X1 ∩X2, so by Claim 2.5
we may assume that Y ⊆ V − (Y1 ∪ Y2). Then Y ⊆ X since X ∪ Y1 ∪ Y2 = V .
By Claim 2.3 ((X2, Y ), (X, Yi)) is a nice popp (i = 1, 2), so by Claim 2.2 either
X2 ∪X = V (in which case we are done) or X2 ⊆ X. In the latter case Claim
2.2 states that Yi ∩ X2 = ∅ and therefore Yi ⊆ X1 − X2 (i = 1, 2), but this
contradicts the choice of the special ugly popp.

Since an odd set cannot be covered by disjoint even sets, the proof of the claim is
complete.

If the special popp is a (u2)-popp ((X, Y1), (X, Y2)), then by the symmetry argument
Claim 2.6 implies that the set X ∩Y1 is not covered by the forbidden sets of the pairs
in P . We proved that there is always an element of V − s that is not covered by
forbidden sets. This completes the proof of the lemma.

By Lemma 2.1 there is a pair of elements (s, t) for which there are no crossing
members X, Y of F with s ∈ X ⊆ V − t and t ∈ Y ⊆ V − s. We show that we can fix
(s, t) to be in the pairing and reduce the size of the problem. We define the following

EGRES Technical Report No. 2007-10



Section 3. A corollary related to Woodall’s conjecture 7

instance of the problem in Theorem 1.2:

V ′ := V − {s, t},
F ′0 := {X − s : X ∈ F , s ∈ X ⊆ V − t} ∪ {X − t : X ∈ F , t ∈ X ⊆ V − s},
F ′1 := {X ∈ F : X ⊆ V − {s, t}} ∪ {X − {s, t} : X ∈ F , {s, t} ⊆ X}.

It is easy to see that F ′0 consists of even sets and F ′1 consists of odd sets. It is also
straightforward that F ′1 and F ′1 ∪ F ′2 are crossing families: if X ′ and Y ′ are crossing
in F ′1 (F ′1 ∪ F ′2), then the corresponding sets X and Y in F are crossing, and both
X ∩ Y and X ∪ Y have corresponding sets in F ′1 (F ′1 ∪ F ′2).

Let X ′ and Y ′ be crossing sets in F ′0, and let X and Y be the corresponding
sets in F . The property that determined the choice of s and t implies that either
s ∈ X ∩ Y ⊆ X ∪ Y ⊆ V − t, or t ∈ X ∩ Y ⊆ X ∪ Y ⊆ V − s. In both cases, X ′ ∩ Y ′

and X ′ ∪ Y ′ are both in F ′0.
The fact that F ′1 does not contain a bad configuration follows the same way as

it was proven at the end of Section 1. Since Theorem 1.2 holds on any ground set
smaller than V , there is a pairing M ′ of V ′ so that dM ′(X) = 0 for every X ∈ F ′0 and
dM ′(X) = 1 for every X ∈ F ′1. Let M := M ′ + (s, t); then M is a pairing of V and
the construction guarantees that dM(X) = 1 for every X ∈ F . This completes the
proof of Theorem 1.2.

3 A corollary related to Woodall’s conjecture
Let D = (V, E) be a directed graph. An edge set F ⊆ E is a directed cut cover if it
contains at least one edge from every directed cut of D; it is a directed cut k-cover if
it contains at least k edges from every directed cut.

Woodall [3, 4] conjectured that the maximum number of edge-disjoint directed cut
covers in a digraph equals the minimum size of a directed cut. This conjecture is wide
open, there are only a few classes of graphs for which it is known to hold (source-sink
connected graphs, series-parallel graphs, transitive closure of directed trees).

A possible generalization would be that a directed cut k-cover always contains k
edge-disjoint directed cut covers. However, Schrijver [2] showed that this is not true
in general. His counterexample also shows that there is a directed graph D = (V, E)
and a directed cut 2-cover F ⊆ E such that for any F ′ ⊆ F , there is a directed cut
that contains at most 3 edges from F and is disjoint from either F ′ or F − F ′.

In this section we show that for every k ≥ 2, if D = (V, E) is a directed graph and
F ⊆ E is a directed cut 2k-cover, then there is exists F ′ ⊆ F such that both F ′ and
F − F ′ are k-covers of the directed cuts that contain at most 2k + 1 edges from F .
We conjecture that the following is also true: if k ≥ 2, then any directed cut 2k-cover
can be partitioned into two directed cut k-covers.

Let D = (V, E) be a directed graph and F ⊆ E a subset of edges. We use the
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notation

din
F (X) := |{uv ∈ F : u ∈ V −X, v ∈ X},

dout
F (X) := |{uv ∈ F : u ∈ X, v ∈ V −X},
dF (X) := din

F (X) + dout
F (X).

Let us define the following families of sets:

I := {∅ 6= X ( V : dout
E (X) = 0},

Ij := {X ∈ I : dF (X) = j}.

If X and Y are in I, then X ∩ Y ∈ I ∪ {∅}, X ∪ Y ∈ I ∪ {V }, and dF (X) + dF (Y ) =
dF (X ∩ Y ) + dF (X ∪ Y ).

Theorem 3.1. Let D = (V, E) be a digraph, k ≥ 2 an integer, and F ⊆ E a directed
cut 2k-cover. Then there is a pairing M of the nodes with dF (v) odd such that

dM(X) = 0 if X ∈ I2k,

dM(X) = 1 if X ∈ I2k+1.

Proof. We prove the theorem by induction on |V |. Let T denote the set of nodes where
dF (v) is odd. First, suppose that there is a set X0 ∈ I2k with 2 ≤ |X0| ≤ |V | − 2.
Let D′ = (V ′, E ′) be the graph obtained by contracting V − X0 to one node, let
D′′ = (V ′′, E ′′) be the graph obtained by contracting X0 to one node, and let F ′ and
F ′′ be the edge sets obtained from F by the contraction. Then F ′ is a directed cut
2k-cover of D′ and F ′′ is a directed cut 2k-cover of D′′. By induction there is a pairing
M ′ of T ∩X0 and a pairing M ′′ of T −X0 that satisfy the conditions of the theorem.

We can define a pairing M of T by M := M ′ ∪M ′′. If X ∈ I2k, then dM(X) =
dM ′(X ∩X0) + dM ′′(X −X0) = 0. If X ∈ I2k+1, then there are four possibilities: (i)
X∩X0 = ∅; (ii) X∪X0 = V ; (iii) X∩X0 ∈ I2k+1 and X∪X0 ∈ I2k; (iv) X∩X0 ∈ I2k

and X ∪X0 ∈ I2k+1. In all of these cases, dM(X) = dM ′(X ∩X0)+dM ′′(X−X0) = 1,
so M satisfies the conditions of the theorem.

We may thus assume that |X| = 1 or |V − X| = 1 for every X ∈ I2k. Note that
these sets are disjoint or co-disjoint from T . We define a family F of sets on the
ground set T by

F := {X ⊆ T : ∃Z ⊆ V − T : X ∪ Z ∈ I2k+1}.

The family F consists of odd sets, since dF (X) ≡
∑

v∈X dF (v) mod 2 for every X ⊆
V . Moreover, F is crossing: if X and Y are crossing sets in F , then there are sets
X ′ ∈ I2k+1 and Y ′ ∈ I2k+1 such that X ′ ∩ T = X and Y ′ ∩ T = Y . The sets X ′ ∩ Y ′

and X ′ ∪ Y ′ are not in I2k since X ′ ∩ Y ′ ∩ T 6= ∅ and X ′ ∪ Y ′ ∪ (V − T ) 6= V , so they
are in I2k+1. This means that X ∩ Y and X ∪ Y are in F .

Suppose that F contains a bad configuration {X1, X2, X3, X4}. There are sets
X ′i ∈ I2k+1 (i = 1, . . . , 4) with X ′i ∩ T = Xi. By the definition of a bad configuration,
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X ′i ∩ X ′j ∩ T 6= ∅ and X ′i ∪ X ′j ∪ (V − T ) 6= V , so X ′i ∩ X ′j and X ′i ∪ X ′j are in
I2k+1. Again by the definition of a bad configuration and by the modularity of dF

on I, the intersection of 3 sets X ′i must be in I2k ∪ {∅} and the union of 3 sets X ′i
must be in I2k ∪ {V }. This means that, by the modularity of dF on I, dF (X ′1) ≡
dF (X ′1 ∩X ′2) + dF (X ′1 ∩X ′3) + dF (X ′1 ∩X ′4) mod 2k. But this is impossible if k ≥ 2
because these sets are all in I2k+1 (note that there is no contradiction if k = 1).

We showed that F satisfies the conditions of Theorem 1.1, so there is a pairing M
of T with dM(X) = 1 for every X ∈ F . This means that M satisfies the conditions
of the theorem.
Corollary 3.2. Let D = (V, E) be a digraph, k ≥ 2 an integer, and F ⊆ E a directed
cut 2k-cover. Then there is an edge set F ′ ⊆ F so that

min{dF ′(X), dF−F ′(X)} ≥ k for every X ∈ I2k ∪ I2k+1.

Proof. Let M be the pairing that exists according to Theorem 3.1, and let G be
the Eulerian graph obtained by taking the union of M and the edges of F without
orientation. We select an arbitrary Eulerian orientation ~G of G, and denote by F ′

the set of edges in F that have the same orientation in D and in ~G. If X ∈ I2k,
then dM(X) = 0, so dF ′(X) = din

~G
(X) = k. If X ∈ I2k+1, then dM(X) = 1, so

dF ′(X) ≤ din
~G
(X) = k + 1 and dF ′(X) ≥ din

~G
(X)− dM(X) = k.

Note that Corollary 3.2 is not true for k = 1, as it is shown by the counterexam-
ple of Schrijver [2]. It is an interesting open question whether Theorem 3.1 can be
generalized by requiring dM(X) ≤ dF (X)− 2k for every X ∈ I.
Conjecture 3.3. Let D = (V, E) be a digraph, k ≥ 2 an integer, and F ⊆ E a
directed cut 2k-cover. Then there is a pairing M of the nodes with dF (v) odd such
that dM(X) ≤ dF (X)− 2k for every X ⊆ V for which dout

E (X) = 0.
If true, this would imply the following relaxation of the capacitated version of

Woodall’s conjecture.
Conjecture 3.4. Let D = (V, E) be a digraph, k ≥ 2 an integer, and F ⊆ E a
directed cut 2k-cover. Then F can be partitioned into two directed cut k-covers.
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