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Rigid Tensegrity Labellings of Graphs

Tibor Jordán?, András Recski??, and Zoltán Szabadka? ? ?

Abstract
Tensegrity frameworks are defined on a set of points in Rd and consist of bars,

cables, and struts, which provide upper and/or lower bounds for the distance
between their endpoints. The graph of the framework, in which edges are
labelled as bars, cables, and struts, is called a tensegrity graph. It is said to
be rigid in Rd if it has an infinitesimally rigid realization in Rd as a tensegrity
framework.

We show that a graph can be labelled as a rigid tensegrity graph in Rd

containing only cables and struts if and only if it is redundantly rigid in Rd.
When d = 2 we give an efficient combinatorial algorithm for finding a rigid cable-
strut labelling. We also obtain some partial results on the characterization of
rigid tensegrity graphs in R2.

1 Introduction

A tensegrity graph T = (V ;B,C, S) is a simple graph on vertex set V = {v1, v2 . . . , vn}
and edge set E = B ∪C ∪ S. The elements of E are called members and are labelled
as bars, cables, and struts, respectively. A tensegrity graph containing no bars is
called a cable-strut tensegrity graph. The underlying graph of T is the (unlabelled)
graph T = (V ;E). A d-dimensional tensegrity framework is a pair (T, p), where
T = (V ;B,C, S) is a tensegrity graph and p is a map from V to Rd. (T, p) is also
called a realization of T . If T has neither cables nor struts then we may simply call it
a graph and a realization (T, p) is said to be a bar framework.

An infinitesimal motion of a tensegrity framework is an assignment of infinitesimal
velocities ui ∈ Rd to the vertices, such that

(pi − pj)(ui − uj) = 0 for all ij ∈ B,

(pi − pj)(ui − uj) ≤ 0 for all ij ∈ C,

(pi − pj)(ui − uj) ≥ 0 for all ij ∈ S.
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Section 2. Preliminaries 2

An infinitesimal motion is trivial, if (pi − pj)(ui − uj) = 0 for all 1 ≤ i, j ≤ n.
The tensegrity framework (T, p) is infinitesimally rigid in Rd if all of its infinitesimal
motions are trivial. A tensegrity graph T is said to be rigid in Rd if it has an in-
finitesimally rigid realization (T, p) in Rd. We refer the reader to [4, 5, 8, 10] for more
details on the rigidity of tensegrity frameworks.

In this paper we consider the following problems:

(a) Which graphs are the underlying graphs of rigid cable-strut tensegrity graphs
in Rd?

(b) If G = (V,E) is the underlying graph of a rigid cable-strut tensegrity graph in
Rd, how can one find, in polynomial time, a cable-strut labelling E = C ∪S, for
which T = (V ;C ∪ S) is a rigid tensegrity graph?

(c) Which tensegrity graphs are rigid in Rd?

We shall prove that a graph is the underlying graph of a rigid cable-strut tensegrity
graph in Rd if and only if it has a redundantly rigid realization as a bar framework in
Rd. This leads to a complete charaterization for d ≤ 2. When d = 2 we also give an
efficient combinatorial algorithm for finding a rigid cable-strut labelling.

The answer to the third question is known only for d = 1, see [7]. For d ≥ 3 even
the special case of graphs is one of the major open problems in combinatorial rigidity.
Here we make a few observations and give a solution for two special families of graphs
in the case when d = 2.

2 Preliminaries

A stress of a tensegrity framework T (p) is an assignment of scalars ωij to the members
ij of T satisfying ωij ≤ 0 for cables, ωij ≥ 0 for struts and∑

ij∈E

ωij(pi − pj) = 0 for each i ∈ V .

We say that ω = (. . . , ωij, . . . ) ∈ RE is a proper stress, if ωij 6= 0 for all ij ∈ C ∪ S.
The following basic results on infinitesimally rigid tensegrity frameworks are due to
Roth and Whiteley, see [8, Theorem 5.2(c), Corollary 5.3].

Theorem 2.1. [8] Suppose that (T, p) is a tensegrity framework in Rd. Then
(i) (T, p) is infinitesimally rigid in Rd if and only if the bar framework (T , p) is
infinitesimally rigid in Rd and there exists a proper stress of (T, p);
(ii) if (T, p) is infinitesimally rigid then the bar framework obtained by deleting any
cable or strut of T and replacing the remaining members of T by bars is infinitesimally
rigid in Rd.

The rigidity matrix of a tensegrity framework (T, p) on n vertices is the matrix
R(T, p) of size |E| × dn, where, for each member vivj ∈ E, in the row corresponding
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to vivj, the entries in the d columns corresponding to vertices i and j contain the
d coordinates of (p(vi) − p(vj)) and (p(vj) − p(vi)), respectively, and the remaining
entries are zeros. Note that a stress of (T, p) corresponds to a row dependency of
R(T, p).

A configuration p ∈ Rdn is a regular point of T if rankR(T, p) = max{rankR(T, q) :
q ∈ Rdn}. It is generic if it also gives rise to a regular point for all non-empty edge-
induced subgraphs of T . Note that the regular (generic) points of T form an open and
dense subset of Rdn. We also say that a realization (T, p) is regular (generic) if p is a
regular (generic, respectively) point of T . A member e of T is redundant in (T, p) if
rankR(T, p) = rankR(T − e, p). The proof of the next lemma is implicit in the proof
of [8, Theorem 5.4].

Theorem 2.2. [8] Let (T, p) be a regular realization of tensegrity graph T in Rd, let
ω be a proper stress of (T, p), and let e be a redundant member in (T, p). Then the set

{q ∈ Rdn : (T, q) is a regular realization of T

which has a proper stress ω′ with ω′(e) = ω(e)}

is open in Rdn.

Note that the infinitesimal velocities of a bar framework (G, p) are the vectors in
the null space of R(G, p). Hence (G, p) is infinitesimally rigid in Rd if and only if
rankR(G, p) = max{rank(Kn, q) : q ∈ Rdn}, where Kn is the complete graph on n
vertices. It also follows that infinitesimal rigidity of graphs is a generic property:
G has an infinitesimally rigid realization if and only if all generic realizations are
infinitesimally rigid. A graph G is said to be rigid in Rd if it has an infinitesimally
rigid realization as a bar framework in Rd. The characterization of rigid graphs in Rd

is known for d ≤ 2, see e.g. [9]. We say that G is redundantly rigid if G− e is rigid for
all e ∈ E. Clearly, G is the underlying graph of a rigid tensegrity graph if and only
if G is rigid. The question becomes more interesting if the tensegrity graph must not
contain bars.

Theorem 2.3. A graph G is the underlying graph of a rigid cable-strut tensegrity
graph in Rd if and only if G is redundantly rigid in Rd.

Proof. Necessity follows from Theorem 2.1(ii).
To prove sufficiency consider a generic realization (G, p) of G in Rd. Since G is

redundantly rigid, (G, p) is infinitesimally rigid and each edge of G is redundant in
(G, p). By Theorem 2.1(i) it is enough to prove that there exists a stress ω ∈ RE of
the bar framework (G, p) which is non-zero on each member. Then defining C = {ij ∈
E | ωij < 0} and S = {ij ∈ E | ωij > 0} gives rise to a rigid cable-strut tensegrity
graph T with underlying graph G by Theorem 2.1.

The stresses of the bar framework (G, p) form a linear subspace of RE, namely

W (G, p) = {ω ∈ RE | ωR(G, p) = 0.}

For a contradiction suppose that for each ω ∈ W (G, p) there is a coordinate ij ∈ E
such that ωij = 0. This means that W (G, p) is in the union of |E| linear subspaces of
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Section 3. Redundant graphs in two dimensions 4

RE. Thus, since W (G, p) is linear, it must be contained entirely in one of them. Hence
there exists an edge ij ∈ E for which each ω ∈ W (G, p) satisfies ωij = 0. However,
this contradicts the fact that ij is redundant in (G, p).

3 Redundant graphs in two dimensions

In the rest of the paper we shall assume that d = 2 unless specified otherwise. In
this section we recall and prove some combinatorial properties of redundantly rigid
graphs in R2. We say that H = (V,E) is an M -circuit if for all generic realizations
(H, p) of H the rows of R(H, p) form a minimal linearly dependent set of vectors in
R2n. We say that G is redundant if it has at least one edge and each edge of G is
in an M -circuit. It follows that a graph G is redundantly rigid if and only if G is
rigid and redundant. It is known that M -circuits are redundantly rigid graphs in two
dimensions. See [6] for more details on the properties of M -circuits in R2.

A j-separation of a graph G = (V,E) is a pair (G1, G2) of edge-disjoint subgraphs
of G each with at least j+1 vertices such that G = G1∪G2 and |V (G1)∩V (G2)| = j.
We say that G is 3-connected if G has at least 4 vertices and has no j-separation for
all 0 ≤ j ≤ 2. If (G1, G2) is a 2-separation of G, then we say that V (G1) ∩ V (G2) is
a 2-separator of G.

Suppose that G = (V,E) is a 2-connected graph and let (G1, G2) be a 2-separation
of G with V (G1) ∩ V (G2) = {u, v}. For 1 ≤ i ≤ 2, let G′

i = Gi + uv if uv 6∈ E(Gi)
and otherwise put G′

i = Gi. We say that G′
1, G

′
2 are the cleavage graphs obtained by

cleaving G along {u, v}.
Lemma 3.1. Suppose that G is a 2-connected redundant graph. Let {u, v} be a 2-
separator of G and let H̃1 and H̃2 be the cleavage graphs obtained by cleaving G along
{u, v}. Then one of the following holds:
(i) H̃i is redundant for i = 1, 2;
(ii) there is a 2-separation (H1, H2) of G with V (H1) ∩ V (H2) = {u, v} for which Hi

is redundant for i = 1, 2.

Proof. First we prove that each edge f ∈ E(H̃1) − uv belongs to an M -circuit in
H̃1. Since G is redundant, there is an M -circuit C in G which contains f . If C is a
subgraph of H̃1 then we are done. If not, then {u, v} is a 2-separator of C. In this
case it follows from [2, Lemma 4.2] that the cleavage graphs C1 and C2 obtained by
cleaving C along {u, v} are both M -circuits. Hence C1 is an M -circuit in H̃1 which
contains f . By symmetry we also have that each edge f ′ ∈ E(H̃2)− uv belongs to an
M -circuit in H̃2.

Thus, if uv belongs to an M -circuit in both cleavage graphs then (i) holds. Now
suppose that, say, uv is in no M -circuit in H̃1. As above, this implies that if uv ∈ E(G)
then all M -circuits of G containing uv must be in H̃2 and if uv /∈ E(G) then all M -
circuits of G containing some edge of E(H̃1)− uv must be in H̃1 − uv.

By moving the edge uv from one side of the 2-separation to the other, if necessary,
we may assume that there is a 2-separation (H1, H2) of G with V (H1) ∩ V (H2) =
{u, v} and uv /∈ E(H1). The arguments above now imply that H1 and H2 are both
redundant. Thus (ii) holds.
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Section 4. Operations on tensegrity graphs 5

We need the following result on redundant graphs. It follows by observing that
the proof of [6, Theorem 3.2] goes through under the weaker hypothesis that G is
redundant, and by using [6, Lemma 3.1].

Theorem 3.2. [6] Suppose that G is a 3-connected redundant graph. Then G is
redundantly rigid.

The 1-extension operation (on edge uw and vertex t) deletes an edge uw from
a graph G and adds a new vertex v and new edges vu, vw, vt for some vertex t ∈
V (G) − {u,w}. The following result gives an inductive construction for 3-connected
redundantly rigid graphs.

Theorem 3.3. [6, Theorem 6.15] Let G be a 3-connected redundantly rigid graph.
Then G can be obtained from K4 by a sequence of 1-extensions and edge additions.

4 Operations on tensegrity graphs

In this section we introduce the ‘labelled generalizations’ of the 1-extension and 2-sum
opeartions and show that they preserve rigidity when applied to tensegrity graphs.
These operations, whose unlabelled versions are well-known in combinatorial rigidity,
will be used in the next section to define rigid cable-strut labellings of graphs.

Figure 1: Infinitesimally rigid realizations of the four rigid tensegrity graphs on K4.
(In this paper we use solid (dashed) lines to denote struts (resp. cables).)

Let T = (V ;B ∪ C ∪ S) be a tensegrity graph, let uw ∈ C ∪ S be a cable or strut
of T and let t ∈ V − {u,w} be a vertex. The labelled 1-extension operation deletes
the member uw, adds a new vertex v and new members vu, vw, vt, satisfying the
condition that if uw is a cable then at least one of vu, vw is not a strut, and if uw is a
strut then at least one of vu, vw is not a cable. The new member vt may be arbitrary.
For example, if we consider cable-strut tensegrity graphs, this definition leads to six
possible labelled 1-extensions on a strut uw, as illustrated in Figure 2.

Lemma 4.1. Let T be a rigid tensegrity graph and let T ′ be a tensegrity graph obtained
from T by a labelled 1-extension. Then T ′ is also rigid.

Proof. Since infinitesimal rigidity (and the labelled 1-extension operation) is preserved
by interchanging cables and struts, we may assume that the 1-extension is made on
a strut uw of T and vertex t ∈ V − {u,w}. Let (T, p) be an infinitesimally rigid
realization of T in R2. By Theorem 2.1 there is a proper stress ω of (T, p) and (G, p)
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Figure 2: The six possible labelled 1-extensions on the strut uw and the feasible
positions of v.

is an infinitesimally rigid bar framework, where G = T is the underlying graph of T .
By Theorem 2.2 we may assume that p(u), p(w), p(t) are not collinear. In the rest of
the proof we shall also assume that the new members vu, vw, vt are all struts. The
proof is similar for each of the six possible labelled 1-extensions.

Let us extend the configuration p by putting p(v) = αp(u) + (1− α)p(w) for some
0 < α < 1. Let G′ be the underlying graph of T ′, which can be obtained from G
by a 1-extension. We can also extend the stress ω of (T, p) to (T ′, p) by defining
ωvu = ωuw/(1− α), ωvw = ωuw/α and ωvt = 0.

Since p(u), p(w), p(t) are not collinear, the bar framework (G′, p) is infinitesimally
rigid, see [9, Theorem 2.2.2]. Furthermore, the extended stress is nearly proper on
(T ′, p): the only member with a zero stress is vt. This implies that (T ′′, p) is infinites-
imally rigid, where T ′′ is obtained from T ′ by replacing the strut vt by a bar.

To obtain a proper stress we need to modify the realization a bit by replacing p(v)
by a point in the interior of the triangle p(u)p(w)p(t). By Theorem 2.2 this can be
done without destroying the infinitesimal rigidity of (T ′′, p). Consider a proper stress
ω′ of this modified realization of T ′′. Since we have three members incident with v,
and vu, vw are struts, we must have a positive stress on vt. Thus we may replace vt
by a strut and obtain the required infinitesimally rigid realization of T ′.

The other labelled 1-extensions can be treated in a similar manner by appropriately
defining α ∈ R − {0, 1} and moving p(v) out of the line of p(u)p(w) in such a way
that signs of the stresses on the members incident to v are as required. See Figure 2.

We shall also need an operation that glues together two tensegrity graphs along a
pair of members. Let T1 = (V1;B1, C1, S1) and T2 = (V2;B2, C2, S2) be two tensegrity
graphs with V1∩V2 = ∅ and let u1v1 ∈ S1 and u2v2 ∈ C2 be two designated members,
a strut in T1 and a cable in T2. The 2-sum of T1 and T2 (along the strut-cable pair u1v1

and u2v2) is the tensegrity graph obtained from T1−u1v1 and T2−u2v2 by identifying
u1 with u2 and v1 with v2. See Figure 3. We denote a 2-sum of T1 and T2 by T1⊕2 T2.
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+

v1 v2 v

u1 u2 u

Figure 3: The 2-sum of two tensegrity graphs along the pair u1v1, u2v2.

Since we shall apply the 2-sum operation to non-rigid tensegrity graphs as well, we
first prove the following lemma.

Lemma 4.2. Let (T1, p1) and (T2, p2) be regular realizations of tensegrity graphs T1, T2

with a proper stress. Then T = T1 ⊕2 T2 also has a regular realization with a proper
stress.

Proof. By Theorem 2.2 we may assume that (Ti, pi) is generic for i = 1, 2. Let ωi

be a proper stress of (Ti, pi), i = 1, 2. By scaling, translating, and rotating the
frameworks, if necessary, we may assume that p1(u1) = p2(u2) and p1(v1) = p2(v2).
These operations will not destroy genericity and ωi remains a proper stress in the
realization of Ti for i = 1, 2. By scaling the stresses we can also assume that ω1(u1v1) =
−ω2(u2v2) = 1. Since the realizations are generic, it follows from Theorem 2.1(ii) that
u1v1 and u2v2 are both redundant.

Let T ′ be the tensegrity graph obtained from T1, T2 by identifying u1 with u2, and
v1 with v2. Consider the realization (T ′, p) of T ′ obtained by merging the frameworks
(Ti, pi), i = 1, 2, along the points p1(u1), p1(v1). We can find generic realizations of
T ′ arbitrarily close to (T ′, p) without changing the positions of p(u), p(v). Now we
can use Theorem 2.2, applied to each (Ti, pi), and the fact that uivi is redundant in
(Ti, pi), i = 1, 2, to deduce that there is an ε > 0 for which any regular realization of
T ′ in the ε-neighbourhood has a proper stress whose value is equal to 1 on the strut
u1v1 and −1 on the cable u2v2. Since the stresses on u1v1 and u2v2 cancel each other,
we have that (T, p) is a regular realization of T = T1⊕2 T2 with a proper stress. This
proves the lemma.

Theorem 2.1 and the glueing lemma [9, Lemma 3.1.4] gives the following corollary.

Lemma 4.3. Suppose that T1 and T2 are rigid tensegrity graphs. Then T = T1 ⊕2 T2

is also rigid.

5 Cable-strut labellings of redundant graphs

In this section we give a new proof of the two-dimensional version of Theorem 2.3.
Based on this new approach, we can develop an efficient combinatorial algorithm for
finding a rigid cable-strut labelling of a redundantly rigid graph. The proof will imply
that every redundant graph can be obtained from disjoint copies of K4 (which is the
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Section 5. Cable-strut labellings of redundant graphs 8

smallest redundant graph) by some simple operations. By starting with one of the four
possible rigid cable-strut labellings of each of these K4’s (see Figure 1) we can obtain
a rigid cable-strut labelling of G by using the labelled versions of these operations.

Theorem 5.1. Let G = (V,E) be a redundant graph in R2. Then the edge set of G
has a cable-strut labelling E = C ∪ S for which the tensegrity graph T = (V ;C ∪ S)
has a regular realization with a proper stress. Furthermore, such a cable-strut labelling
of E can be found in polynomial time.

Proof. We prove the theorem by induction on |V |. Since G is redundant and the
smallest M -circuit is K4, we must have |V | ≥ 4 with equality only if G = K4. The
statement is straightforward for K4 (see Figure 1), so we may assume that |V | ≥ 5
and that the theorem holds for all redundant graphs containing less vertices than G.

First suppose that G has at least two blocks (i.e. maximal 2-connected subgraphs),
denoted by H1, H2, ..., Ht. Since M -circuits are 2-connected, each block is redundant.
Thus, by induction, we can find a cable-strut labelling of each block Hi and a regular
realization of the corresponding tensegrity graph Ti with a proper stress. Let T be
the tensegrity graph on G whose cable-strut labelling is induced by the Ti’s. Since
a proper stress remains a proper stress after translating a framework, and since the
blocks of G are edge-disjoint, we may obtain a realization (T, p) of T with a proper
stress by simply translating and merging the realizations of the Ti’s at the cut-vertices
of G. Since the regular realizations of T form a dense open set, we can use Theorem
2.2, applied to each of the realizations of the Ti’s, to make the realization regular.
This shows that G has the required labelling.

Hence we may assume that G is 2-connected. If G is 3-connected then G can be
obtained from K4 by 1-extensions and edge additions by Theorem 3.3. Thus we can
obtain a rigid cable-strut tensegrity graph T with underlying graph G by starting with
a rigid cable-strut labelling of K4 and using labelled 1-extensions as well as cable or
strut additions, following the inductive construction of G. Theorem 4.1 implies that
the labelled graph is indeed rigid. (The addition of new members clearly preserves
rigidity.) Since an infinitesimally rigid realization of T is regular and has a proper
stress by Theorem 2.1, the existence of the required cable-strut labelling of G follows.

It remains to consider the case when G is 2-connected and has a 2-separation {u, v}.
Let H̃1, H̃2 be the cleavage graphs obtained by cleaving G along {u, v}. By Lemma
3.1 either G can be obtained as the edge-disjoint union of two redundant graphs
with two vertices in common or both cleavage graphs are redundant. In the former
case we can proceed as in the case of 1-separations: by induction, we can find good
cable-strut labellings and realizations of the smaller graphs. These labellings induce
a cable-strut labelling T of G. Furthermore, by first rotating, translating, and scaling
the frameworks, if necessary, we can merge the realizations to obtain a realization of
T with a proper stress. By perturbing this realization, and using Theorem 2.2, we
can make the realization regular, too.

In the latter case we can also find, by induction, good cable-strut labellings and
realizations of the cleavage graphs. We may assume that these realizations are generic
by Theorem 2.2. Then, after interchanging cables and struts in one of the cleavage
graphs, if necessary, we take the 2-sum of the labelled cleavage graphs to obtain a
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Section 6. Rigid cable-strut tensegrity graphs 9

good labelling T ′ and a regular realization (T ′, p) of G′ = G−uv with a proper stress,
by Lemma 4.2. If uv /∈ E(G) then this provides a desired labelling of G. Now suppose
that uv ∈ E(G). By Theorem 2.2 we may assume that p is chosen so that (T ′ +uv, p)
is generic. Then uv is redundant in (T ′ + uv, p), and hence there is a stress ω′ of
(T ′ + uv, p) whose value on uv is not zero. By adding ω′ to ω with a small coefficient
we obtain a proper stress of (T ′ + uv, p). Thus adding a new cable (or strut) uv to
the labelled graph T ′ gives the required labelling of G. This completes the proof of
the first part of the theorem.

To see that there is an efficient algorithm for finding a good cable-strut labelling note
that the proof shows that G can be reduced to disjoint copies of K4’s by applying the
inverse operations of 1-extensions, edge additions, 2-sums, and merging along at most
two vertices. This provides an inductive construction of G. Such a construction can
be obtained in polynomial time, since each of the required subroutines (e.g. finding
small separators, testing rigidity, and testing redundantness) can be performed in
polynomial time, see e.g. [1]. We omit the details. By following the steps of the
construction we can find a good labelling of G by applying labelled 1-extensions,
cable or strut additions, interchanging cables and struts in certain subgraphs, taking
2-sums, and merging.

Theorem 2.1 and Theorem 5.1 implies:

Theorem 5.2. Let G = (V,E) be a redundantly rigid graph in R2. Then the edge set of
G has a cable-strut labelling E = C ∪S for which the tensegrity graph T = (V ;C ∪S)
is rigid. Furthermore, such a cable-strut labelling of E can be found in polynomial
time.

We remark that the proof of Theorem 5.1 implies that one can find rigid cable-strut
labellings of redundantly rigid graphs with various structural properties. For example,
consider a 3-connected M -circuit G. Then it can be shown that if G has at least five
vertices then G has a rigid cable-strut labelling in which the cables as well as the
struts induce a spanning tree of G. One can also verify that if G contains a triangle
then G has a rigid cable-strut labelling in which the cables induce a single triangle
and all other members are struts. We omit the details.

6 Rigid cable-strut tensegrity graphs

As we noted earlier, the characterization of the rigid (cable-strut) tensegrity graphs
is still open, even in two dimensions. In one dimension it turns out that a cable-strut
tensegrity graph T is rigid if and only if its underlying graph is rigid (i.e. connected)
and each of its M -connected components1 (i.e. blocks) contains at least one cable and

1A graph is M -connected if each pair of its edges belongs to an M -circuit. The M -connected
components of a graph G are the maximal M -connected subgraphs of G. Thus M -circuits are M -
connected graphs. It is known that M -connected graphs are redundantly rigid and 3-connected
redundantly rigid graphs are M -connected. It is also known that the 2-sum of two M -connected
graphs is M -connected. See [6] for more details.
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(D)(A) (B) (C) (E)

(F) (G) (H) (I) (J)

Figure 4: The non-rigid tensegrity graphs on W5.

at least one strut, see [7]. (Note that by using this result the solution of the labelling
problem in one dimension is straightforward.)

The same conditions, however, are not sufficient to guarantee the rigidity of a
cable-strut tensegrity graph T in two dimensions. This follows by observing that
a cable-strut tensegrity graph with just one cable (or strut) can never be rigid. In
addition, there is no lower bound on the number of cables and struts which would
imply the rigidity of a tensegrity graph, even if its underlying graph is M -connected.
This follows by observing that the 2-sum of a rigid cable-strut tensegrity graph with
an M -connected underlying graph and a tensegrity graph on K4 which contains only
struts, is not rigid. However, the following may be true.

Conjecture 6.1. There exists a (smallest) integer k such that every tensegrity graph
T containing at least k cables and at least k struts, and with a 3-connected and re-
dundantly rigid underlying graph, is rigid in R2.

We have a complete characterization of rigid tensegrity graphs whose underlying
graph is either a complete graph Kn or a wheel Wn. From these results it follows that
the conjecture is true in these special cases. Already the wheels show that if k exists,
it must be greater or equal to five. See Figure 4.
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