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An algorithm to increase the node-connectivity of a
digraph by one?

András Frank and László A. Végh??

Abstract

We develop a combinatorial polynomial-time algorithm to make a (k − 1)-
connected digraph k-connected by adding a minimum number of new edges. In
[7] a min-max theorem was proved (in a more general form) for the minimum
number of new edges whose addition makes a (k− 1)-connected directed graph
k-connected. In this paper we describe a new, constructive proof that gives rise
to a combinatorial polynomial-time algorithm.

1 Introduction

A directed graph D = (V, H) is called k-edge-connected if the number of edges
entering X, called the in-degree of X, is at least k for every non-empty proper
subset X of nodes. A 1-edge-connected digraph is called strongly connected. D is
called k-node-connected, in short, k-connected if it has at least k + 1 nodes and
discarding any subset of less than k nodes results in a strongly connected digraph. It is
well-known, by versions of Menger’s theorem, that D is k-edge-connected (respectively,
k-node-connected) if and only if there are k edge-disjoint (openly disjoint) directed
paths from each node to every other (and has at least k + 1 nodes in the k-node-
connected case.)

The directed edge-connectivity (node-connectivity) augmentation problem consists
of finding a minimum number of edges whose addition to a given digraph results in a
k-edge-connected (k-node-connected) digraph. In this paper we consider the special
problem of augmenting connectivity by one, that is, we augment the connectivity of
a digraph which is already (k − 1)-edge connected ((k − 1)-node-connected). Note
that for k = 1 edge- and node-connectivity coincide. A combinatorial polynomial-
time algorithm was developed for the corresponding augmentation problem by K.P.
Eswaran and R.E. Tarjan [2] in 1976.

The edge-connectivity augmentation problem was solved in [5] where both a min-
max theorem and a combinatorial polynomial-time algorithm were given. As far as

?Research supported by the Hungarian National Foundation for Scientific Research Grant, OTKA
T037547, K60802 and by European MCRTN ADONET, Grant Number 504438
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the node-connectivity augmentation problem is concerned, a min-max theorem was
proved in [7]. Here we state it only for the problem of augmenting node-connectivity
by one. In a digraph D = (V, H), we call an ordered pair (X, Y ) of disjoint non-empty
subsets of V a one-way pair if there is no edge of D from X to Y . The first member
X is called the tail of the pair while the second member Y is the head. D is clearly
(k−1)-connected if and only if |V −(X∪Y )| ≥ k−1 holds for every one-way pair. We
say that in a (k−1)-connected digraph a one-way pair is tight if |V −(X∪Y )| = k−1.
Two pairs are independent if their tails are disjoint or their heads are disjoint.

Theorem 1.1 ([7]). The minimum number of directed edges whose addition to a
(k − 1)-connected digraph D = (V, H) with |V | ≥ k + 1 results in a k-connected
digraph is equal to the maximum number of pairwise independent tight one-way pairs.

The proof in [5] for the corresponding edge-connectivity augmentation theorem
relied on the edge splitting-off technique and was thus algorithmic. The proof of
Theorem 1.1 in [7] used the uncrossing technique and hence it could not provide a
polynomial algorithm. Instead, the theorem itself was used to justify the polynomi-
ality of an algorithm for computing the minimum. That algorithm however relied
heavily on the ellipsoid method. The dual optimum could also be computed by a
method of T. Fleiner [3] using the min-max theorem, the ellipsoid method, and a
clever uncrossing procedure.

It remained an important open problem to find a purely combinatorial algorithm
for node-connectivity augmentation. In [8] the first author and T. Jordán exhibited
a combinatorial polynomial-time algorithm to make a strongly connected digraph 2-
connected, and showed that a similar approach may be used for any fixed k. That
is, the running time of the algorithm is polynomial in the size of the digraph but
exponential in k. Recently, A. Benczúr and the second author [10] have given a
combinatorial algorithm for the general case polynomial also in k.

The present approach is a combinatorial algorithm for augmenting connectivity by
one: the special case when the starting digraph is (k−1)-connected. The advantage of
our approach is that it is much simpler than [10], although has slightly worse running
time bounds.

The motivation of our algorithm is a previous algorithm of [6] for Győri’s theorem.
The general result of [7] contains not only various connectivity augmentation problems
but it also implies a deep min-max theorem of E. Győri [9] on the minimum number of
generators of family of subpaths of a directed path. (Győri’s result found a beautiful
application in combinatorial geometry concerning the minimum number of rectangles
covering a vertically convex rectilinear polygon in the plane.)

In this paper, instead of considering connectivity augmentation directly, we investi-
gate an equivalent problem. Let G = (A, B; E) be a bipartite graph with color classes
A and B. It is well known by Hall’s theorem that there exists a matching covering A
if and only if |X| ≤ |Γ(X)| holds for every X ⊆ A. G is called elementary bipartite
if |A| = |B| and one has the stronger property |X|+1 ≤ |Γ(X)| for every ∅ 6= X ⊂ A.
This is equivalent to the property that removing any edge of G the remaining graph
still contains a complete matching. As a generalization, we say that the bipartite
graph G = (A, B; E) is k-elementary for k ≥ 0 if |X| + k ≤ |Γ(X)| or Γ(X) = B
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for every ∅ 6= X ⊆ A. (Note that |A| = |B| is not assumed.) A problem analogous to
connectivity augmentation is as follows. Given a (k − 1)-elementary bipartite graph,
add a minimum number of edges to get a k-elementary bipartite graph.

Connectivity augmentation by one can be reduced to this problem. For a digraph
D = (V, H) construct the bipartite graph G = (A, B; E) in the following way. With
each v ∈ V associate vertices v′ ∈ A and v′′ ∈ B. Each edge uv ∈ H defines an edge
u′v′′ ∈ E, and each vertex v ∈ V defines an edge v′v′′ ∈ E. D is clearly k-connected if
and only if G is k-elementary. Thus augmenting connectivity of a (k − 1)-connected
digraph by one can be reduced to augmenting a (k − 1)-elementary bipartite graph
to k-elementary. It is not difficult to show that a reduction is possible in the other
direction as well.

For a bipartite graph G, let τ(G) denote the minimum number of edges whose
addition to G results in a k-elementary bipartite graph. Let us call such a set of
edges an augmenting edge set. For a (k− 1)-elementary bipartite graph G, the set
∅ 6= X ⊆ A with Γ(X) 6= B and |Γ(X)| = |X|+ k − 1 is called tight. Two tight sets
X and Y are independent if X ∩ Y = ∅ or Γ(X ∪ Y ) = B. Let ν(G) denote the
number of pairwise independent tight sets. The following min-max formula is a direct
consequence of the min-max formula of [7].

Theorem 1.2. Let G = (A, B; E) be a (k − 1)-elementary bipartite graph. Then
ν(G) = τ(G).

The main purpose of this paper is to give an algorithm which computes an optimal
augmentation. Assume we are given a subroutine for determining the optimum value
ν(G) for arbitrary (k− 1)-elementary bipartite graph G. Making use of Theorem 1.2,
one can easily construct an optimal augmenting edge set the following way. First
compute ν(G), and let J be the set of edges not in E between A and B. In each step
choose an edge e ∈ J , compute ν(G+e), and remove e from J . If ν(G+e) = ν(G)−1,
then add the edge e to G, otherwise keep the same G. Note that Theorem 1.2 ensures
the existence of an edge e with ν(G + e) = ν(G)− 1.

In this paper we develop a subroutine for determining ν(G). Furthermore, we
also present an other algorithm, which uses this subroutine only once, and finds an
optimal augmenting set directly. The method is based on a new, algorithmic proof of
Theorem 1.2.

We conclude the section by listing some definitions and notation. For sets X and
Y , X ⊂ Y means that X is a proper subset of Y . Let G = (A, B; E) be a (k − 1)-
elementary bipartite graph. Let T denote the set of tight sets, that is:

T := {X : ∅ 6= X ⊆ A, Γ(X) 6= B, |X|+ k − 1 = |Γ(X)|}.

Two tight sets X, Y ∈ T are independent if X ∩ Y = ∅ or Γ(X ∪ Y ) = B. Two
non-independent sets are called dependent. If X ⊆ Y or Y ⊆ X, then we call X and
Y comparable. X and Y are crossing if they are dependent but not comparable.
We also use the terms X crosses Y or Y crosses X in this case.
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A set F ⊆ T is called crossing if X ∪ Y,X ∩ Y ∈ F for any two crossing sets
X, Y ∈ F . Making use of the submodularity of |Γ(X)|, the following inequalities
show that T itself is crossing.

|X ∪ Y |+ k − 1 + |X ∩ Y |+ k − 1 ≤ |Γ(X ∪ Y )|+ |Γ(X ∩ Y )| ≤
≤ |Γ(X)|+ |Γ(Y )| = |X|+ k − 1 + |Y |+ k − 1. (1)

We have equality throughout, thus X ∪ Y, X ∩ Y ∈ T follows. If a crossing system
F ⊆ T contains no two crossing members F is called cross-free.

For a set K ∈ F let F ÷K denote the set of sets in F not crossing K. Similarly,
for a subset K ⊆ F let F ÷ K denote the set of sets in F crossing no element of K.
Let us call a cross-free subset F ⊆ T complete if T ÷ F = F , which means that F
is a maximal cross-free subset of T .

A directed edge e = uv augments the tight set X ∈ T if u ∈ X, v ∈ B − Γ(X).
We say that a set F of edges augments F or that F is an augmenting edge set of
F if for every member of F there is an edge in F augmenting it. Let τ(F) denote the
minimum number of augmenting edges, and ν(F) the maximum number of pairwise
independent elements of F .

The following theorem is a slight generalization of Theorem 1.2 and is also an easy
consequence of the min-max formula of [7].

Theorem 1.3 ([7]). For a crossing system F ⊆ T the minimum number τ(F) of
edges augmenting F equals the maximum number ν(F) of pairwise independent mem-
bers of F .

Note that we need at least ν(F) edges since two pairs are independent if and only
if they cannot be augmented by the same edge.

The rest of the paper is organized as follows. In Section 2 we give the description of
the Dual Oracle, a subroutine which determines ν(T ). In Section 2.2 we analyze the
oracle and the first algorithm which relies on this oracle. In Section 3, we give a new
proof for Theorem 1.3, and sketch a second algorithm. For this algorithm, we present
only the main ideas, and omit the technical details which can be done similarly as for
the first algorithm.

2 The Dual Oracle

The following theorem is the essence of the Dual Oracle.

Theorem 2.1. For a complete cross-free system K ⊆ T the maximum number of
pairwise independent sets is equal in K and T , that is, ν(K) = ν(T ).

Clearly, ν(K) ≤ ν(T ) for every K ⊆ T . The advantage of a cross-free system is that
we can easily determine the maximum number of pairwise independent sets. This is
due to the fact that whenever it contains two dependent sets they are comparable.
Thus considering the partially ordered set (K,⊆) an antichain consists of pairwise
independent sets. A maximum antichain in a poset can be easily found by an algorithm
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based on Dilworth’s theorem stating the equality of the size of a minimum chain cover
and a maximum antichain. In order to prove Theorem 2.1, we need some elementary
propositions.

Claim 2.2. If X, Y ∈ T are dependent, then Γ(X) ∩ Γ(Y ) = Γ(X ∩ Y )

Proof. This follows since the second inequality in (1) holds with equality.

Claim 2.3. If Y ∈ T , X ⊆ A and Γ(X) ⊆ Γ(Y ), then X ⊆ Y .

Proof. If X is not a subset of Y , then |X ∪ Y | > |Y |. On the other hand, |Γ(Y )| =
|Y |+ k − 1 and Γ(Y ) = Γ(X ∪ Y ), thus |Γ(X ∪ Y )| < |X ∪ Y |+ k − 1 contradicting
the fact that G is (k − 1)-elementary.

Lemma 2.4. For a crossing family F of and for any K ∈ T , the subfamily F ÷K
is crossing.

Proof. Let F ′ = F ÷K and let X and Y be two crossing members of F ′. We have to
prove that neither X ∪ Y nor X ∩ Y crosses K.

First assume that K is comparable with both X and Y . It is not possible that
X ⊆ K ⊆ Y or Y ⊆ K ⊆ X as X and Y are not comparable. Therefore either
K ⊆ X, Y or K ⊇ X, Y . In the first case K is contained in both X ∪ Y and X ∩ Y ,
in the second case it contains both of them.

Second, assume that K is independent from both X and Y . If K ∩ X = ∅ and
K ∩ Y = ∅, then K is disjoint from both X ∪ Y and X ∩ Y . If K ∩ X = ∅ and
Γ(K∪Y ) = B then K∩(X∩Y ) = ∅ and Γ(K∪(X∪Y )) = B, thus X∩Y,X∪Y ∈ F ′.
Finally, if Γ(K ∪X) = Γ(K ∪ Y ) = B then Γ(K ∪ (X ∪ Y )) = B shows X ∪ Y ∈ F ′,
and Γ(K ∪ (X ∩ Y )) = B also follows by Claim 2.2.

In the third case K is independent from one of X and Y , say from X, and compara-
ble with the other, Y . If K ∩X = ∅ then K ⊆ Y follows since X ∩ Y 6= ∅. This gives
K ∩ (X ∩ Y ) = ∅, K ⊆ X ∪ Y , giving X ∩ Y,X ∪ Y ∈ F ′. Finally, if Γ(K ∪X) = B,
then Γ(X ∪ Y ) 6= B implies Y ⊆ K, giving Γ(K ∪ (X ∪ Y )) = B, X ∩ Y ⊆ K.

Lemma 2.5. (i) Suppose K and L are dependent, K∩L and M are also dependent,
but L and M are independent for some K, L, M ∈ T . Then (Γ(L) − Γ(K)) −
Γ(M) 6= ∅ and K − L ⊆ M .

(ii) Let K and L be dependent, K ∪ L and M also dependent, but L and M in-
dependent for some K, L, M ∈ T . Then (Γ(L) − Γ(K)) ∩ Γ(M) = ∅ and
M ∩ (K − L) 6= ∅.

Proof. (i) Observe K ∩ L ∩ M 6= ∅, thus the independency of L and M implies
Γ(L∪M) = B. By the dependency of K ∩L and M , Γ(M ∪ (K ∩L)) 6= B giving the
first part of the claim using Claim 2.2. For the second part, consider Γ((K∩L)∪M) =
Γ((K ∪M)∩ (L∪M)) = Γ(K ∪M)∩ Γ(L∪M) = Γ(K ∪L). By Claim 2.3, we have
K ∪ L ⊆ (K ∩ L) ∪M , implying K − L ⊆ M .

(ii) As K∪L and M are dependent, L and M can be independent only if M∩L = ∅.
Since M ∩(K∪L) 6= ∅, we have M ∩(K−L) 6= ∅. Claim 2.2 gives Γ(K∪L)∩Γ(M) =
Γ((K ∪ L) ∩M) = Γ(K ∩M) ⊆ Γ(K), showing the first part of the claim.
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2.1 Constructing a complete cross-free subset 6

Now we are ready to prove Theorem 2.1. The proof is based on the following lemma:

Lemma 2.6. For a crossing system F and a pair K ∈ F we have ν(F) = ν(F ÷K).

First we show how Theorem 2.1 follows from this lemma. Let K = {K1, . . . , K`}.
First apply this lemma for T and K1, then in the ith step for T ÷ {K1, . . . Ki−1}
and Ki. Note that T ÷ {K1, . . . Ki−1} is a crossing system by applying inductively
Lemma 2.4. Thus we have ν(T ) = ν(T ÷ K1) = . . . = ν(T ÷ K), hence the claim
follows by T ÷ K = K.

Proof of Lemma 2.6. Trivially, ν(F ÷K) ≤ ν(F). Consider a maximum independent
subset L of F which has the most common members with F ÷ K. Suppose by
contradiction that L∩ (F ÷K) < ν(F) and choose an element L ∈ L− (F ÷K). By
definition L crosses K. We claim that either L\ {L}∪ {L∩K} or L\ {L}∪ {L∪K}
is independent. This leads to contradiction, since the new system intersects F ÷ K
in a strictly larger subset than L does.

Suppose that neither L\{L}∪{L∩K} nor L\{L}∪{L∪K} is independent. Then
there is an element M ∈ L crossing L ∩ K, and an other element M ′ ∈ L crossing
L ∪K. If M = M ′, then M is clearly dependent with L, a contradiction.

Assume now M 6= M ′. The conditions of Lemma 2.5(i) hold for K, L and M ,
and the conditions of (ii) hold for for K, L and M ′. We claim that M and M ′ are
dependent. It follows as Γ(L) − Γ(K) contains an element in B − Γ(M ∪M ′), and
K − L contains an element in M ∩M ′.

2.1 Constructing a complete cross-free subset

A straightforward approach to construct a complete cross-free subset of T would be
to select sets greedily, that is, as long as possible choose sets which do not cross the
the previously selected ones. The difficulty arises from the fact that it is not clear
how to decide whether a given cross-free system is complete or not. (Note that the
size of T may be exponentially large.) To overcome this difficulty we work with a
special kind of cross-free systems. Let us call a cross-free subset H down-closed if
it fulfills the following property:

Z crosses some element of H whenever K ∈ H, Z ⊂ K, Z ∈ T −H. (2)

This means that if H has an element containing Z, then Z cannot be added to H.
Given a down-closed system, the following claim provides a straightforward way to
decide whether it is complete.

Claim 2.7. A down-closed system is complete if and only if it contains all the maximal
members of T .

Proof. On the one hand, any complete cross-free system should contain all the max-
imal sets of T since a maximal set cannot cross any other set. On the other hand,
suppose by contradiction that a down-closed system H contains all the maximal mem-
bers, but it is not complete. Choose a Z /∈ H with H ∪ {Z} cross-free. There is a
maximal element K ∈ T with Z ⊆ K. By our assumption K ∈ H, contradicting the
definition of the down-closed system.
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Assume we are given a down-closed system H which is not complete. In the fol-
lowing, we investigate how a set K ∈ T −H can be found with the property that
H ∪ {K} is down-closed as well.

As H is not complete, we can find a maximal element M with M ∈ T −H. Let

L1 := {K ∈ H : K ⊆ M}; L2 := {K ∈ H : K 6⊆ M} (3)

We say that a set Z fits the pair (H, M) if (a) Z ∈ T −H, Z ⊆ M ; (b) Z is
independent of all members in L2 and (c) either K ⊂ Z or K ∩ Z = ∅ for every
K ∈ L1.

Lemma 2.8. If Z is a minimal member of T − H fitting (H, M), then H ∪ {Z} is
down-closed.

This is a straightforward consequence of the following claim.

Claim 2.9. Let Z ∈ T −H, Z ⊆ M . The following two properties are equivalent: (i)
Z fits (H, M); (ii) H ∪ {Z} is cross-free.

Proof. (i)⇒(ii) is straightforward. For the other direction we have to verify (b) and
(c) of the above definition. By (2), either K ⊂ Z or Z and K are independent for
arbitrary K ∈ H. By contradiction to (b), suppose K ⊂ Z for some K ∈ L2. In this
case K ⊂ Z ⊆ M , contradicting the definition of L2. For (c) we need K ∩ Z = ∅
if K and Z are independent for some K ∈ L1. This follows by K, Z ⊆ M , thus
Γ(K ∪ Z) ⊆ Γ(M) ⊂ B.

Observe that M itself fits (H, M) ensuring the existence of a Z satisfying the
conditions of Lemma 2.8. So K = Z is an appropriate selection. Such a Z can be
found using bipartite matching theory. The description of this subroutine is quite
technical and rather standard, therefore it is moved to an Appendix.

2.2 Description of the Dual Oracle

Given the above subroutine for constructing a complete down-closed system, we have
the following oracle to determine the value ν(G) in a (k − 1)-elementary bipartite
graph G = (A, B; E): we construct a complete down-closed system, then we apply
Dilworth’s theorem. (It is well-known that computing a maximum antichain and a
minimum chain-decomposition of a partially ordered set can be reduced to a maximum
matching computation in a bipartite graph.) The size of the maximum antichain will
give the value ν(G).

A trivial upper bound for the size of the optimal augmenting edge set and by
Theorem 1.2 also for the number of pairwise independent sets is |A||B|. A better
bound can be given following the argument of Theorem 4.5 in [7]. It can be proved
that there is an optimal augmenting set which is a matching, hence the maximum
independent system is of cardinality at most |A|. A chain can also have at most |A|
elements, thus the cardinality of a complete cross-free system is at most s = |A|2.

As shown in the Appendix, if s is an upper bound for the size of a complete down-
closed system, then it can be constructed in O(s|A|3|B|) = O(|A|5|B|) running time.
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Section 3. Algorithmic Proof of Theorem 1.3 8

Finding a maximum antichain in a poset of size O(s) can be reduced to finding a
maximum matching in a bipartite graph on O(s) vertices and O(s2) edges. Using the
Hopcroft-Karp algorithm this can be done in O(s2.5) running time. This gives O(|A|5)
for s = |A|2, so the total running time of the Dual Oracle is O(|A|5|B|).

As we have already indicated in the Introduction, the Dual Oracle may be used to
compute the optimal augmentation. For this, we need to call the Dual Oracle at most
|A||B| times, thus the total complexity is O(|A|6|B|2). For connectivity augmenta-
tion by one, this gives O(n8), where n is the number of vertices of the graph. (For
comparison, the running time of the algorithm in [10] is O(n7) for the same problem.)
However, the correctness of the present approach does rely on Theorem 1.2. In the
next section we use a more direct approach for finding the optimal augmentation.

3 Algorithmic Proof of Theorem 1.3

In this section we give a proof of Theorem 1.3 and sketch another algorithm, which uses
the Dual Oracle only once. After a complete down-closed system K is determined,
an augmenting set of K can be transformed to an augmenting set of the entire T .
This will also give a new proof for Theorem 1.3. We begin with the definition of the
elementary augmenting step.

Consider a crossing family F , and let F ′ be a set of edges between A and B. We
say that a pair (u, v) of nodes with u ∈ A, v ∈ B is bad (with respect to F and F ′)
if there is a member X of F with u ∈ X, v /∈ Γ(X), and X is not augmented by F ′.
Let W (F ′) = WF(F ′) denote the set of bad pairs.

Consider an augmenting edge set F ′ of F ′ := F ÷ K. For two elements f ′1 =
x1y1, f

′
2 = x2y2 of F ′, define

f1 := x1y2 and f2 := x2y1 (4)

and let
F ′′ := F ′ − {f ′1, f ′2} ∪ {f1, f2}. (5)

We will say that F ′′ arises from F ′ by flipping {f ′1, f ′2}. A flipping is called improving
if F ′′ augments a strictly larger subset of F than F ′ does. Note that this is equivalent
to requiring that W (F ′′) ⊂ W (F ′) and, since the total number of edges is |A||B|,
we obtain that after at most |A||B| improving flippings the resulting subset of edges
must augment the whole F . The following lemma, which is the heart of the proof of
Theorem 1.3 and the algorithm, asserts the existence of an improving flipping.

Lemma 3.1. Let F ⊆ T be a crossing family. Let K be a member of F and F ′ an
augmenting edge set of F ′ := F ÷ K. If F ′ does not augment F , then there is an
improving flipping.

Proof. Let us choose two (not necessarily distinct) members X and Y of F that are
not augmented by F ′ so that X ⊆ Y , X is minimal (in the sense that X ′ is augmented
by F ′ for every X ′ ∈ F , X ′ ⊂ X) while Y is maximal in an analogous sense.
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Section 3. Algorithmic Proof of Theorem 1.3 9

Since F ′ does not augment X and Y , we have X, Y ∈ F −F ′, that is, both X and
Y cross K. Therefore X ∩K ⊂ X and Y ∪K ⊃ Y . By the minimality of X, X ∩K
is augmented by F ′, that is, there is an edge f ′1 = x1y1 in F ′ augmenting X ∩ K.
Since F ′ does not augment X, we must have x1 ∈ X ∩ K and y1 ∈ Γ(X) − Γ(K).
Analogously, there is an edge f ′2 = x2y2 in F ′ augmenting Y ∪ K for which x2 ∈
K − Y, y2 ∈ B − Γ(K ∪ Y ). Let f1, f2 and F ′′ be defined by (4) and (5).

We are going to show that flipping {f ′1, f ′2} is improving. Since X is augmented
by F ′′ but not augmented by F ′, we have only to show that every member of F
augmented by F ′ is augmented by F ′′, as well.

Suppose indirectly that there is a member M of F which is augmented by F ′ but
not by F ′′. In particular, no element of F ′ − {f ′1, f ′2} augments M . It is not possible
that both f ′1 and f ′2 augments M since then both f1 and f2 would augment M , that
is, F ′′ would augment M . Therefore there is exactly one element in F ′ augmenting
M and this only element is either f ′1 or f ′2. Let us assume first that M is augmented
by f ′1.

Claim 3.2. Y and M are dependent.

Proof. Suppose by contradiction that Y and M are independent. K ∩ Y and M are
dependent as f ′1 augments both. Thus we can apply Lemma 2.5(i) with Y = L, giving
K − Y ⊆ M . This is contradiction since x2 ∈ K − Y and x2 /∈ M as f2 does not
augment M .

The assumption that M is not augmented by F ′′ gives y2 ∈ Γ(M) − Γ(Y ), as
otherwise f1 would augment F , thus Y 6⊆ M , implying Y ∪M ⊃ Y . By the maximality
of Y , Y ∪M is augmented by an element f = xy of F ′ and f is different from f ′1 and
f ′2 since y1, y2 ∈ Γ(M ∪ Y ). As x ∈ Y ∪M , y ∈ B − Γ(Y ∪M), f augments either M
or Y . However, f ∈ F ′′∩F ′ and hence f augments neither M nor Y , a contradiction.

The case when M is augmented only by f ′2 also leads to contradiction by a similar
argument using Lemma 2.5(ii).

Proof of Theorem 1.3

ν ≤ τ follows since no two independent pairs can be augmented by the same edge.
To see the other direction, we distinguish two cases.

Case 1. F is cross-free. By applying Dilworth’s theorem to the partially ordered set
(F ,⊆), we obtain that there is a maximum subfamily I of F consisting of uncom-
parable members and that F can be decomposed into γ := |I| chains. Since F is
assumed to be cross-free, the members of I are pairwise independent. Furthermore,
it is easy to see that the chain-decomposition of Fs corresponds to a set F of γ edges
augmenting F . Hence we obtained the required covering F of F and independent
subfamily I of F for which |F | = |I|.

Case 2. There is a member K of F crossing some other members of F . Let F ′ :=
F÷K. By Lemma 2.4, F ′ is a crossing family, so by induction, there is an independent
subfamily I of F ′ and a covering F ′ of F ′ for which |I| = |F ′|. Choose F ′ in such a
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way that the number of bad pairs of nodes is minimum. By Lemma 3.1, this number
is zero, that is, F ′ covers the whole F . �

3.1 Description of the Algorithm

Our next goal is to transform the inductive proof above into an algorithm, that con-
structs an independent subset I of T and an augmenting edge set F of T so that
|I| = |F |. It consists of two phases.

In Phase 1 our algorithm uses the Dual Oracle. It determines a complete down-
closed system K = {K1, . . . , K`}, and by Dilworth’s theorem it finds a maximum
antichain along with a minimum chain-decomposition. The chain-decomposition of K
corresponds to a subset F ′ of edges augmenting K for which |F ′| = |I|. The antichain
I will be output by the whole algorithm as a maximum cardinality independent subset
of T .

Phase 2 will terminate by outputting a covering of T of cardinality |I|. Let F0 = T
and Fj := T ÷{K1, . . . , Kj} for each j = 1, . . . , `. From Phase 1, we have F` = K cov-
ered. By Lemma 3.1, when applied to F`−1,F`, K` in place of F ,F ′, K, respectively,
we can find an improving flipping and obtain a revised covering F ′′ of F` which covers
a strictly larger subset of F`−1 as F ′ does. Since the number of bad pairs is at most
|A||B| and an improving flipping reduces this number, after at most |A||B| improving
flippings the resulting covering of F` will cover F`−1. Then we can iterate this step
with F`−2,F`−1, K`−1, . . ., F0,F1, K1, and finally we get a cover F ′ of T = F0. F ′

will be the output of the algorithm as a minimal edge set whose addition to G results
in a k-elementary bipartite graph.

We have outlined the steps of the algorithm and proved its validity. Phase 1 can
be preformed as described in Section 2. For the realization of Phase 2, we can use
similar technics as in Section 2.2. However, we omit this analysis. Our reason for
this is that the analysis is quite technical, and we cannot prove a better running time
bound then O(|A|6|B|2), which we had for the Dual Algorithm.

4 Concluding remarks

This approach can be extended to solve algorithmically other connectivity augmenta-
tion problems as well, for example, to increase the ST -edge-connectivity of a digraph
by one. (A digraph is called k-edge-connected from S to T if there are k edge-disjoint
paths from every node of S to every node of T ). The main difficulty is that instead
of (2) we have to maintain a more complicated property when selecting the elements
Kj.

Finally, we remark that the method is suitable for solving a minimum cost version
of the connectivity augmentation problem for node-induced costs. That is, the cost
of a possible new directed edge uv is defined by c−(u) + c+(v) where c− and c+ are
two cost-functions on V . For general cost functions, even the special case of making
the graph (V, ∅) strongly connected is NP-complete as being a generalization of the
TSP problem.
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5 Appendix

In this Appendix we present how the subroutine for constructing a complete down-
closed system can be implemented using bipartite matching theory.

Given the bipartite graph G = (A, B; E) and a function f : A∪B → N we call the
set F ⊆ E an f-factor if dF (x) = f(x) for every x ∈ A ∪B where dF (x) denotes the
number of edges in F incident to x. Let f(Z) =

∑
x∈Z f(x) for Z ⊆ A ∪B.

Claim 5.1. Consider a bipartite graph G = (A, B; E) and a function f : A ∪B → N
so that f(A) = f(B) and f(x) = 1 or f(y) = 1 for every xy ∈ E. An f -factor exists
if and only if for any X ⊆ A, f(X) ≤ f(Γ(X)) for every X ⊆ A.

Proof. An easy consequence of Hall’s theorem, replacing each x ∈ A ∪ B by f(x)
copies. Note that by the condition f(x) = 1 or f(y) = 1 for every xy ∈ E no edge is
used more than once.
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First we show how the maximal elements of T can be found. Let us consider
elements a ∈ A and b ∈ B with ab /∈ E. A set X ∈ T is called an ab-set, if ab
covers X, that is, a ∈ X and b /∈ Γ(X). For ab /∈ E, consider the following f . Let
f(a) = f(b) = k + 1 and for c ∈ A ∪ B − a− b, let f(c) = 1. For this f , an f -factor
is called a k-ab-factor. If G is a (k − 1)-elementary bipartite graph, then Claim 5.1
implies the existence of a (k − 1)-ab-factor, denoted by Fab.

Claim 5.2. If there exists a k-ab-factor, then there is no ab-set.

Proof. Assume X is an ab-set. As X ∈ T , |Γ(X)| = |X| + k − 1. Since a ∈ X,
b /∈ Γ(X), we have f(X) = |X| + k, f(Γ(X)) = |X| + k − 1, thus by Claim 5.1 no
k-ab-factor exists.

It is easy to see that any two ab-sets are dependent and the union and intersection
of two ab-sets are ab-sets as well. Thus if the set of ab-sets is nonempty, then it
contains a unique minimal and maximal element. Now we show how these can be
found algorithmically. We say that the path U = x0y0x1y1 . . . xtyt is an alternating
path for F ⊆ E from x0 to yt, if xi ∈ A, yi ∈ B, xiyi /∈ F for i = 0, . . . , t, and
yixi+1 ∈ F for i = 0, . . . , t−1. By the same conditions we also say that x0y0x1y1 . . . xt

is an alternating path for F from x0 to xt.

Claim 5.3. (a) If there exists an alternating path for Fab between a and b, then there
exists no ab-set. (b) Assume there is no alternating path for Fab from a to b; let S
denote the set of vertices c having an alternating path for Fab from a to c, and let
X = A ∩ S. Then X is the unique minimal ab-set. (c) Assume no alternating path
exists for Fab from a to b; let S ′ denote the set of vertices c having an alternating path
for Fab from c to b, and let Y = A− S ′. Then Y is the unique maximal ab-set.

Proof. (a) Let U be an alternating path for Fab from a to b. Then Fab∆U is a k-
ab-factor so by Claim 5.2 no ab-set exists. (b) Let Z be an arbitrary ab-set. Γ(Z)
contains a unique y with xy ∈ Fab for every x ∈ Z − a. The number of y ∈ B with
ay ∈ Fab is exactly k, and all of them are contained in Γ(Z). These are |Z| + k − 1
different elements of Γ(Z), and since Z ∈ T , Γ(Z) has no other elements than these.
This easily implies that Z contains every x ∈ A for which there is an alternating path
for Fab from a to x, showing X ⊆ Z. It is left to prove that X ∈ T . It is sufficient
to show that there exists an x ∈ X with xy ∈ Fab for every y ∈ Γ(X) . This follows
from the definition of X, completing the proof of (b). The proof of (c) follows the
same lines.

At the initialization of the algorithm, we determine the sets Fab by a single max-
flow computation for every a ∈ A, b ∈ B, ab /∈ E. By Claim 5.3 the maximal ab-sets
can be found by a breadth-first search. The maximals among these will give the
maximal elements of T (note that the maximal ab-set might be contained in some
other a′b′-set). We will use the sets Fab also in the later steps of the algorithm.

To implement the basic step of the algorithm, consider a down-closed H which is
not complete, a maximal element M ∈ T −H and L1, L2 as defined by (3). Our task
is to find a K fitting (H, M) and minimal subject to this property. Let M be the set
of the maximal elements of L1.
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Claim 5.4. M consits of pairwise disjoint sets.

Proof. Let T1, T2 ∈M. As they are maximal, they cannot be comparable, thus either
T1 ∩ T2 = ∅ or Γ(T1 ∪ T2) = B. The latter is excluded since T1, T2 ⊂ M implies
Γ(T1 ∪ T2) ⊆ Γ(M) ⊂ B.

Let us construct G′ = (A, B; E ′) from G as follows. The set E ′ contains E and
some additional edges. For each X ∈ L2, let xy ∈ E ′ for every x ∈ X, y ∈ B − Γ(X).
Furthermore, let xy ∈ E ′ whenever T ∈M, x ∈ T and y ∈ Γ(T ).

Claim 5.5. Let Z ∈ T −H, Z ⊆ M . Z fits (H, M) if and only if Z is a tight set in
G′.

Proof. The tight sets of G′ are those tight sets Z of G for which there is no edge in
E ′ − E augmenting Z, that is, no edge xy with x ∈ Z and y ∈ B − Γ(Z).

Z fits (H, M) if it is independent from all elements of L2, and for arbitrary T ∈M,
either T ∩Z = ∅ or T ⊂ Z. If it satisfies these properties, no new edge in G′ augments
Z, thus Z is tight also in G′. For the other direction, if Z is dependent with some
X ∈ L2, then there exists x ∈ X ∩ Z, y ∈ B − Γ(X ∪ Z) with xy ∈ E ′ augmenting
Z. If for some T ∈ M, T would cross X, then by Claim 2.3, Γ(T )− Γ(Z) 6= ∅, thus
there exist x ∈ T ∩X, y ∈ Γ(T )− Γ(Z) with xy ∈ E ′ augmenting Z.

However, it is not enough to determine a minimum tight set of G′, since the elements
of M are among these, and we are looking for a Z ∈ T −H. To exclude the elements
of M, we add some further edges to G′. Let Q ⊆ M be an arbitrary set. Let Z(Q)
denote the unique minimal X satisfying the following property:

X ∈ T , Q ⊆ X, and X fits (H, M). (6)

We will determine Z(Q) for different Q sets in order to find K. Z(Q) is well-defined
since M itself satisfies (6); and if X and X ′ satisfy (6), then X and X ′ are dependent
and it is easy to see that X ∩X ′ also satisfies (6). The following claim gives an easy
algorithm for finding Z(Q) for a given Z.

Claim 5.6. Fix some a ∈ Q, b ∈ B − Γ(M). Let G′′ denote the graph obtained
from G′ by adding all edges ay with y ∈ Γ(Q). Let S denote the set of vertices c for
which there exists an alternating path for Fab from a to c, and let X = A ∩ S. Then
Z(Q) = X.

Proof. As M is an ab-set in G′′, applying Claim 5.3(a) for G′′ instead of G, we get
that G′′ contains no alternating path for Fab from a to b. By Claim 5.3(b), X is the
unique minimal ab-set in G′′. Γ(X ∪ Q) = Γ(X), thus by Claim 2.3, Q ⊆ X. By
Claim 5.5, X is the unique minimal set satisfying (6), thus Z(Q) = X.

Let L denote the union of the elements of M. First, we find a set Z1 fitting (H, M)
and Z1 −L 6= ∅. Let us compute the set Z(a) for any a ∈ M −L. By Claim 5.6, this
can be done by a single breadth-first search. We get a good Z1 by choosing a minimal
element of the set {Z(a) : a ∈ M − L}.
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Thus can be found by M−L = O(|A|) breadth-first searches. Now either Z1 is itself
a minimal set fitting (H, M), or there exists a Z2 ⊆ L∩Z1, also fitting (H, M). This
is impossible if Z1 contains only one element of M, so in this case Z1 is a minimal set
fitting (H, M).

Assume now Z1 contains at least two sets in M. In order to obtain Z2, let us
compute Z(Ti∪Tj) for every two disjoint members Ti, Tj ∈M, Ti, Tj ⊂ Z1. Choosing
a minimal among these gives a minimal Z2 fitting (H, M). This can be obtained by
O(|A|2) breadth-first searches.

As Z2 fits (H, M) and is minimal subject to this property, K := Z2 is an appropriate
choice.

5.1 Complexity

To find a complete down-closed system first we need |A|2 Max Flow computations
for computing the maximal members and the auxiliary graphs. The running time for
determining a member of the complete down-closed system is dominated by O(|A|2)
breadth first searches. Thus if s is an upper bound for the size of a skeleton then we
can determine a complete down-closed system in O(s|A|3|B|) running time.
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