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Brick Partitions of Graphs

Bill Jackson? and Tibor Jordán??

Abstract

For each rational number q ≥ 1, we describe two partitions of the vertex set
of a graph G, called the q-brick partition and the q-superbrick partition. The
special cases when q = 1 are the partitions given by the connected components
and the 2-edge-connected components of G, respectively. We obtain structural
results on these partitions and describe their relationship to the principal par-
titions of a matroid.

1 Introduction

All graphs considered are finite and without loops, but may contain multiple edges.
Given a graph G and a positive integer c, we use cG to denote the graph obtained
from G by replacing each edge by c parallel edges.

For each positive rational number q = b/c where b ≥ c are positive integers, we
define a q-brick of G to be a maximal subgraph H of G such that cH has b edge-
disjoint spanning trees, and a q-superbrick of G to be a maximal subgraph H of G
such that cH − e has b edge-disjoint spanning trees for all edges e of cH. (We will see
that these definitions are independent of the representation of q as b/c.) We show in
Section 2 that the vertex sets of the q-bricks of G partition the vertex set of G, and
that the vertex sets of the q-superbricks of G form a refinement of this partition, see
Figure 1. The special cases of the brick and superbrick partitions of a graph G when
q = 1 are the partitions given by the connected components and the 2-edge-connected
components of G, respectively. The brick partitions of a graph are closely related to
the principal partitions of its cycle matroid. This relationship will be described in
Section 3.

Our motivation for considering brick partitions is their application to the study
of the flexibility of molecules. One can model a molecule as a graph in three-space
in which atoms are represented by vertices and bonds by edges. The atoms in the
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Figure 1: When q = 1 the above graph G has one q-brick (G itself) and two
q-superbricks (the two 2-edge-connected components of G). The q-brick (and q-
superbrick) partitions are successively refined when q becomes greater than (resp.
equal to) 1, 6/5, 5/4, and 3/2. For q > 3/2 both partitions consist of the vertices of G
as singleton members. The figure illustrates the q-brick partition and the q-superbrick
partition of G when q = 6/5.

molecule are free to move subject to the constraints that both the lengths of bonds
and the angles between pairs of adjacent bonds remain constant. This corresponds to
allowing the vertices to move subject to the constraints that the lengths of all edges
in the square of G, i.e. the graph G2 obtained by joining all pairs of vertices of G
of distance at most two, remain constant. (Squares of graphs are sometimes called
molecular graphs because of this correspondence.) It is a difficult open problem to
determine when an arbitrary graph is rigid in three-space, but this problem may be
easier for molecular graphs. The Molecular Conjecture, due to Tay and Whiteley [19,
Conjecture 1], asserts that, if G has minimum degree at least two, then G2 is rigid
in three-space if and only if 5G contains six edge-disjoint spanning trees. We use
the q-brick and q-superbrick partitions with q = 6/5, in [8, 9, 11] to obtain partial
results on the molecular conjecture. They are also used with q = 3/2 in [10] to verify
a 2-dimensional version of the conjecture.

2 Bricks and superbricks

Let G = (V, E) be a graph. For a family F of pairwise disjoint subsets of V let EG(F)
denote the set, and eG(F) the number, of edges of G connecting distinct members of
F . The following classical result determines when a graph has a specified number of
edge-disjoint spanning trees.

Theorem 2.1. Let H = (V, E) be a graph and let k be a positive integer.
(a) The maximum size of the union of k forests in H is equal to the minimun value
of

eH(P) + k(|V | − |P|) (1)
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taken over all partitions P of V ;
(b) H contains k edge-disjoint spanning trees if and only if

eH(P) ≥ k(|P| − 1)

for all partitions P of V .

Theorem 2.1(a) appears in [18, Chapter 51]. It follows easily from the matroid
union theorem of Nash-Williams [16] and Edmonds [4], by applying this theorem to
the matroid union of k copies of the cycle matroid of H. Part (a) implies part (b),
which is a well-known result of Tutte [21] and Nash-Williams [15].

We assume henceforth in this section that q ≥ 1 is a fixed rational number, and
that q = b/c for integers b ≥ c > 0. For a partition P of V , let

defG,q(P) = q(|P| − 1)− eG(P)

denote the deficiency of P in G (with respect to q) and let

defq(G) = max{defG,q(P) : P is a partition of V }.

Note that defq(G) ≥ 0 since defG,q({V }) = 0. When q is an integer, Theorem 2.1(a)
implies that defq(G) is the minimum number of edges which must be added to G so
that the resulting graph has q edge-disjoint spanning trees. More generally, c defq(G)
is the minimum number of edges which must be added to c G so that the resulting
graph has b edge-disjoint spanning trees. We say that P is a q-tight partition of G if
defG,q(P) = defq(G). In what follows we may omit G or q (or both) from the subscript
if it is clear from the context.

Lemma 2.2. Suppose G = (V, E) is a graph and P is a tight partition of G. Let
Q ⊆ P with |Q| ≥ 2, P ′ =

⋃
P∈Q P and H = G[P ′]. Then

(a) defH(Q) ≥ 0.
(b) Furthermore, if P is chosen such that |P| is as small as possible, then defH(Q) > 0.

Proof: Let R = (P −Q) ∪ {P ′}. Then

defG(P) = defG(R) + defH(Q).

Since P is a tight partition of G we have defG(P) ≥ defG(R). Hence defH(Q) ≥ 0.
Now suppose that defH(Q) = 0. Then defG(P) = defG(R). Thus R is a tight

partition of G with |R| = |P|− |Q|+1. Hence, if P is chosen such that |P| is as small
as possible, then we must have defH(Q) > 0. •

We say that a graph G is q-strong (or strong, when q is clear from the context) if
defq(G) = 0. Equivalently, by Theorem 2.1(b), G is q-strong if and only if cG has b
edge-disjoint spanning trees.

Lemma 2.3. Let G = (V, E) be a graph, and P be a tight partition of G. Choose
P ∈ P and let H = G[P ]. Then
(a) H is strong.
(b) Furthermore, if P is chosen such that |P| is as large as possible, then {P} is the
only tight partition of H.
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Proof: Let Q be a tight partition of H and R = (P − {P}) ∪ Q. Then R is a
partition of V and

defG(R) = defG(P) + defH(Q).

Since P is a tight partition of G we have defH(Q) ≤ 0. SinceQ is a tight partition of H,
defH(Q) ≥ 0. Thus defH(Q) = 0 and H is strong. Furthermore, defG(R) = defG(P).
Thus, if P is chosen such that |P| is as large as possible, we must have |Q| = 1 and
Q = {P}. •

A subgraph H of a graph G is said to be a q-brick (or simply brick) of G if H is a
maximal q-strong subgraph of G with respect to inclusion. Thus bricks are induced
subgraphs.

Lemma 2.4. Let G = (V, E) be a graph, let A, B ⊆ V with A ∩ B 6= ∅ and suppose
that G[A] and G[B] are strong. Then G[A ∪B] is strong.

Proof: Put H = cG. Let T1, T2, ..., Tb be edge-disjoint spanning trees in H[A] and
F1, F2, ..., Fb be edge-disjoint spanning trees in H[B]. Let Ri = Ti − E(H[A ∩ B]),
1 ≤ i ≤ b. Then Fi ∪ Ri are b edge-disjoint connected graphs on H[A ∪ B]. (Each
Fi ∪ Ri contains a spanning tree of H[B], and a path from each vertex in A − B to
A ∩B.) •

It follows immediately that the bricks of a graph G are vertex disjoint. Since, by
definition, a single vertex is strong, every vertex of G belongs to a brick, and hence
we have:

Corollary 2.5. The vertex sets of the bricks of a graph G = (V, E) partition V .

We shall use the term q-brick partition (or simply brick partition) of G to refer to
the partition of V given by the vertex sets of the q-bricks of G.

Theorem 2.6. Let G = (V, E) be a graph and P be a tight partition of G such that
|P| is as small as possible. Then P is the brick partition of G.

Proof: Let B be the brick partition of G. If def(G) = 0 then G is a brick and
B = {V } = P , so we may assume that def(G) ≥ 1. Lemma 2.3(a) implies that each
of the parts in P induces a strong subgraph of G. Thus P is a refinement of B by
Lemma 2.4. Since each part of B induces a strong subgraph of G, Lemma 2.2(b) now
implies that B = P . •

We say that a graph G = (V, E) is q-superstrong (or simply superstrong) if def(G) =
0 and the only tight partition of G is {V }. Equivalently, by Theorem 2.1(b), G is
superstrong if cG−e has b edge-disjoint spanning trees for all e ∈ E(cG). A subgraph
H of G is said to be a q-superbrick (or simply superbrick) of G if H is a maximal
q-superstrong subgraph of G with respect to inclusion. Thus superbricks are induced
subgraphs.

Lemma 2.7. Let G = (V, E) be a graph, let A, B ⊆ V with A ∩ B 6= ∅ and suppose
that G[A] and G[B] are superstrong subgraphs of G. Then G[A ∪B] is superstrong.
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Proof: Put H = cG and choose e an edge of H[A∪B]. Since G[A] and G[B] are both
q-superstrong, H[A]−e and H[B]−e are both b-strong. Thus (H[A]−e)∪ (H[B]−e)
is b-strong by Lemma 2.4. Hence G[A ∪B] is q-superstrong. •

It follows immediately that the superbricks of a graph G are vertex disjoint. Since,
by definition, a single vertex is superstrong, every vertex of G belongs to a superbrick,
and hence we have:

Corollary 2.8. The vertex sets of the superbricks of a graph G = (V, E) partition V .

We shall use the term superbrick partition of G to refer to the partition of V given
by the vertex sets of the superbricks of G.

Theorem 2.9. Let G be a graph and P be a tight partition of G such that |P| is as
large as possible. Then P is the superbrick partition of G.

Proof: Let S be the superbrick partition of G. If |P| = 1 then G is a superbrick and
S = {V } = P , so we may assume that |P| ≥ 2. Lemma 2.3(b) implies that each of
the parts in P induces a superstrong subgraph of G. Thus P is a refinement of S by
Lemma 2.7. Since the union of two or more parts of P induces a subgraph of G which
is not superstrong by Lemma 2.2(a), we may deduce that S = P . •

We say that a graph G is minimally (super)strong if G is (super)strong and G− e
is not (super)strong for all e ∈ E(G).

Lemma 2.10. Let G = (V, E) be graph.
(a) If G is minimally strong and H is a strong subgraph of G then H is minimally
strong.
(b) If G is minimally superstrong and H is a superstrong subgraph of G then H is
minimally superstrong.

Proof: We prove (b). The proof of (a) is similar. Let e ∈ E(H) and consider the
superbrick partition S of G − e. Since G is minimally superstrong, |S| ≥ 2 and the
endvertices of e belong to different members of S. Let Q = {X ∈ S : V (H)∩X 6= ∅}
and let Q′ = {V (H) ∩X : X ∈ Q}. We have |Q| ≥ 2. Suppose H − e is superstrong.
Then eG−e(Q) ≥ eH−e(Q′) > q(|Q′| − 1) = q(|Q| − 1). Thus defF (Q) < 0, where F is
the subgraph of G−e induced by

⋃
X∈Q X. Since S is a tight partition of G−e by The-

orem 2.9, this contradicts Lemma 2.2(a). Thus H−e is not superstrong, as claimed. •

Lemma 2.10 is analogous to the result that every k-edge-connected subgraph of a
minimally k-edge-connected graph is minimally k-edge-connected.

It is straightforward to obtain efficient algorithms for testing whether a graph G =
(V, E) is q-(super)strong, and for determining the q-(super)brick partition of G by
using well-known algorithms for packing trees, or more generally, packing independent
sets in a matroid, see [8] for more details. In particular, if q is an integer, Mq(G) is
the matroid union of q copies of the cycle matroid of G and E0 is the set of edges of E
which lie in no circuits of Mq(G), then the q-superbricks of G are just the connected
components of G− E0.
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3 Principal partitions

We use M = (E, r) to denote a matroid with groundset E and rank function r. Recall
that the dual matroid M∗ = (E, r∗) of M is determined by the dual rank function
r∗(X) = |X| − r(E) + r(E −X) for all X ⊆ E.

Consider the following optimization problem for M.

Problem 1. Given a matroid M = (E, r) and a rational number p ≥ 0, find X ⊆ E
to minimize p r(X) + r∗(E −X).

Substituting for the dual rank function and putting q = p + 1, we may reformulate
Problem 1 as:

Problem 2. Given a matroid M = (E, r) and a rational number q ≥ 1, find X ⊆ E
to minimize q r(X)− |X|.

The special case of Problem 1 when p = 1 andM is the cycle matroid of a connected
graph G = (V, E) has an application to the electrical network represented by G. We
would like to determine a minimum set of edges I1 ∪ I2 such that if we measure
voltage differences on the edges in I1 and current along the edges of I2 then we can
use Kirchoff’s laws and Ohm’s law to determine voltage differences and current for
every edge of G. We can construct such sets by solving Problem 1 with p = 1, and
taking I1 and I2 to be maximal subsets of X and E − X which are independent in
M and M∗, respectively. Different formulations of this special case of Problems 1
and 2 were solved independently by Kishi and Kajitani [12], Ohtsuki, Ishizaki, and
Watanabe [17], and Iri [7]. In particular, Kishi and Kajitani showed that there is an
ordered partition (F+, F 0, F−) of E, such that F+ is the unique smallest solution to
Problem 1, and F+ ∪F 0 is the unique largest solution to Problem 1. They called this
the principal partition of E. Their result was extended to integer p by Bruno and
Weinberg [1], and to rational p by Tomizawa [20] and Narayanan and Vartak [14], as
follows. Let q ≥ 1 be a rational number. We say that F ⊆ E is a q-minimizer in a
matroid M = (E, r) if qr(F ) − |F | is as small as possible. It was proved that, for
each rational q ≥ 1, there is a unique ordered partition (F+

q , F 0
q , F−

q ) of E, called the
q-principal partition of E, such that F+

q is the smallest and F+
q ∪ F 0

q is the largest
q-minimizer in M. (Thus Kishi and Kajitani’s principal partition is the 2-principal
partition of M.)

We shall see that there is a close relationship between the q-brick partitions of
a graph G and the q-principal partition of its cycle matroid. We first reformulate
Problem 2 for the case when M = (E, r) is the cycle matroid of a graph G = (V, E).
For each X ⊆ E let c(X) be the number of components in the graph (V, X). Then
r(X) = |V | − c(X) and Problem 2 becomes:

Problem 3. Given a graph G = (V, E) and a rational number q ≥ 1, find X ⊆ E to
minimize q(|V | − c(X))− |X|.

Lemma 3.1. Let G = (V, E) be a graph and q ≥ 1 be a rational number. (a) Suppose
X ⊆ E is a q-minimizer in the cycle matroid of G and let H = (V, X). Then the
components of H are induced subgraphs of G and their vertex sets form a q-tight
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partition of G.
(b) Suppose P is a q-tight partition of G and let Y = E − EG(P). Then Y is a
q-minimizer in the cycle matroid of G.

Proof: (a) Suppose some e ∈ E − X is incident with two vertices in the same
component of H. Let X ′ = X ∪ {e}. Then c(X) = c(X ′) and X ′ contradicts the fact
that X is a q-minimizer. Thus each component of H is an induced subgraph of G.

Let P be a q-tight partition of G and Y = E − EG(P). Each part of P induces a
q-strong (and hence connected) subgraph of G by Lemma 2.3(a). Thus

defG,q(P) = q(|P| − 1)− eG(P) = q(c(Y )− 1) + |Y | − |E|.

Similarly, if Q is the partition of V given by the vertex sets of the components of H,
then

defG,q(Q) = q(|Q| − 1)− eG(Q) = q(c(X)− 1) + |X| − |E|.

Since X is a q-minimizer, we have

defG,q(Q)− defG,q(P) = q c(X) + |X| − q c(Y )− |Y | ≥ 0.

Thus Q is a tight partition of G.

(b) Let X be a q-minimizer in the cycle matroid of G and Q be the partition of G
given by the vertex sets of the components of H = (V, X). By (a), Q is a tight parti-
tion of G. Thus defG,q(Q) = defG,q(P). This implies that q c(X) + |X| = q c(Y ) + |Y |
and hence Y is a q-minimizer in the cycle matroid of G. •

Lemma 3.1 defines a bijection between q-minimizers and q-tight partitions.

Lemma 3.2. Let G = (V, E) be a graph, q ≥ 1 be a rational number and (F+
q , F 0

q , F−
q )

be the q-principal partition of the cycle matroid of G. Then:
(a) the q-bricks of G are the components of H0 = (V, F+

q ∪ F 0
q ), and

(b) the q-superbricks of G are the components of H+ = (V, F+
q ).

Proof: We prove (a). The proof of (b) is similar. Let H1, H2, . . . , Hm be the compo-
nents of H0, Q be the partition of V defined by H1, H2, . . . , Hm, and P be the brick
partition of G. Then Q is a tight partition of G and each subgraph Hi is a q-strong
induced subgraph of G by Lemmas 3.1(a) and 2.3(a). Hence Q is a refinement of P .
Let X = E − EG(P). By Lemma 3.1(b), X is a q-minimizer in the cycle matroid
of G. Since F+

q ∪ F 0
q is the largest q-minimizer and F+

q ∪ F 0
q ⊆ X, we must have

F+
q ∪ F 0

q = X. Thus the components of H0 and the bricks of G have the same edge
sets. The fact that the bricks of G are connected now implies that they are the same
as the components of H0. •

A weaker version of Lemma 3.2(a) was proved by Lin in [13] for q = 2, where the
author defined the ‘maximal subgraph of G in which each component contains two
edge-disjoint spanning trees’ and showed that this subgraph gives rise to a 2-tight
partition.
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3.1 Further Remarks

The maximum value of q such that a graph G is q-strong was first considered by
Gusfield [6]. It was called the strength of G by Cunningham in [3] and extended to
matroids. A unified approach to strength and principal partitions in matroids is given
by Catlin et al in [2]. For integer values of q, inductive constructions for q-strong and
q-superstrong graphs have been given by Nash-Williams [15] and Frank and Király
[5], respectively.
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[5] A. Frank and Z. Király, Graph orientations with edge-connection and parity con-
straints, Combinatorica, 22, No. 1, 47-70, 2002.

[6] D. Gusfield, Connectivity and edge-disjoint spanning trees, Inform Process. Lett. 16
(1983), 87–89.

[7] M. Iri, A review of recent work in Japan on principal partitions of matroids and their
applications, Annals of the New York Academy of Sciences, vol 319, 306-319, 1979.

[8] B. Jackson and T. Jordán, Rigid components in molecular graphs, Algorithmica,
in press. (See also EGRES TR-2006-03, www.cs.elte.hu/egres/.)

[9] B. Jackson and T. Jordán, On the rigidity of molecular graphs, submitted. (See
also EGRES TR-2006-02, www.cs.elte.hu/egres/.)

[10] B. Jackson and T. Jordán, Pin-collinear body-and-pin frameworks and the molec-
ular conjecture, submitted. (See also EGRES TR-2006-06, www.cs.elte.hu/egres/.)

[11] B. Jackson and T. Jordán, Independence in the 3-dimensional rigidity matroid of
molecular graphs, in preparation.

[12] G. Kishi and Y. Kajitani, Maximally distant trees and principal partition of a linear
graph, IEEE Trans. Circuit Theory, Vol CT-16, 323-330, 1969.

[13] P.-M. Lin, Complementary trees in circuit theory, IEEE Trans. on Circuits and
Systems, Vol. CAS-27, No. 10, 1980, pp. 921-928.

EGRES Technical Report No. 2007-05



References 9

[14] H. Narayanan and N. Vartak, An elementary approach to the principal partition
of a matroid, Trans IECE Japan E64 (1981) 227-234.

[15] C.St.J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, The Journal
of the London Mathematical Society 36 (1961) 445-450.

[16] C.St.J.A. Nash-Williams, An application of matroids to graph theory, in: Theory
of graphs (P. Rosenstiehl, ed.), Gordon and Breach, New York, 1967, pp. 263-265.

[17] T. Ohtsuki, Y. Ishizaki, and H. Watanabe, Topological degrees of freedom and
mixed analysis of electrical networks, IEEE Trans. Circuit Theory, Vol CT-17, 491-499,
1970.

[18] A. Schrijver, Combinatorial Optimization, Springer, 2003.

[19] T.S. Tay and W. Whiteley, Recent advances in the generic rigidity of structures,
Structural Topology 9, 1984, pp. 31-38.

[20] N. Tomizawa, Strongly irreducible matroids and principal partition of a matroid into
strongly irreducible minors, Electron. and Commun. Japan 59A (1976) 1-10.

[21] W.T. Tutte, On the problem of decomposing a graph into n connected factors, The
Journal of the London Mathematical Society 36 (1961) 221-230.

EGRES Technical Report No. 2007-05


	Introduction
	Bricks and superbricks
	Principal partitions
	Further Remarks


