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Packing trees with constraints on the leaf degree

Jacint Szabo*

Abstract

If m is a positive integer then we call a tree on at least 2 vertices an m-tree if
no vertex is adjacent to more than m leaves. Kaneko proved that an undirected
graph G = (V, E) has a spanning m-tree if and only if for every X C V the
number of isolated vertices of G — X is at most m|X|+ (|X| —1)" — unless we
are at the exceptional case of G ~ K3 and m = 1. As an attempt to integrate
this result into the theory of graph packings, in this paper we consider the
problem of packing a graph with m-trees. We use an approach different to that
of Kaneko, and we deduce Gallai-Edmonds and Berge-Tutte type theorems and
a matroidal result to the m-tree packing problem.

1 Introduction

If H is a set of undirected graphs then a subgraph () of an undirected graph G is called
an H-packing if every connected component of () is isomorphic to some member of
‘H. An H-packing is maximum if it covers a maximum number of vertices of G, and
it is an H-factor if it is spanning. The H-packing problem is to find a maximum
‘H-packing in the input graph G. Note that if H = {K,} then we get the classical
matching problem. The goal in graph packings is mainly to find new polynomial
and NP-complete graph packing problems, and to obtain structural results to the
polynomially solvable cases. These structural results are mostly extensions of the
following basic theorems on matchings: Tutte’s characterization on the existence of
perfect matchings, the Berge-Tutte formula, and the Gallai-Edmonds decomposition
theorem (cited in Theorem 2.1 below).

Apart from matchings, the first graph packing problem studied was the { K5, C3, Cs, . ...

packing problem. By a tricky reduction to bipartite matchings, Tutte [13] proved that
a graph G = (V, E) has a {K,, C3,Cs,...}-factor if and only if i(G — X) < | X| for
every X C V, where i(G — X) denotes the number of isolated vertices of G — X. For
the next important result, we need to define local graph packings: here instead of a
global family #, along with the input graph G, a set H of subgraphs of G is given —
the subgraphs allowed to form a component of the packing. Cornuéjols, Hartvigsen
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and Pulleyblank [2, 1] gave a polynomial algorithm and a Gallai-Edmonds type struc-
ture theorem to the local packing problem where # is constrained to consist of all
Ky-subgraphs of G and an arbitrary set of factor-critical subgraphs of G. Recall that
a connected graph is factor-critical if the deletion of any vertex leaves a graph with
a perfect matching. Another important milestone was the result of Kaneko [8], who
gave a Tutte type characterization on the existence of an H-factor of a graph, where
‘H consists of the paths of length at least 2. The extension of this surprising result
was given by Hartvigsen, Hell and Szabé [6], who introduced and solved the k-piece
packing problem, where a k-piece is a connected graph with maximum degree k.
The above mentioned long path factor problem of Kaneko corresponds to the case
k=2.

The starting point of the present paper is another result of Kaneko. If 7" is a
tree and v € V(T) then let leafy(v) denote the number of leaves of T adjacent to
v in T. Let m be a positive integer. We call T' an m-tree if 7" has at least two
vertices and leafy(v) < m for all v € V(T). In [7] Kaneko considered the existence
of spanning m-trees in undirected graphs, and he gave an algorithmic proof to the
following characterization. If v is a number then we denote ot = max{0, a}.

Theorem 1.1 (Kaneko [7]). Let G = (V, E) be a connected, undirected graph and
m be a positive integer. Then G has a spanning m-tree if and only if i(G — X) <
m|X| + (|X| = 1) for every X C V — except if G ~ K3 and m = 1 when this
condition holds but G has no spanning m-tree.

An important observation of Kaneko [7] is that G has a spanning m-tree if and only
if G has an m-tree factor. Indeed, if forest () is an m-tree factor of G, then @ has no
isolated vertices so arbitrarily connecting the components of () results in a spanning
m-tree of G. On the other hand, a spanning m-tree is an m-tree factor by definition.
Thus Theorem 1.1 of Kaneko is actually a Tutte type characterization on the m-tree
packing problem.

This paper presents further structural results on the m-tree packing problem. Using
the classical Gallai-Edmonds decomposition and the construction of matroid union,
we prove that the m-tree packing problem is polynomial time solvable. We deduce
a Gallai-Edmonds type theorem and a Berge-Tutte type minimax formula to the
problem, which implies the Tutte type theorem 1.1 of Kaneko. We also prove that
the vertex sets coverable by m-tree packings form the independent sets of a matroid,
in other words, the m-tree packing problem is matroidal.

Throughout the paper all graphs are simple and undirected. If G = (V, E) is a
graph and X C V then we denote by I'(X) the set of vertices in V' — X adjacent
to X, and by ¢(G) the number of connected components of G. We use the notation
N={0,1,2,...}.

2 Main results

Our approach is based on the classical Gallai-Edmonds structure theorem cited below.
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Theorem 2.1 (Edmonds, Gallai [3, 4, 5]). Let G = (V,E) be an undirected
graph. Define D C 'V to consist of those vertices which are missed by some maximum
matching of G. Let A=T(D) and C =V — (DU A). Then

1. every component of G|D] is factor-critical,
2. a mazimum matching of G misses ¢(G[D]) — |A| vertices of G,

3. for all ) # A" C A the number of those components of G[D] which are adjacent
to A" is at least |A’| + 1,

4. G[C] has a perfect matching.

We need some basic results on matroid theory. For more details and introduction
to matroids, we refer to Schrijver [11].

Definition 2.2. Let S be a finite ground set and b : P(S) — N a function. b is called
submodular if for all X, Y C S it holds that

b(X)+b(Y)>b(XNY)+bXUY). (1)
b is intersecting submodular if (1) holds for all X, Y C S with X NY # 0.

Lemma 2.3. If b : P(S) — N is intersecting submodular and monotone increasing
then
{FCS:|X|<bX) VX CF}

forms the family of independent sets of a matroid, denoted by M(b). The rank of
X C S in M() is
min{|Y[+ ) b(¥;)},
jeJ
where the minimum is taken over Y C X and partition {Y; : j € J} of X =Y. Ifb
is submodular then this partition is taken to be simply {X — Y'}.

A hypergraph is a pair H = (V, E), where the elements of V' are the vertices,
the elements of E are the hyperedges, and for every hyperedge e € E a ground set
V(e) C V is associated. For F' C E let V(F') = [J,cp V(e). The hypergraph H is said
to be connected if for every () # X C V there exists a hyperedge intersecting both
X and V — X. A maximal connected subhypergraph of H without empty hyperedges
is called a connected component of H, and the number of connected components
of H is denoted by c¢(H).

Let H = (V, E) be a hypergraph. It is easy to check that by : P(E) - N, X —
|V (X)| is submodular, and M (br) is called the transversal matroid of H. Similarly,
by : P(E) = N, X — (JV(X)|—1)" is intersecting submodular, and M (by,) is called
the hypergraphic matroid of H. If H is a graph then its hypergraphic matroid is
equal to its cycle matroid.
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Definition 2.4. Let G = (V, E) be a graph and S C V be a stable set. We define Hg
to be the hypergraph with vertex set I'(S) and hyperedge set S, where V(s) = I'(s)
for all s € S. We denote the transversal (resp. hypergraphic) matroid of Hg on ground
set S simply by Ts (resp. Mg).

If S C V is a stable set then by Lemma 2.3, the rank of X C S in the transversal
matroid T is min{|Y |+ |[I'(X = Y)| : ¥ C X}. It follows that X is independent in
Ts if and only |I'(Z)| > |Z| for all Z C X, which by Hall’s theorem is equivalent to
that X can be matched into I'(S) in G.

As for the hypergraphic matroid, Lovész [9] proved that X C S is independent
in Mg if and only we can choose at every vertex of X two incident edges, such that
these 2| X | edges form a forest in G. Next we formulate the rank function of Mg in a
convenient way.

Lemma 2.5. Let G = (V, E) be a graph and S CV be a stable set. The rank r(X)
of X C S in the hypergraphic matroid Mg is

r(X) =min{|Y|+ |I'(X —-Y)| —c(Hx_y) : Y C X}. (2)

Proof. By Lemma 2.3,

=Y+ > (T -1)* (3)

jeJ

for some Y C X and partition {Y; : j € J} of X — Y. If ¥; and Y have a common
neighbor for some 4,5 € J then the right hand side of (3) does not increase when
merging ¥; and Y. It cannot decrease either by Lemma 2.3. Moreover, if for some
j € J the set Y; partitions into nonempty subsets ¥! and Y? such that Y' and Y?
have no common neighbor, then the right hand side of (3) does not increase when
splitting Y; into Y! and Y2, It cannot decrease either by Lemma 2.3. Hence the right
hand side of (3) remains the same if the classes in the partition {Y; : j € J} of X =Y
correspond to the connected components of G[(X —Y)UTI'(X —Y)]. Thus

r(X) = [Y[+[T(X =Y)| - c(Hx v). (4)
However, (4) holds with < for all Y C X by Lemma 2.3, thus (2) follows. O
Finally, we need one more construction of matroids.
Lemma 2.6. If M;, i € I, are matroids on ground set S with rank function r; then
{U F; : F; is independent in M; for all i € I}
iel

forms the family of independent sets of a matroid, the union of the M;’s, denoted by
Vier Mi. The rank of X C S in \/,c; M; is

el

min{[Y|+) r(X -Y) : Y C X}.

i€l
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Claim 2.7. Let F = (V,E) be a simple factor-critical graph and m be a positive
integer. Then F' has an m-tree factor if and only if |V| > 5 or F ~ K3 and m > 2.

Proof. K; has no m-tree factor for any m > 1. The triangle K3 has no 1-tree factor,
but its every spanning tree is an m-tree for all integer m > 2. Next, assume that
|V| > 5. Lovész [10] proved that every factor-critical graph F' has an odd ear
decomposition, that is a sequence Fy, ..., Fy, where Fj is a singleton, Fj, = F' and
F;., is constructed from F; by adding a path of odd length with its end vertices
residing in F;. Consider such an odd ear decomposition. Fj is an odd circuit. If it has
at least 5 vertices, then take a Hamiltonian path of it together with a perfect matching
of F — V(F}). This is an m-tree factor of F' for all m > 1. If F} is a triangle then,
as |[V| > 5 and F is simple, |V (Fy)| > 5. It is easy to see that Fy has a Hamiltonian
path, moreover, F' — V(F3) has a perfect matching. These together give an m-tree
factor of F for all m > 1. O

Lemma 2.8. Let G = (V, E) be a graph and S C V a stable set in G. If Q is an
m-tree packing of G then Q) covers at most (m + 1) |[['(S)| — ¢(Hg) vertices in S.

Proof. Let S' C S consist of those vertices which are leaves in @), and S? C S of those
which have degree at least 2 in Q. Clearly, |S*| < m |['(S)]. Let X = S2UT(S). By
definition, the number of edges of @ spanned by X is at least 2|.S?|, but, as @ is a forest,
this number is at most | X | — ¢(G[X]) = | X| — ¢(Hgsz2). The last equality follows from
the fact that the vertices of S? are not isolated in G[X]. Thus 2|5?| < |X|—c(Hg2) <
|S2UT(S)| —c(Hs). Summarizing, @ covers |STUS?| < (m+1) |T(S)| —c(Hg) vertices
in S. O

Our main result is a Gallai-Edmonds type structure theorem to the m-tree packing
problem, analogous to the classical version, Theorem 2.1.

Theorem 2.9. Let G = (V, E) be a connected, undirected graph and m be a positive
integer. Assume that if G ~ K3 then m > 2. Define D,, C V to consist of those
vertices which are missed by some maximum m-tree packing of G, and let A,, =
(D). Then

1. D, is stable in G,

2. a mazimum m-tree packing of G misses |Dy,| — (m + 1)|A,| + ¢(Hp,,) vertices

of G.

Proof. Consider the decomposition V = DU AUC defined in Theorem 2.1, and let
S C D be the set of isolated vertices of G[D], see Figure 1. Let N = \/{Ts : 1 <i <
m}V Mg, a matroid on ground set S, and let S’ C S consist of those elements which
are not coloops in N. We prove that D,, = 5.

By Lemma 2.3, 77y (S') = min{|Y| + |[I'(S' = Y)| : Y C S’}. By complementary
slackness, if Y gives equality here, then the elements of Y are coloops in Ts|s, and
hence also in \/{Ts|ss : 1 <i < m}V Mg|ss = N|g, which however has no coloops
by definition. Thus Y = 0 and r1,(S") = |[I'(S’)|. Analogous argument gives that
rus(S) = |I(S')| — ¢(Hg), using Lemma 2.5. Besides, by Lemma 2.6, ry(5') =
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Section 2. Main results 6

min{|Y|+m - rr(S"=Y) + 7y (S'=Y) : Y C S'}. Again, if YV gives equality here,
then the elements of Y are coloops in N|s by complementary slackness. Thus Y = ()
and

N () =m g (S7) 4 T (S) = (m + 1) [D(S")] — e(Hs).- (5)

e NJ

Figure 1: The decomposition of G, m =1

Claim 2.10. For every base J of N, the graph G[J U (V —S)]| has an m-tree factor.

Proof. In subsequent steps we construct an m-tree factor Q of G[J U (V — S)]. By
definition, J = |J{J; : 1 <i < m} U Jp, where J;, 1 < i < m, are independent in Tg
and Jy, is independent in Mg. By the remark before Lemma 2.5, J,, gives rise to an
isolated vertex free forest I with 2|.Jy,| edges, such that the vertices in Jy; has degree
2 in F. In addition, every set J; can be matched into A for 1 < ¢ < m, and the union
of these matchings give a collection of disjoint < m-star subgraphs of GG, with leaves
in J and centers in A. Adding these stars to F' we get a forest () covering J. The
edges of the actual forest () are thick with one stripe in Figure 1.

Observe that leafg(v) < m for v € A, leafg(v) < 2 for v € S and leafg(v) = 0
elsewhere. Thus () is an m-tree packing, unless m = 1 and ) has a 2-star component,
with center v € S. In this latter case delete from () a leaf in every such 2-star
component, in order to obtain an m-tree packing.

Due to Theorem 2.1, 2, A can be matched into distinct components of G[D], so
fix such a matching P. Next we modify @ in such a way that E(Q) N E(P) strictly
increases at every step. While there exists a vertex y € A\ V(Q), take the edge
yv € E(P) matching y into v € D residing in component K of G[D]. If K is not a
singleton then add yv to Q). Do the same if K is a singleton, except if v has already
m leaves in ) (note that this can happen only if m < 2). In this case delete from @
a leaf adjacent to v and add yv to ). In the end of this procedure, () is an m-tree
packing covering J U A. The newly added edges of the actual ) are thick with three

stripes in Figure 1.

Now consider a non-singleton component K of G[D]. Observe that |V (Q)NV (K)|
1. HV(Q)NV(K) = {v} then add a perfect matching of K—v to Q. If V(Q)NV (K)
() then add an m-tree factor of K to @, guaranteed by Claim 2.7 — unless K ~ Kj

<
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and m = 1. In this latter case a vertex v € V(K) is joined by an edge to some y € A
in GG, by the condition that G is connected and G ~ K3 implies m > 2. Thus add
vy and a 2-star of K with v as a leaf to (). The new edges of ) are thick with two
stripes in Figure 1.

The vertex set of the actual m-tree packing @ is exactly J U (V — S — (), so
supplement it with a perfect matching of G[C], guaranteed by Theorem 2.1, to finish
the proof. O

By Lemma 2.8, every m-tree packing of G misses at least d := |S'|—(m+1) |T'(S") |+
c(Hg) vertices of S'. If J is a base of N, then G[J U (V — S)] has size |V| —d by (5).
The m-tree factors of G[JU (V — 5)] , guaranteed by Claim 2.10, are thus maximum.
Hence by the definition of S, the relation S’ = D,, follows, implying 2. O

As one can obtain the classical Gallai-Edmonds decomposition in polynomial time,
and there are polynomial algorithms for the matroid union problem, this proof is
algorithmic. Thus one can find a maximum m-tree packing of G in polynomial time.

We mention that the relation between the decompositions for distinct m’s is that
D1 D) D2 ... and A1 D) A2 D... In addition, if G 7é K1 then Dn—l = An—l = @ for
n=|V|.

As opposed to the classical Gallai-Edmonds theorem 2.1, the graph G[C,,] (with
Cn =V — (D, UA,;,)) may fail to have an m-tree factor, as shown in Figure 2.

D,

Am
Cm

Figure 2: G[C,,] has no m-tree factor, m = 2

Theorem 2.11. Let G = (V,E) be a connected, undirected graph, m be a positive
integer, and assume that if G ~ K3 then m > 2. Then a maximum m-tree packing
of G misses |S| — (m + 1) |T'(S)| + ¢(Hg) vertices of G, where the mazimum runs on
stable sets S C V.

Proof. One direction is implied by Lemma 2.8, and the other by Theorem 2.9, 2,
which shows that equality is attained by S = D,,. O

From Theorem 2.11 it is easy to deduce Theorem 1.1 of Kaneko.

Proof of Theorem 1.1. We assume that G ~ K3 implies m > 2. Suppose first that
there exists a set X C V violating the condition of Theorem 1.1. Let S C V consist
of the isolated vertices of G — X. Clearly, X D I'(S). Note that if I'(S) = 0 then
¢(Hs) = 0, while if ['(S) # 0 then ¢(Hg) > 1. In both cases, we have

S| =i(G - X)>m|X|+ (| X| =1 > (m+1)|[(S)| - c(Hs).
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Thus by Lemma 2.8, every m-tree packing of G' misses at least one vertex of S.

On the other hand, assume that G' has no m-tree factor. Then, by Theorem 2.11,
there exists a stable set S C V with |S| > (m+1)|T'(S)|—c(Hs). IfT'(S) = () then G
is a singleton thus X = () violates the condition of Theorem 1.1. So we assume that
I'(S) # 0, which implies that k := ¢(Hg) > 1 and that Hg has no empty hyperedges.
The edge sets of the components of Hg give a partition {S; : 1 < i < k} of S. If
1Si] < (m+1)|T'(S;)| —1forall 1 <4 <k then

k k

S| =Y IS < (m+1) Y |T(Si)| = k = (m+1)[T(S)| - e(Hs),

a contradiction. So choose an index 1 < ¢ < k with [S;| > (m+ 1) |T'(S;)| — 1. As
X :=T(S;) # 0, we have

i(G—X)>|S]>m+1)|X|-1=m|X|+ (| X|-1T,

in other words, X violates the condition of Theorem 1.1. O

Theorem 2.12. Let G = (V, E) be a connected, undirected graph and m be a positive
integer. Then T := {U CV : there exists an m-tree packing of G covering U} is the
collection of independent sets of a matroid.

Proof. If G ~ K3 and m = 1 then Z is the collection of independent sets of the
uniform matroid Uso. Otherwise recall the matroid N in the proof of Theorem 2.9.
Add the vertices of V' — S as coloops to N|s resulting in matroid M on ground set V.
We prove that Z is equal to the collection of independent sets of M.

If J U (V—=25)is a base of M, then exactly as in the proof of Theorem 2.9, one
can obtain an m-tree packing of G with vertex set J U (V — S). On the other hand,
let @ be an m-tree packing of G. Let D' C D,, consist of those vertices which are
leaves in @, and D? C D,,, of those which have degree at least 2 in . Clearly, D*
is independent in \/{Tp, : 1 < i < m}. Moreover, D? is independent in Mp_, as
IT(X)| —1>|X|forall ) # X C D% Thus V(Q) is independent in M. O

We point out that it is possible to modify the above considerations to solve the
following local leaf constrained tree packing problem: given a connected, undi-
rected graph G = (V| F) and a function m : V' — N, find a forest T of G of maximum
size, with the property that leafy(v) < m(v) for all v € V(T). It can be proved that
such a maximum forest misses |S| — (m + 1)(I'(S)) + ¢(Hs) vertices of G, where the
maximum runs on stable sets S C V — except if G = K3 and m = 1. Theorems 2.9
and 2.12 are easy to modify to apply to this problem as well.

In [12] an attempt is made to provide a unifying framework to all polynomial
graph packing problems known at the time of writing. This framework embraces a
skeleton of an Edmonds type alternating forest algorithm, a Berge-Tutte type and
a Gallai-Edmonds type theorem and a matroidal result. To convert these structural
statements into exact results on a specific packing problem, we need this algorithm to
work and also some properties to be satisfied. The Gallai-Edmonds and Berge-Tutte
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type theorems 2.9 and 2.11 to the m-tree packing problem are analogous to known
structural results on other polynomial packing problems. However, an alternating
forest algorithm to m-tree packings is not known yet, and hence it is not clear whether
there is a way to adapt the framework of [12] to the m-tree packing problem.

It is interesting to note that the family of m-tree packing problems do not include
the classical matching problem, contrary to the other known polynomially solvable
families of packing problems.
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