
Egerváry Research Group
on Combinatorial Optimization

Technical reportS

TR-2007-01. Published by the Egerváry Research Group, Pázmány P. sétány 1/C,
H–1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587–4451.

Applications of Eulerian splitting-off

Tamás Király

January 2007



EGRES Technical Report No. 2007-01 1

Applications of Eulerian splitting-off

Tamás Király?

Abstract

The aim of the present paper is to show how a slight generalization of a
splitting-off result of Berstimas and Teo [1] offers a common understanding of
several seemingly unrelated results in graph connectivity theory.

1 Introduction
In his early seminal paper on splitting-off in Eulerian graphs [6], Lovász proved three
theorems showing how the splitting operation may preserve certain connectivity prop-
erties of the graph. He suggested that the formulation of a general theorem implying
these results would be possible, but, in his words, it “would be complicated”.

Several years later Bertsimas and Teo [1] proved a more abstract splitting-off re-
sult during their investigation of the parsimonious property of cut-covering problems.
They claimed that their result provides a unified approach to several results on edge-
disjoint paths.

The present paper proposes a slight generalization of the theorem of Berstimas
and Teo. This generalization implies the edge-disjoint path results mentioned in
[1] (including one case where the method described in that paper fails without the
generalization). We also show that this theorem is useful in proving various other
results on graph connectivity, including those addressed in the paper of Lovász. The
main purpose of the paper is not to provide new results, but rather to show how this
abstract theorem offers a common understanding of seemingly unrelated results in
different areas of graph connectivity.

The term “graph” is used for undirected graphs with possible parallel edges and
loops. For a graph G = (V, E) and sets X, Y ⊆ V we use the following notations:

δG(X, Y ) := {uv ∈ E : u ∈ X, v ∈ Y },
dG(X, Y ) := |δG(X, Y )|,

δG(X) := δG(X, V −X),

dG(X) := |δG(X)|,
iG(X) := dG(X, X).
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Section 1. Introduction 2

Let p : 2V → Z+ be a non-negative set function on the ground set V and let
m : V → Z+ be a function on V , called degree specification. We consider the problem
of finding a graph G = (V, E) for which dG(v) = m(v) for every v ∈ V and dG(X) ≥
p(X) for every X ⊆ V . We assume in the rest of the paper that p(∅) = 0 and the set
function p is symmetric, i.e. p(X) = p(V −X) for every X ⊆ V .

An obvious necessary condition for the existence of G is m(X) ≥ p(X) for every
X ⊆ V , where m(X) denotes

∑
v∈X m(v). This motivates the introduction of the

excess function mp:
mp(X) := m(X)− p(X) (X ⊆ V ).

In addition to the requirement that mp(X) ≥ 0 for every X ⊆ V , it is also necessary
for m(V ) (or equivalently mp(V )) to be even. The result described in this section
requires more: mp(X) should also be even for every X ⊆ V for which p(X) > 0.

The set function p is called semi-skew-supermodular if for any 3 sets X1, X2, X3

with p(Xi) > 0 (i = 1, 2, 3) at least one of the following four possibilities holds:

• p(Xi) + p(Xj) ≤ p(Xi ∩Xj) + p(Xi ∪Xj) for some i 6= j,

• p(Xi) + p(Xj) ≤ p(Xi −Xj) + p(Xj −Xi) for some i 6= j,

• p(X1) + p(X2) + p(X3) ≤ p(X1 ∩X2 ∩X3) + p(X1 − (X2 ∪X3)) + p(X2 − (X1 ∪
X3)) + p(X3 − (X1 ∪X2)),

• p(X1) + p(X2) + p(X3) ≤ p(X1 ∪X2 ∪X3) + p((X2 ∩X3)−X1) + p((X1 ∩X3)−
X2) + p((X1 ∩X2)−X3).

Obviously every skew supermodular set function is semi-skew-supermodular (a set
function is skew supermodular if one of the first two inequalities holds for any two
sets). In addition, the following is implied by the definition.

Claim 1.1. Semi-skew-supermodularity has the following properties:

• If p1 and p2 are skew supermodular set functions, then max{p1, p2, 0} is a semi-
skew-supermodular set function.

• If p is semi-skew-supermodular and G = (V, E) is a graph, then max{p− dG, 0}
is semi-skew-supermodular.

• If p is a non-symmetric semi-skew-supermodular set function, then p′(X) :=
max{p(X), p(V −X)} is also semi-skew-supermodular, hence the assumption of
symmetry is not restrictive.

We show that if p is semi-skew-supermodular and mp is even-valued then the non-
negativity of mp is sufficient for the existence of G. A similar result for a slightly more
restricted class of set functions appeared in [1].

Theorem 1.2. Let p : 2V → Z+ be a symmetric and semi-skew-supermodular set
function. Let m : V → Z+ be a degree specification with the properties that m(V )
is even and mp(X) is non-negative and even-valued if p(X) > 0. Then there exists
a graph G such that dG(v) = m(v) for every v ∈ V and dG(X) ≥ p(X) for every
X ⊆ V .
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Section 1. Introduction 3

Proof. We prove the theorem by induction on m(V ). The theorem is clearly true if
m is positive on at most one node, so we assume that there are at least two nodes
where it is positive. A set X ⊆ V is called tight if p(X) > 0 and mp(X) = 0. Let u be
an arbitrary node with m(u) > 0, and let X1, . . . , Xk be the maximal tight sets that
contain u. Let W := V − ∪k

i=1Xi.

Claim 1.3. m(W ) > 0.

Proof. The definition of tightness implies that

m(Xi) = p(Xi) = p(V −Xi) ≤ m(V −Xi).

Therefore the claim follows immediately if k ≤ 1. Moreover, it also follows if k = 2
because m(X1 ∩X2) > 0 implies that

m(X1) ≤ m(V −X1) < m(X2) + m(W ) ≤ m(V −X2) + m(W ) < m(X1) + 2m(W ).

Suppose that k ≥ 3. Since p is semi-skew-supermodular, we have one of the follow-
ing four cases.

Case 1: p(Xi) + p(Xj) ≤ p(Xi ∩Xj) + p(Xi ∪Xj) for some 1 ≤ i < j ≤ k. Then
0 = mp(Xi) + mp(Xj) ≥ mp(Xi ∩Xj) + mp(Xi ∪Xj), so mp(Xi ∪Xj) = 0 by the non-
negativity of mp. Therefore Xi∪Xj is a tight set that contains u, but this contradicts
the maximality of Xi and Xj.

Case 2: p(Xi) + p(Xj) ≤ p(Xi − Xj) + p(Xj − Xi) for some 1 ≤ i < j ≤ k. In
this case 0 = mp(Xi) + mp(Xj) ≥ mp(Xi −Xj) + mp(Xj −Xi) + 2m(Xi ∩Xj) > 0, a
contradiction.

Case 3: p(X1)+p(X2)+p(X3) ≤ p(X1∩X2∩X3)+p(X1−(X2∪X3))+p(X2−(X1∪
X3))+p(X3−(X1∪X2)). Then 0 = mp(X1)+mp(X2)+mp(X3) ≥ mp(X1∩X2∩X3)+
mp(X1−(X2∪X3))+mp(X2−(X1∪X3))+mp(X3−(X1∪X2))+2m(X1∩X2∩X3) > 0,
a contradiction.

Case 4: p(X1)+p(X2)+p(X3) ≤ p(X1∪X2∪X3)+p((X2∩X3)−X1)+p((X1∩X3)−
X2)+p((X1∩X2)−X3). This implies 0 = mp(X1)+mp(X2)+mp(X3) ≥ p(X1∪X2∪
X3)+p((X2∩X3)−X1)+p((X1∩X3)−X2)+p((X1∩X2)−X3)+2m(X1∩X2∩X3) > 0,
again a contradiction.

This shows that k ≥ 3 is impossible, which concludes the proof of the claim.

The claim implies that there is a node u 6= w ∈ W with m(w) > 0. Let m′(u) :=
m(u)− 1, m′(w) := m(w)− 1, and let m′(v) := m(v) for all other nodes. Clearly m′

is non-negative. Let p′(X) := p(X) − 1 if |X ∩ {u, w}| = 1 and p(X) > 0, and let
p′(X) := p(X) otherwise. Then m′ and p′ have the following properties:

• p′ is non-negative and symmetric,

• p′ is semi-skew-supermodular by Claim 1.1,

• m′(X)− p′(X) is even-valued if p′(X) > 0,

• m′(X)− p′(X) is non-negative because |X ∩ {u, w}| ≤ 1 for any tight set X.
By induction there exists a graph G′ with dG′(v) = m′(v) for every v ∈ V and
dG′(X) ≥ p′(X) for every X ⊆ V . Let G be the graph obtained by adding the edge
uw to G′. Then G satisfies the conditions of the theorem.
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2 Applications
We present four applications of Theorem 1.2. We start with the parsimonious property
that was the original motivation for the result of Bertsimas and Teo. The second
application concerns the covering of graphs by edge-disjoint forests, and it is a slight
extension of a result in [3]. The third one offers an simple proof for some known
results on edge-disjoint paths, extending the method of [1]. The fourth application
is a proof of a theorem of Karzanov and Lomonosov [5] on multiflows. The proof is
essentially the same as the one by Frank, Karzanov and Sebő [2].

2.1 The parsimonious property

The main motivation for the work of Bertsimas and Teo was the study of the so-called
parsimonious property of linear relaxations of cut-covering problems. Let G = (V, E)
be an undirected graph with a cost function c : E → Z+ on the edges, and let
h : 2V → Z+ be a symmetric set function. A node v ∈ V is called subadditive if
h(X)+h(v) ≥ h(X + v) for every X ⊆ V − v. Consider the following linear program:

min cx
x(δG(Z)) ≥ h(Z) for every Z ⊆ V
x(e) ≥ 0 for every e ∈ E.

(1)

We say that a node v ∈ V has the parsimonious property if the linear system (1) has
an optimal solution x∗ with x∗(δG(v)) = h(v). This property has several structural
consequences, and it is useful in the analysis of approximation algorithms (see e.g.
[4]). The following theorem is a generalization of the result in [1] where a property
stronger than subadditivity was required.

Theorem 2.1. If G is the complete graph, c satisfies the triangle inequality, and h is
semi-skew-supermodular, then the linear system (1) has an optimal solution x∗ with
the following property:

x∗(δG(v)) = h(v) for every subadditive node v.

Proof. Let x be an optimal solution where x(δ(v)) > h(v) for a minimum number of
subadditive nodes. Suppose that there exists such a node s. Let k be a positive even
integer for which kx(e) is an even integer for every e ∈ E. Let Gs = (V, Es) denote
the graph obtained from G by deleting the edges incident to s. Let us introduce the
following set function p : 2V → Z+ and degree specification m : V → Z+.

p(Z) := max{k(h(Z)− x(δGs(Z))), 0}, (2)

m(v) :=

{
kx(δG(v, s)) if v 6= s,

kh(s) if v = s.
(3)
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2.2 Augmentation of k-forest-coverable graphs 5

The set function p is symmetric and it is semi-skew-supermodular by Claim 1.1. By
the definition of k, m(v) is even for every v ∈ V and p(Z) is even for every Z ⊆ V .
This means that mp(Z) is even for every Z ⊆ V .

Let X be a subset of V . If X ⊆ V −s, then m(X)−p(X) ≥ k(x(δG(X))−h(X)) ≥ 0
since x is a solution of (1). If s ∈ X, then m(X)−p(X) ≥ m(X−s)+k(h(s)−h(X)+
x(δGs(X))) ≥ m(X−s)+k(−h(X−s)+x(δGs(X))) = k(x(δG(X−s))−h(X−s)) ≥ 0.
We can conclude that mp is non-negative.

By Theorem 1.2 there exists a graph G∗ = (V, E∗) such that dG∗(v) = m(v) for
every v ∈ V and dG∗(X) ≥ p(X) for every X ⊆ V . Let x∗(e) denote the multiplicity
of the edge e in G∗, and let x′ be the vector obtained by

x′(e) :=

{
x∗(e)/k if e is incident to s,

x(e) + x∗(e)/k if e is not incident to s.

The triangle inequality implies that cx′ ≤ cx. We claim that x′ is a solution of (1).
It suffices to check that x′(δG(Z)) ≥ h(Z) for every Z ⊆ V − s. Here x′(δG(Z)) =
x(δGs(Z))+x∗(δG(Z))/k, and our construction guarantees that x∗(δG(Z))/k ≥ h(Z)−
x(δGs(Z)), hence x′(δG(Z)) ≥ h(Z) as required.

Finally let us observe that x′(δG(s)) = h(s) and x′(δG(v)) = x(δG(v)) for all other
nodes. This means that x′ is an optimal solution where the number of subadditive
nodes with x′(δG(v)) > h(v) is strictly less than in the case of x, which contradicts
the choice of x.

2.2 Augmentation of k-forest-coverable graphs

The following theorem of Nash-Williams [7] characterizes graphs that can be covered
by k forests.

Theorem 2.2. The edge-set of a graph G = (V, E) can be covered by k forests if and
only if iG(X) ≤ k(|X| − 1) for every non-empty subset X of V .

Given a graph G = (V, E) that can be covered by k forests and weights on the
edges of the complete graph on V , we may want to find an edge set F of maximum
weight for which the graph G′ = (V, E + F ) can still be covered by k forests. This is
an easy problem in the sense that it can be solved by finding the maximum weight
independent set in a matroid. In fact, the following, more general problem can be
solved using the weighted matroid intersection algorithm:

Given two graphs G1 = (V, E1) and G2 = (V, E2) that can both be covered by k
forests and weights on the edges of the complete graph on V , find an edge set F of
maximum weight such that the graphs G′

1 = (V, E1 + F ) and G′
2 = (V, E2 + F ) can

still be covered by k forests.
What happens if we also want to prescribe the number of new edges incident to each

node? The weighted problem cited above becomes NP-complete, even for E1 = E2 = ∅
and k = 1. To see this, let the weight of the edges of a given graph G∗ be 1, and the
weight of all other edges be 0; let furthermore the degree specification be 1 on two
designated nodes v1 and v2, and 2 on all other nodes. Then the maximum weight of a
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2.2 Augmentation of k-forest-coverable graphs 6

feasible edge set is |V | if and only if G∗ contains a Hamiltonian path between v1 and
v2.

In the following, we show that the non-weighted degree-prescribed problem can be
solved, and there is a simple necessary and sufficient condition for the existence of F .
This extends the result in [3] that dealt with the case E1 = E2. An interesting point
about this application of Theorem 1.2 is that parity is not part of the definition of
the problem; as we shall see, an even-valued excess function appears implicitly.

Theorem 2.3. Let G1 = (V, E1) and G2 = (V, E2) be two graphs that can be covered
by k forests, and let m : V → Z+ be a degree specification with m(V ) even. There
exists an edge set F for which dF (v) = m(v) for every v ∈ V and both G′

1 = (V, E1+F )
and G′

2 = (V, E2 + F ) can be covered by k forests if and only if

max

{
m(X)− m(V )

2
, 0

}
≤ k(|X| − 1)−max{iG1(X), iG2(X)} for every ∅ 6= X ⊆ V .

(4)

Proof. It is clear that max{iG′
1
(X), iG′

2
(X)} ≤ k(|X| − 1) must hold for every ∅ 6=

X ⊆ V , so the fact that iF (X) ≥ max{m(X) −m(V )/2, 0} implies the necessity of
the condition.

The proof of sufficiency relies on Theorem 1.2. We define the following set functions.

q1(X) := m(X) + 2iG1(X)− 2k(|X| − 1) (∅ 6= X ⊆ V ), (5)
q2(X) := m(X) + 2iG2(X)− 2k(|X| − 1) (∅ 6= X ⊆ V ), (6)
p(X) := max{q1(X), q1(V −X), q2(X), q2(V −X), 0}. (7)

The set function p is non-negative and symmetric. Since m(X) ≡ m(V −X) mod 2,
m(X)− p(X) is even for every X ⊆ V for which p(X) > 0.

Claim 2.4. If condition (4) holds, then pm is non-negative.

Proof. First we consider the case when p(X) = q1(X) (the case when p(X) = q2(X)
can be proved analogously). In this case mp(X) = 2k(|X| − 1) − 2iG1(X), which is
non-negative since iG1(X) ≤ k(|X| − 1) by (4).

Now suppose that p(X) = q1(V −X) (the case p(X) = q2(V −X) is analogous). By
definition, mp(X) = m(X)−m(V −X)+2k(|V −X|−1)−2iG1(V −X) = 2[m(V )/2−
m(V −X) + k(|V −X| − 1)− iG1(V −X)], which is non-negative because inequality
(4) for V −X states that m(V −X)−m(V )/2 ≤ k(|V −X| − 1)− iG1(V −X).

Claim 2.5. The set function p is semi-skew-supermodular.

Proof. Both q1 and q2 are supermodular, so the set functions max{q1(X), q1(V −X)}
and max{q2(X), q2(V −X)} are skew supermodular. Now Claim 1.1 implies that p is
semi-skew-supermodular.

By Theorem 1.2 there exists a graph G∗ = (V, E∗) for which dG∗(v) = m(v) for every
v ∈ V and dG∗(X) ≥ p(X) for every X ⊆ V . By definition, dG∗(X) = m(X)−2iG∗(X),
so m(X)− 2iG∗(X) ≥ p(X). Since p(X) ≥ max{q1(X), q2(X)}, we obtain that

m(X)− 2iG∗(X) ≥ m(X) + 2 max{iG1(X), iG2(X)} − 2k(|X| − 1).
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2.3 Edge-disjoint paths: the Eulerian case 7

Let G′
1 = (V, E1+E∗) and G′

2 = (V, E2+E∗). The above inequality can be rewritten
as max{iG′

1
(X), iG′

2
(X)} ≤ k(|X| − 1). According to Theorem 2.2 this implies that

both G′
1 and G′

2 can be covered by k forests.

2.3 Edge-disjoint paths: the Eulerian case

Let G = (V, E) and H = (V, F ) be undirected graphs on the same ground set. Our
goal is to find a family {Pf : f ∈ F} of edge-disjoint paths in G such that for every
f ∈ F the end-nodes of the path Pf are the end-nodes of f .

We say that the cut condition holds if dG(X) ≥ dH(X) for every X ⊆ V . The cut
condition is clearly necessary for the existence of the required edge-disjoint paths. It
is known that if H is a double star, a K4 or a C5, possibly with multiple parallel
edges, and G + H is Eulerian, then the cut condition is also sufficient (see e.g. [8]).
In this section we give a short proof of this result using Theorem 1.2. A somewhat
similar proof was sketched in [1], but the splitting off theorem used there is not strong
enough to deal with the K4 case.

Theorem 2.6. Let G = (V, E) and H = (V, F ) be undirected graphs such that

• H is a double star, a K4 or a C5, possibly with multiple parallel edges,

• G + H is Eulerian,

• dG(X) ≥ dH(X) for every X ⊆ V .

Then there exists a family {Pf : f ∈ F} of edge-disjoint paths in G such that for
every f ∈ F the end-nodes of the path Pf are the end-nodes of f .

Proof. Suppose for contradiction that G = (V, E) and H = (V, F ) form a counterex-
ample for which |E| is minimal. If uv ∈ E, then uv /∈ F since otherwise we could
obtain a smaller counterexample by deleting uv from both E and F .

The use of Theorem 1.2 depends on the following lemma.

Lemma 2.7. If H is a double star, a K4 or a C5, possibly with parallel edges, then
the set function dH is semi-skew-supermodular.

Proof. Suppose for contradiction that dH is not semi-skew-supermodular on sets
X1, X2, X3. Then dH(Xi)+dH(Xj) > dH(Xi∩Xj)+dH(Xi∪Xj) for every 1 ≤ i < j ≤ 3
and dH(Xi)+dH(Xj) > dH(Xi−Xj)+dH(Xj−Xi) for every 1 ≤ i < j ≤ 3. It follows
that for every 1 ≤ i < j ≤ 3 there is an edge between Xi∩Xj and V −(Xi∪Xj), and an
edge between Xi−Xj and Xj−Xi in H. We denote the former edges by uivi (i=1,2,3)
and the latter edges by wizi (i=1,2,3), e.g. u1 ∈ X2 ∩X3 and v1 ∈ V − (X2 ∪X3).

Let us examine the position of the edges uivi. These cannot be node-disjoint, since
H does not contain 3 node-disjoint edges. By the symmetry of p (and of the definition
of semi-skew-supermodularity) we may assume that u1 = u2 =: u, so u ∈ X1∩X2∩X3.
The node v1 (and similarly v2) cannot be in V − (X1 ∪X2 ∪X3) since then the edge
uv1 together with the 3 edges wizi would contain either 3 disjoint edges, or a triangle
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2.3 Edge-disjoint paths: the Eulerian case 8

and a disjoint edge, both of which is impossible in H. Thus v1 ∈ X1 − (X2 ∪X3) and
v2 ∈ X2 − (X1 ∪X3).

Next we consider the edge u3v3. If u3 6= u, then u3v3 is disjoint from u1v1, u2v2 and
w3z3, so again we have either 3 disjoint edges or a triangle and a disjoint edge, which
is impossible. So u3 = u, and consequently v3 ∈ X3− (X1∪X2). Since u is connected
to 3 different nodes, H is not a C5.

Suppose that H = K4 (with possible multiple edges) with nodes u, v1, v2, v3. Since
we know exactly the positions of the nodes, it is easy to check that dH(X1)+dH(X2)+
dH(X3) ≤ dH(X1 ∩X2 ∩X3) + dH(X1− (X2 ∪X3)) + dH(X2− (X1 ∪X3)) + dH(X3−
(X1 ∪X2)), contradicting our assumption that dH is not semi-skew-supermodular on
sets X1, X2, X3.

The remaining case is when H is a double star, i.e. the edges of H can be covered
by two nodes. One of these nodes must be u (since otherwise we cannot even cover
the edges uv1, uv2, uv3). This means that the other node should cover the edges
w1z1, w2z2, w3z3, but these cannot be covered by a single node.

Suppose that there is a node s ∈ V in our minimal counterexample where dH(s) <
dG(s). Let Gs denote the graph obtained from G by deleting the edges incident to s.
Let us define a set function p : 2V → Z+ and a degree specification m : V → Z+ by

p(X) := max{dH(X)− dGs(X), 0} for every X ⊆ V , (8)

m(v) :=

{
dG(v, s) if v 6= s,

dH(s) if v = s.
(9)

We show that m and p have the required properties.

• p is symmetric and non-negative. It is semi-skew-supermodular by Lemma 2.7
and Claim 1.1.

• m(V ) is even because dG(s) + dH(s) is even.

• If p(X) > 0, then m(X)− p(X) is even (it suffices to check this for s /∈ X, and
then m(X)− p(X) = dG(X)− dH(X)).

• To see that m(X) − p(X) is non-negative, we distinguish two cases. If s /∈ X,
then m(X) − p(X) ≥ dG(X) − dH(X) ≥ 0. If s ∈ X, then m(X) − p(X) ≥
m(X) + dGs(X − s) − dH(X) ≥ m(X) + dGs(X − s) − dH(X − s) − dH(s) =
dG(X − s)− dH(X − s) ≥ 0.

By Theorem 1.2 there exists a graph G∗ = (V, E∗) with dG∗(v) = m(v) for every
v ∈ V and dG∗(X) ≥ p(X) for every X ⊆ V . Let G′ := Gs +G∗, and let E ′ denote the
edge-set of G′. The graph G′ +H is Eulerian since dG′(v) = dG(v) for every v ∈ V − s
and dG′(s) = dH(s). Furthermore, dG′(X) = dGs(X) + dG∗(X) ≥ dGs(X) + p(X) ≥
dH(X) for every X ⊆ V , so G′ and H satisfy the cut condition.

Since |E ′| < |E|, the pair (G′, H) is not a counter-example to the theorem. Thus
there is a family of edge-disjoint paths {P ′

f : f ∈ F} that satisfy the demands.
We can obtain a family of edge-disjoint walks {Wf : f ∈ F} in G by the following
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2.4 Multiflows in inner Eulerian graphs 9

transformation: if an edge uv in P ′
f is in E∗ and u, v 6= s, then we replace this edge

by the two edges us and sv. It is easy to check that we only use edges that are in E,
and we use parallel edges at most as many times as they appear in E.

We can reduce each walk Wf to a path Pf in G, thereby obtaining a family of
edge-disjoint paths {Pf : f ∈ F} in G that satisfy the demands. This contradicts the
assumption that G is a counterexample.

We proved that dG(v) = dH(v) for every v ∈ V in a minimal counterexample and
no edge can appear in both E and F . The theorem is obviously true if E = F = ∅.
Let uv be an edge in E−F . Then dG({u, v}) = dG(u)+dG(v)−2 < dH(u)+dH(v) =
dH({u, v}), which means that the set {u, v} violates the cut condition, contradicting
the assumption that (G, H) is a counterexample.

2.4 Multiflows in inner Eulerian graphs

Let G = (V, E) be an undirected graph and T ⊆ V a set of terminal nodes. We say
that the pair (G, T ) is inner Eulerian if dG(v) is even for every v ∈ V − T . A T -path
is a path with both end-nodes in T . If P is a family of T -paths and Z ⊆ T , then
dP(Z) denotes the number of paths in P that have exactly one end-node in Z. Let

λG(Z) := min{dG(X) : X ⊆ V, X ∩ T = Z}.

If P is a family of edge-disjoint T -paths, then obviously dP(Z) ≤ λG(Z) for every
Z ⊆ T . Generalizing a result of Lovász [6], Karzanov and Lomonosov [5] proved that
equality can be attained on any given family L of subsets of T that is 3-cross-free: it
has no three members that are pairwise crossing on the ground set T .

Theorem 2.8 ([5]). Let (G, T ) be inner Eulerian and let L be a 3-cross-free family
of subsets of T . Then there is a family P of edge-disjoint T -paths for which dP(Z) =
λG(Z) for every Z ∈ L.

Proof. The proof is essentially a reformulation of the proof in [2]. We assume that L
is symmetric, i.e. Z ∈ L if and only if T −Z ∈ L. This does not affect the 3-cross-free
property. We prove the theorem by induction on the number of edges incident to
V −T . If there is no such edge, then the family of T -paths consisting of all edges of G
as individual paths satisfies the conditions of the theorem. We can therefore assume
that there is a node s ∈ V − T with dG(s) > 0. Let Gs be the graph obtained from
G by deleting the edges incident to s. Let us define the following degree specification
and set function on V :

m(v) :=

{
dG(v, s) if v 6= s,

0 if v = s,
(10)

p(X) :=

{
max{λG(X ∩ T )− dGs(X), 0} if X ∩ T ∈ L,

0 otherwise.
(11)

The set function p is non-negative and symmetric, while the degree specification m is
non-negative and m(V ) is even since dG(s) is even.
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Claim 2.9. pm(X) is even whenever p(X) > 0.

Proof. It suffices to check this for X ⊆ V − s. Observe that there is a set Y ⊆ V such
that Y ∩T = X ∩T and λG(X ∩T ) = dG(Y ). Thus m(X)−p(X) = dG(X)−λG(X ∩
T ) = dG(X)−dG(Y ) ≡ dG(X∆Y ) mod 2, and dG(X∆Y ) is even since X∆Y ⊆ V −T
and (G, T ) is inner Eulerian.

Claim 2.10. The set function p is semi-skew-supermodular.

Proof. Let X1, X2, X3 be 3 subsets of V with p(Xi) > 0 (i = 1, 2, 3). Since Xi∩T ∈ L
(i = 1, 2, 3), there are indices i 6= j for which Xi ∩ T and Xj ∩ T are not crossing.
This means that the pair (Xi ∩ T, Xj ∩ T ) is the same as one of the following three
pairs: ((Xi ∩Xj) ∩ T, (Xi ∪Xj) ∩ T ), ((Xi −Xj) ∩ T, (Xj −Xi) ∩ T ), or (T − (Xi −
Xj), T − (Xj −Xi)). It follows that the set function

f(X) :=

{
λG(X ∩ T ) if X ∩ T ∈ L,

0 if X ∩ T /∈ L

is semi-skew-supermodular (here we used the fact that L is symmetric). Now Claim
1.1 implies that p is semi-skew-supermodular.

By Theorem 1.2 there exists a graph G∗ = (V, E∗) with dG∗(v) = m(v) for every
v ∈ V and dG∗(X) ≥ p(X) for every X ⊆ V . Let G′ := Gs + G∗ and let E ′ denote
the edge-set of G′. If X ∩T ∈ L for some X ⊆ V , then dG′(X) = dGs(X) + dG∗(X) ≥
dGs(X) + p(X) ≥ λG(X ∩T ). This implies that λG′(Z) = λG(Z) for every Z ∈ L. By
induction there is a family P ′ of edge-disjoint T -paths in G′ for which dP ′(Z) = λG(Z)
for every Z ∈ L.

We can obtain a family W of edge-disjoint walks in G by the following transforma-
tion: if an edge uv of a path is in E∗, then we replace this edge by the two edges us
and sv. It is easy to check that we only use edges that are in E, and we use parallel
edges at most as many times as they appear in E.

We can reduce each walk in W to a path in G, thus obtaining a family P of edge-
disjoint paths in G that satisfy dP(Z) = λG(Z) for every Z ∈ L. This concludes the
proof of the theorem.
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